JPH01179735A - Production of optical fiber base material - Google Patents

Production of optical fiber base material

Info

Publication number
JPH01179735A
JPH01179735A JP74788A JP74788A JPH01179735A JP H01179735 A JPH01179735 A JP H01179735A JP 74788 A JP74788 A JP 74788A JP 74788 A JP74788 A JP 74788A JP H01179735 A JPH01179735 A JP H01179735A
Authority
JP
Japan
Prior art keywords
flame
glass body
porous
glass
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP74788A
Other languages
Japanese (ja)
Inventor
Yuji Takahashi
祐司 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP74788A priority Critical patent/JPH01179735A/en
Publication of JPH01179735A publication Critical patent/JPH01179735A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]
    • C03B37/01486Means for supporting, rotating or translating the preforms being formed, e.g. lathes
    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03BMANUFACTURE, SHAPING, OR SUPPLEMENTARY PROCESSES
    • C03B37/00Manufacture or treatment of flakes, fibres, or filaments from softened glass, minerals, or slags
    • C03B37/01Manufacture of glass fibres or filaments
    • C03B37/012Manufacture of preforms for drawing fibres or filaments
    • C03B37/014Manufacture of preforms for drawing fibres or filaments made entirely or partially by chemical means, e.g. vapour phase deposition of bulk porous glass either by outside vapour deposition [OVD], or by outside vapour phase oxidation [OVPO] or by vapour axial deposition [VAD]

Abstract

PURPOSE:To obtain the title optical fiber porous base material with reduced residual OH group and transmission loss and coated with a thin deposit by depositing the fine glass particle current distant from a flame on a supporting surface isolated from the flame in the production of an optical fiber base material by VAD. CONSTITUTION:Core materials 4 and 4' for graded index-type fibers, for example, are connected through an intermediate dummy rod 9. One end of a center glass body with a working dummy rod fixed on both ends is fixed to a lifting machine 8 of the reaction vessel 6 of the VAD device, the uppermost part of the core material 4 is placed in front of a burner 1, then the lifting machine 8 is raised while injecting a raw material and combustion gas from the burner 1, and fine glass particles 3 enveloped in the flame 2 are deposited on the core material 4 as the center glass body directly covered with the flame 2 to form a porous glass body 5. Meanwhile, the surplus fine glass particle current 3 not depositing on the core material 4 and distant from the flame 2 is deposited on the core material 4' isolated from the flame 2 to form a porous glass body 5' coated with a thin deposit layer.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は光ファイバ母材の製造方法に関し、詳しくはO
H基による吸収損失が低く、かつ中心ガラス体に堆積し
たガラス微粒子の堆積厚の薄い多孔質母材の製造方法に
関するものである。
[Detailed Description of the Invention] [Industrial Application Field] The present invention relates to a method for manufacturing an optical fiber preform, and in detail, O.
The present invention relates to a method for producing a porous base material that has low absorption loss due to H groups and has a small thickness of glass fine particles deposited on a central glass body.

〔従来の技術〕[Conventional technology]

光ファイバ母材の製造方法の一つとしてVAD法(Va
por phase Axial Depositio
n Methodヴエイバーフエイズアクシャルデポジ
ッションメソッド、気相軸付法)が知られておシ、これ
は第5図に示すように燃焼用ガスとガラス原料ガスをバ
ーナ1から噴出させて、形成される火炎2中でガラス原
料を火炎加水分解させてガラス微粒子5を合成し、これ
を中心ガラス体4の外周に付着・堆積させてガラス微粒
子の堆積体5を形成した後、中心ガラス体4と堆積体5
からなる多孔質ガラス体を加熱によυ透明ガラス体を得
る方法である。なお、第4図及び各図面中の6は堆積面
を、白抜き矢印7は多孔質体の成長方向を示す。
The VAD method (Va
por phase Axial Deposition
n Method (vapor phase axial deposition method, vapor phase axial deposition method) is known, and as shown in Fig. 5, combustion gas and frit gas are ejected from burner 1 to form Glass raw materials are flame-hydrolyzed in the flame 2 to synthesize glass fine particles 5, which are adhered and deposited on the outer periphery of the central glass body 4 to form a deposit 5 of glass fine particles. and deposit 5
This is a method to obtain a transparent glass body by heating a porous glass body consisting of υ. In addition, 6 in FIG. 4 and each drawing shows the deposition surface, and the white arrow 7 shows the growth direction of the porous body.

VAD法による多孔質ガラス体合成においては、ガラス
微粒子の多孔質ガラス体への付着効率は当該ガラス微粒
子流と火炎との間の位置関係によって大きく影響される
。すなわち、ガラス微粒子流が火炎の中にあシかっ火炎
の広がりに比べてガラス微粒子流が細くしぼられること
によって当該付着効率は高く々る。また、合成される多
孔質ガラス体のカサ密度は、合成時の雰囲気及び多孔質
ガラス体それ自身の温度によって決まる。すなわち該温
度が高くなればなるほどカサ密度は高くなる。一方実際
の生産では、できる限り高い堆積速度でかつ割れ・変形
等の少ない多孔質ガラス体合成が製造コスト上有利とな
る。そのためには上記付着効率及びカサ密度が高い方が
好ましい。したがって従来の多孔質ガラス体合成では火
炎中に細くしぼられたガラス微粒子流がありしかも高温
雰囲気で堆積できるように、第3図のように、火炎2に
包み込まれたガラス微粒子3が火炎2が直接当っている
中心ガラス体4上に付着・堆積するように行っていた。
In the synthesis of porous glass bodies by the VAD method, the adhesion efficiency of glass particles to the porous glass body is greatly influenced by the positional relationship between the flow of glass particles and the flame. That is, the adhesion efficiency is increased because the glass particle flow is narrowed down compared to the spread of the flame when the glass particle flow is recessed into the flame. Furthermore, the bulk density of the porous glass body to be synthesized is determined by the atmosphere during synthesis and the temperature of the porous glass body itself. That is, the higher the temperature, the higher the bulk density. On the other hand, in actual production, it is advantageous in terms of manufacturing costs to synthesize a porous glass body at the highest possible deposition rate and with less cracking, deformation, etc. For this purpose, it is preferable that the adhesion efficiency and bulk density are high. Therefore, in the conventional synthesis of porous glass bodies, there is a narrow flow of glass particles in the flame, and in order to deposit them in a high-temperature atmosphere, as shown in Fig. 3, the glass particles 3 wrapped in the flame 2 are This was done in such a way that it adhered and deposited on the central glass body 4 that was in direct contact with it.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

しかしながら上記した従来の多孔質ガラス体合成法にお
いては以下のような問題点があった。
However, the conventional porous glass body synthesis method described above has the following problems.

第3図のように火炎2が堆積面6に直接当るため、予め
脱水処理されている中心ガラス体4内に水を浸み込ませ
てしまうことである。合成後の多孔質ガラス体5(その
中に中心母材を含む)をいくら脱水処理しようとも中心
ガラス体4中に浸み込んだ水を完全に脱水するのは困難
であシ、それによりOH基残留による吸収損失増加の危
険が生じファイバの品質を損々うことになる。
As shown in FIG. 3, since the flame 2 directly hits the deposition surface 6, water will seep into the central glass body 4, which has been previously dehydrated. No matter how much the synthesized porous glass body 5 (including the central base material) is dehydrated, it is difficult to completely dehydrate the water that has seeped into the central glass body 4, and as a result, OH There is a risk of increased absorption loss due to residual groups, impairing the quality of the fiber.

ところで、グレイデッドインデックス(GI)型ファイ
バ母材のコアの屈折率分布には、第4−(a)図のよう
にすそを引いていない形状と、第4−ら)図のようにす
そを引く形状がある。前者のすそ引きのないコア材を用
いてGI型ファイバ母材を製造しようとする場合は、ク
ラッド用石英パイプをかぶせ溶融一体、化するコブブス
工程においてコア母材−バイブ界面に気泡が発生しやす
い。これを防止する手段としてコア母材の外側に純粋石
英層(・合成りラッド層)を合成する方法がある。この
場合にもコア母材内へのOH基の汚染を防いで行なうこ
とが好ましいに加えて製造条件が大きく変わシ生産性が
落ちることを防ぐため、上記純粋石英(SiOl)層は
できる限り薄い方が良いといった制約があシ、両方の要
求を満足できる手段が望まれている。
By the way, the refractive index distribution of the core of a graded index (GI) type fiber base material has two shapes: one without a hem as shown in Figure 4-(a), and the other with a hem as shown in Figure 4-(a). There is a shape that can be drawn. When attempting to manufacture a GI type fiber base material using the former core material without hem draw, air bubbles are likely to occur at the interface between the core base material and the vibrator during the cobb process where a quartz pipe for cladding is covered and melted into one piece. . As a means to prevent this, there is a method of synthesizing a pure quartz layer (synthetic rad layer) on the outside of the core base material. In this case as well, it is preferable to prevent OH group contamination into the core base material, and in addition to this, the pure quartz (SiOl) layer described above is as thin as possible in order to prevent a significant change in manufacturing conditions and a drop in productivity. However, there is a need for a means that can satisfy both requirements.

本発明は上記した現状に鑑みてなされたもので、中心ガ
ラス体への水の浸入の問題を解決して、残留OH基量が
低減した多孔質母材の製造方法を提供することを目的と
する。また、本発明は中心ガラス体への水の浸入なく、
ガラス微粒子堆積体の、@厚の薄い多孔質母材の製法を
も提供するものである。
The present invention was made in view of the above-mentioned current situation, and an object of the present invention is to solve the problem of water infiltration into the central glass body and provide a method for manufacturing a porous base material with a reduced amount of residual OH groups. do. In addition, the present invention eliminates water intrusion into the central glass body.
The present invention also provides a method for producing a thin porous base material for a glass particle deposit.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明はガラス原料ガス及び燃焼ガスをバーナから噴出
させて形成される火炎中で該ガラス原料ガスを火炎加水
分解反応させることによりガラス微粒子を合成し、これ
を中心ガラス体上に付着堆積させて多孔質ガラス体を形
成した後、該多孔質ガラス体を透明化して透明ガラス母
材を製造する方法において、該火炎から離れたところに
あるガラス微粒子流を火炎が当っていない堆積面上に付
着・堆積させることを特徴とする光ファイバ母材の製造
方法に関する。
The present invention synthesizes glass fine particles by subjecting frit gas and combustion gas to a flame hydrolysis reaction in a flame formed by blowing out frit gas from a burner, and deposits the glass particles on a central glass body. After forming a porous glass body, in a method for manufacturing a transparent glass base material by making the porous glass body transparent, a flow of glass fine particles at a place away from the flame is attached to a deposition surface that is not hit by the flame. -Relates to a method for manufacturing an optical fiber preform, which is characterized by depositing the preform.

VAD法による多孔質ガラス体の合成において、従来法
では火炎に包み込まれたガラス微粒子流が火炎が直接当
っている中心ガラス体上に付着・堆積していたのに対し
て、本発明は火炎から離れたところにあるガラス微粒子
流が火炎が当っていない中心ガラス体上に付着・堆積す
るようにしたものである。
When synthesizing a porous glass body using the VAD method, in contrast to the conventional method in which a stream of glass particles wrapped in flame adheres and accumulates on the central glass body that is directly hit by the flame, the present invention A stream of glass particles located far away adheres and accumulates on the central glass body, which is not exposed to the flame.

第1図に本発明の概念図を示す。ただしバーナ1と中心
ガラス体4との間の相対的位置関係は上記条件を満たす
限シ、特に限定されるものでは々い。
FIG. 1 shows a conceptual diagram of the present invention. However, the relative positional relationship between the burner 1 and the central glass body 4 is not particularly limited as long as the above conditions are satisfied.

第1図においては、バーナ1から出た火炎2は直接には
中心ガラス体4に当らないようにバーナ1と中心ガラス
体4を配置しである。
In FIG. 1, the burner 1 and the central glass body 4 are arranged so that the flame 2 emitted from the burner 1 does not directly hit the central glass body 4.

〔作用〕[Effect]

本発明の方法は石英系中心ガラス体にバーナからガラス
原料ガスと燃焼ガスを噴出させて該ガラス体にガラス微
粒子を堆積させる場合に於て、火炎2から離れたところ
にあるガラス微粒子3が火炎2が直接当っていない堆積
面6上に付着・堆積するため、まず付着・堆積効率は低
くなる。また合成時の雰囲気温度及び多孔質ガラス体そ
れ自身の温度は火炎2内で合成する場合に比べて低くな
るため、合成される多孔質ガラス体5のカサ密度は低く
なる。したがって堆積厚の薄い多孔質母材5の製造が可
能となる。
In the method of the present invention, when fine glass particles are deposited on a quartz-based central glass body by ejecting frit gas and combustion gas from a burner, fine glass particles 3 located away from a flame 2 are exposed to the flame. 2 adheres and deposits on the deposition surface 6 that is not directly in contact with it, so firstly, the adhesion and deposition efficiency becomes low. Furthermore, since the ambient temperature during synthesis and the temperature of the porous glass body itself are lower than when synthesis is performed within the flame 2, the bulk density of the porous glass body 5 to be synthesized is lowered. Therefore, it is possible to manufacture a porous base material 5 with a thin deposited thickness.

なお、火炎が直接当っている又は火炎から離れたところ
にある、という両者の差異は目視によシ十分判定できる
程度の差異を意味する。
Note that the difference between being directly hit by the flame and being away from the flame means a difference that can be determined visually.

さらにガラス微粒子3が堆積している中心ガラス体4に
直接火炎2が当っていないので中心母材4中に水が浸み
込む可能性は無くなる。また合成された多孔質ガラス体
5中に残った水はその後の脱水処理によって完全に取シ
除くことができる。したがってOH基残留による吸収損
失増加の低減した光ファイバ母材の製造が可能となる。
Furthermore, since the flame 2 does not directly hit the central glass body 4 on which the glass particles 3 are deposited, there is no possibility of water seeping into the central base material 4. Further, water remaining in the synthesized porous glass body 5 can be completely removed by a subsequent dehydration treatment. Therefore, it is possible to manufacture an optical fiber preform in which an increase in absorption loss due to residual OH groups is reduced.

その際、中心ガラス体の組成、形状及び寸法等について
は何ら限定されるところはない。また、ガラス原料ガス
と燃焼ガスについては、反応によってガラス微粒子と同
時に水を合成するようなガスすべてを含む。
At that time, there are no limitations on the composition, shape, dimensions, etc. of the central glass body. Furthermore, the frit gas and combustion gas include all gases that can synthesize water at the same time as glass particles through reaction.

以下、本発明を実施例によシ具体的に説明する。Hereinafter, the present invention will be specifically explained using examples.

〔実施例〕〔Example〕

実施例 第2− (a)図に示すように、グレイディトインデッ
クス型ファイバ用コア材4及び4′を中間ダミー棒9を
介して連結したものを中心ガラス体としさらにその両端
に作業用ダミー棒を取り付け、片方をVAD装置の引上
機8に取り付けた。
Embodiment 2 - As shown in Fig. 2(a), the core materials 4 and 4' for gradient index type fibers are connected via an intermediate dummy rod 9, which is used as a central glass body, and working dummy rods are attached to both ends of the central glass body. and one side was attached to the pulling machine 8 of the VAD device.

上記コア材4の最上部がバーナ1の正面になるような位
置をスタート位置として、原料及び燃焼ガスをバーナ1
から噴出させながら引上機8を上昇させた。その際あら
かじめ中間ダミー棒9の長さをバーナからの火炎2がコ
ア材4′に当らない程度の長さにしておいた。このよう
にしておくと、第2−〇)図に示すようにガラス微粒子
3のコア材4への付着及び堆積は従来型すなわち火炎2
に包み込まれたガラス微粒子3が火炎2が直接当ってい
る中心ガラス体上に付着・堆積して多孔質ガラス体5を
形成する型で行なわれる。一方、コア材4に付着しなか
った余剰ガラス微粒子がコア材4′に付着・堆積するわ
けだが、この方は火炎2から離れた所にあるガラス微粒
子が火炎2が直接当っていない堆積面上に付着・堆積し
て多孔質ガラス体5Iを形成する型となる。なお6は反
応容器、1はバーナ、7及び7′は排気ガスである。
The starting position is such that the top of the core material 4 is in front of the burner 1, and the raw material and combustion gas are transferred to the burner 1.
The pulling machine 8 was raised while ejecting water from the air. At this time, the length of the intermediate dummy rod 9 was set in advance so that the flame 2 from the burner would not hit the core material 4'. In this way, as shown in Figure 2-0), the adhesion and accumulation of the glass particles 3 to the core material 4 can be achieved using the conventional method, that is, flame 2.
The glass particles 3 encapsulated in the flame 2 are attached and deposited on the central glass body directly hit by the flame 2 to form the porous glass body 5. On the other hand, the excess glass particles that did not adhere to the core material 4 adhere to and accumulate on the core material 4', but in this case, the glass particles located away from the flame 2 are deposited on the deposition surface that is not directly hit by the flame 2. It becomes a mold that is attached and deposited to form the porous glass body 5I. Note that 6 is a reaction vessel, 1 is a burner, and 7 and 7' are exhaust gases.

具体的製造条件を以下に示す。Specific manufacturing conditions are shown below.

■バ − す:丸型8重管バーナ ■引上機上昇速度ニア0m+/時間 次に上記条件により得られた多孔質ガラス体及びさらに
それを脱水・焼結して得られた透明ガラス体のデータを
表2にまとめて示す。
■ Bar: Round 8-pipe burner ■ Pulling machine lifting speed near 0 m+/hour Next, the porous glass body obtained under the above conditions and the transparent glass body obtained by dehydrating and sintering it. The data are summarized in Table 2.

表2 表2の結果から、火炎から離れたところにあるガラス微
粒子流を、火炎の当っていない堆積面上に付着堆積させ
た多孔質ガラス体5′からの透明ガラス体の方が、水酸
基量が少なく(検出限界以下)、しかも薄い層を形成で
きることがわかる。
Table 2 From the results in Table 2, it can be seen that the transparent glass body from the porous glass body 5', in which the glass particle flow far from the flame is deposited on the deposition surface not exposed to the flame, has a higher hydroxyl group content. It can be seen that there is little (below the detection limit) and that a thin layer can be formed.

〔発明の効果〕〔Effect of the invention〕

以上のように本発明はVAD法による中心ガラス体上へ
の多孔質ガラス体合成において、ガラス微粒子を火炎か
ら離れたところで直接火炎が当っていない中心ガラス体
上に付着・堆積させることにより、○H基残留を防げる
ので、OH基による吸収損失増加を低減した光ファイバ
母材の製造が可能となる。また同時に堆積厚の薄い多孔
質母材の製造が可能となる。したがって低損失または構
造スペックのきびしい光ファイバ用母材製造に利用する
と効果がある。
As described above, in the synthesis of a porous glass body onto a central glass body by the VAD method, the present invention allows glass particles to be attached and deposited on the central glass body away from the flame and not directly exposed to the flame. Since it is possible to prevent H groups from remaining, it is possible to manufacture an optical fiber preform in which the increase in absorption loss due to OH groups is reduced. At the same time, it is possible to manufacture a porous base material with a thin deposited thickness. Therefore, it is effective when used in the production of optical fiber preforms with low loss or strict structural specifications.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明によシ多孔質ガラス体を形成する方法を
説明する概念図である。第2− (a)図及び第2−ら
)図は本発明の実施態様の説明図であって、第2− (
a)図は堆積開始時の状態、第2−ラ)図は多孔質体形
成終了直前の状態を示す。 第6図は従来のvAD法による多孔質ガラス体の合成法
を説明する概念図、第4− (a)図及び第a −(b
)図はいずれもコア母材の屈折率分布を示す図であって
、第4−眞)図はすそ引きのない形状、第4−(b)図
はすそ引きのある形状を示す。
FIG. 1 is a conceptual diagram illustrating a method of forming a porous glass body according to the present invention. FIG. 2-(a) and FIG. 2-(a) are explanatory diagrams of embodiments of the present invention, and FIG.
Figure a) shows the state at the start of deposition, and Figure 2-A shows the state just before the completion of formation of the porous body. Fig. 6 is a conceptual diagram explaining the synthesis method of porous glass bodies by the conventional vAD method, Fig. 4-(a) and Fig. 4-(b).
) are all diagrams showing the refractive index distribution of the core base material, and FIG. 4-(b) shows a shape without a hemline, and FIG. 4-(b) shows a shape with a hemline.

Claims (1)

【特許請求の範囲】[Claims] (1)ガラス原料ガス及び燃焼ガスをバーナから噴出さ
せて形成される火炎中で該ガラス原料ガスを火炎加水分
解反応させることによりガラス微粒子を合成し、これを
中心ガラス体上に付着堆積させて多孔質ガラス体を形成
した後、該多孔質ガラス体を透明化して透明ガラス母材
を製造する方法において、当該火炎から離れたところに
あるガラス微粒子流を火炎が当つていない堆積面上に付
着・堆積させることを特徴とする光ファイバ母材の製造
方法。
(1) Fine glass particles are synthesized by subjecting the frit gas to a flame hydrolysis reaction in a flame formed by blowing out frit gas and combustion gas from a burner, and depositing the glass particles on the central glass body. After forming a porous glass body, in a method for manufacturing a transparent glass base material by making the porous glass body transparent, a flow of glass fine particles at a place away from the flame is directed onto a deposition surface that is not hit by the flame. A method for producing an optical fiber preform, which comprises adhering and depositing the preform.
JP74788A 1988-01-07 1988-01-07 Production of optical fiber base material Pending JPH01179735A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP74788A JPH01179735A (en) 1988-01-07 1988-01-07 Production of optical fiber base material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP74788A JPH01179735A (en) 1988-01-07 1988-01-07 Production of optical fiber base material

Publications (1)

Publication Number Publication Date
JPH01179735A true JPH01179735A (en) 1989-07-17

Family

ID=11482289

Family Applications (1)

Application Number Title Priority Date Filing Date
JP74788A Pending JPH01179735A (en) 1988-01-07 1988-01-07 Production of optical fiber base material

Country Status (1)

Country Link
JP (1) JPH01179735A (en)

Similar Documents

Publication Publication Date Title
KR830002158B1 (en) Method for forming optical waveguide preform having continuously removable starting member
KR890001121B1 (en) Method for producing glass preform for single mode optical
JPS54112218A (en) Production of optical fiber
KR101157674B1 (en) Fabrication Method of Porous Glass Preform for Optical Fiber, and Glass Preform Fabricated Thereby
JPH01179735A (en) Production of optical fiber base material
EP0612701A1 (en) Vapour axial deposition process for making optical fibre preforms
JP5678467B2 (en) Glass base material manufacturing method
JP5459241B2 (en) Glass base material manufacturing method
JPH0327493B2 (en)
JP3498590B2 (en) Manufacturing method of preform for optical fiber
JPH0426523A (en) Production of optical fiber
JP5671837B2 (en) Glass base material manufacturing method
JPH02302334A (en) Production of preform for optical fiber
JP2011230989A (en) Manufacturing method for glass preform
JPS63123829A (en) Production of preform for optical fiber
JP3077970B2 (en) Manufacturing method of optical fiber preform
JPH0784331B2 (en) Method for manufacturing glass base material for optical fiber
JPH04124044A (en) Production of quartz-based glass preform
JP2011230985A (en) Manufacturing method for glass preform
JPS63225546A (en) Production of base material for optical fiber
JP2994829B2 (en) Manufacturing method of preform for optical fiber
JP2770103B2 (en) Manufacturing method of optical fiber preform
JPH0383829A (en) Preparation of base material for optical fiber
JPS59152234A (en) Preparation of parent material for optical fiber
JPS62191434A (en) Production of parent material for optical fiber