JPH01178916A - Photography system with image deflecting method - Google Patents

Photography system with image deflecting method

Info

Publication number
JPH01178916A
JPH01178916A JP33521987A JP33521987A JPH01178916A JP H01178916 A JPH01178916 A JP H01178916A JP 33521987 A JP33521987 A JP 33521987A JP 33521987 A JP33521987 A JP 33521987A JP H01178916 A JPH01178916 A JP H01178916A
Authority
JP
Japan
Prior art keywords
lens group
lens
image
chromatic aberration
apex angle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP33521987A
Other languages
Japanese (ja)
Other versions
JP2754547B2 (en
Inventor
Nozomi Kitagishi
望 北岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP62335219A priority Critical patent/JP2754547B2/en
Publication of JPH01178916A publication Critical patent/JPH01178916A/en
Priority to US07/701,326 priority patent/US5140462A/en
Application granted granted Critical
Publication of JP2754547B2 publication Critical patent/JP2754547B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Lenses (AREA)

Abstract

PURPOSE:To correct the blur of a photographed image while compensating variation in power chromatic aberration excellently by setting the lens constitution of a 1st lens group arranged on an object side about a variable vertical angle prism and a 2nd lens group arranged on an image plane side and the constitution of the variable vertical angle prism properly. CONSTITUTION:The photography system has an image deflecting means which deflects the photographed image by varying the vertical angle of the variable vertical angle prism, and respective lens groups and the variable vertical angle prism are constituted which meet requirements shown by expressions I and II, where T1 and T2 are the coefficients of power chromatic aberrations of 1st and 2nd lens groups and Np and Np' are refractive indexes of the variable vertical angle prism to reference wavelength and 2nd wavelength when the focal length of the whole system is normalize into '1'. Consequently, the generation of an eccentric power chromatic aberration is reduced, and the blur of colors at the time of eccentric driving is reduced to obtain an image of high quality with high contrast.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は画像偏向手段を有した撮影系に関し、特にレン
ズ系中にプリズム頂角を可変とする可変頂角プリズムを
設け、該可変頂角プリズムにより撮影画像を偏向させ振
動等による画像のブレを補正した写真用カメラやビデオ
カメラ等に好適な画像偏向手段を有した撮影系に関する
ものである。
Detailed Description of the Invention (Industrial Application Field) The present invention relates to a photographing system having an image deflecting means, and in particular, a variable apex prism having a variable apex angle is provided in the lens system, and the variable apex angle The present invention relates to a photographing system having an image deflecting means suitable for a photographic camera, a video camera, etc., in which a photographed image is deflected by a prism to correct image blur caused by vibration or the like.

(従来の技術) 進行中の車上環から撮影すると撮影系に振動が伝わり、
撮影画像にブレが生じて゛くる。従来よりこのときの画
像のブレを光学系中に平行平面板や可変頂角プリズムを
配置して補正した画像偏向手段を有した撮影系が種々と
提案されている。
(Conventional technology) When photographing from the ring of a moving vehicle, vibrations are transmitted to the photographing system.
The photographed image becomes blurred. Conventionally, various imaging systems have been proposed that have image deflection means that corrects the image blurring by arranging a plane parallel plate or a variable apex angle prism in the optical system.

例えば、可変頂角プリズムを利用して画像のブレを補正
した撮影系が特公昭56=21133号公報で提案され
ている。同公報では2枚の平行平面ガラスの間に液体や
透明弾性体を封入し、2枚の平行平面板のなす角度を可
変として画像のブレを補正している。
For example, Japanese Patent Publication No. 56/21133 proposes an imaging system that uses a variable apex angle prism to correct image blur. In this publication, a liquid or a transparent elastic body is sealed between two parallel plane glasses, and the angle formed by the two plane parallel plates is made variable to correct image blur.

この他、同公報では曲率な有する平凸レンズと平凹レン
ズを球面間で摺動させることにより、相対する平面のな
す角度を可変にして画像のブレを補正した撮影系を提案
している。
In addition, the same publication proposes an imaging system in which image blur is corrected by varying the angle formed by opposing planes by sliding a plano-convex lens and a plano-concave lens with curvature between spherical surfaces.

一般に画像のブレを補正する為に可変頂角プリズムをレ
ンズ系の前方やレンズ系中に配置した場合、可変頂角プ
リズムの頂角にある程度の角度がついてくると、プリズ
ムの色分散により画像の偏向と共に偏心倍率色収差が発
生してくる。
Generally, when a variable apex prism is placed in front of or inside a lens system to correct image blur, if the apex angle of the variable apex prism reaches a certain angle, the chromatic dispersion of the prism will cause the image to change. Eccentric lateral chromatic aberration occurs along with deflection.

この作用を第10図に示す。Pは可変頂角プリズムであ
り、第10図(A)の様に頂角を変化させた状態になる
と、d線よりg線の方が大きく偏向される。従って、第
10図(B)の様に可変頂角をマスターレンズMに取り
付は像の偏向を行なおうとすると偏心倍率色収差が発生
することになる。
This effect is shown in FIG. P is a variable apex angle prism, and when the apex angle is changed as shown in FIG. 10(A), the g-line is deflected more than the d-line. Therefore, if a variable apex angle is attached to the master lens M as shown in FIG. 10(B), decentering lateral chromatic aberration will occur if an attempt is made to deflect an image.

この偏心倍率色収差は画面中心から周辺まで全画面にわ
たり略凹−量、同一方向に発生し、コントラストの低下
や色のにじみの原因となってくる。このように偏心倍率
色収差は通常の倍率色収差と異なり主被写体の画面中心
にも発生してくるので画質低下の大きな原因となってい
る。
This decentered chromatic aberration of magnification occurs over the entire screen from the center to the periphery with a substantially concave amount and in the same direction, causing a decrease in contrast and color blurring. In this way, eccentric chromatic aberration of magnification, unlike normal chromatic aberration of magnification, occurs also at the center of the screen of the main subject, and is therefore a major cause of deterioration in image quality.

これに対して米国特許第3514192号や特公昭57
−7416号公報では分散の異なる可変頂角プリズムを
2つ用い、色消し条件を満足するように一定の角度比を
保ちつつ駆動させて、偏心倍率色収差の発生を少なくし
た撮影系を提案している。
In contrast, U.S. Patent No. 3514192 and Japanese Patent Publication No. 57
Publication No. 7416 proposes an imaging system that uses two variable apex angle prisms with different dispersions and drives them while maintaining a constant angular ratio to satisfy the achromatic condition, thereby reducing the occurrence of eccentric lateral chromatic aberration. There is.

しかしながら、この方法は2つの可変頂角プリズムを必
要とし、偏向素子の厚さが長くなり、又、2つのプリズ
ムを一定の角度比を保ちつつ駆動させる構造が比較的複
雑になる傾向があった。
However, this method requires two variable apex angle prisms, increases the thickness of the deflection element, and tends to require a relatively complex structure for driving the two prisms while maintaining a constant angular ratio. .

又、特開昭61−223819号公報においては、可変
頂角プリズムとは別に撮影系の後方に屈折力が殆どゼロ
に等しい接合レンズを設け、可変頂角プリズムの動きと
同調して光軸と垂直方向に偏心駆動することにより、可
変頂角プリズム方式で偏心倍率色収差を補正した撮影系
を提案している。
In addition, in Japanese Patent Application Laid-open No. 61-223819, a cemented lens with almost zero refractive power is provided at the rear of the imaging system in addition to the variable apex angle prism, and the optical axis is aligned in synchronization with the movement of the variable apex angle prism. We are proposing an imaging system that corrects eccentric lateral chromatic aberration using a variable apex angle prism method by eccentrically driving the lens in the vertical direction.

この方法は離れた場所にある2つの光学素子を正確に同
調して駆動しなければならず制御構造が複雑となり、装
置が大型化し、又、光学系中に動かす部材が増え、更に
接合レンズの傾きによる影響も発生してくる等の問題点
があった。
In this method, two optical elements located far apart must be driven in precise synchronization, making the control structure complicated, increasing the size of the device, increasing the number of moving parts in the optical system, and adding the need for a cemented lens. There were problems such as the influence of tilt.

この他、特公昭56−40805号公報では平凸レンズ
と平凹レンズの回転摺動方式を利用して、実質的に頂角
を可変としたプリズムを形成して画像のブレを補正した
撮影系を提案している。
In addition, Japanese Patent Publication No. 56-40805 proposes a photographing system that corrects image blur by forming a prism with a substantially variable apex angle using a rotational sliding system of plano-convex and plano-concave lenses. are doing.

しかしながら、この方式は偏心倍率色収差の発生は小さ
くすることが出来るが可変頂角プリズムが比較的大型化
する傾向があった。
However, although this method can reduce the occurrence of eccentric lateral chromatic aberration, the variable apex angle prism tends to become relatively large.

(発明が解決しようとする問題点) 本発明はレンズ系中に頂角が可変の可変頂角プリズムを
配置し、撮影画像のブレを補正する際、該可変頂角プリ
ズムより物体側に配置した第1レンズ群と像面側に配置
した第2レンズ群のレンズ構成及び該可変頂角プリズム
の構成を適切に設定することにより、画面全体の光学性
能、特に倍率色収差の変動を良好に補正しつつ撮影画像
のブレを補正することのできる画像偏向手段を有した撮
影系の提供を目的仁する。
(Problems to be Solved by the Invention) The present invention includes a variable apex prism with a variable apex angle arranged in a lens system, and when correcting blur in a photographed image, the variable apex prism is placed closer to the object side than the variable apex prism. By appropriately setting the lens configurations of the first lens group and the second lens group located on the image plane side, and the configuration of the variable apex prism, it is possible to satisfactorily correct the optical performance of the entire screen, especially fluctuations in lateral chromatic aberration. It is an object of the present invention to provide a photographing system having an image deflecting means capable of correcting blur in a photographed image.

(問題点を解決するための手段) 物体側より順に固定の第1レンズ群、頂角が可変の可変
頂角プリズム、そして固定の第2レンズ群を有し、該可
変頂角プリズムの頂角を変化させることにより撮影画像
を偏向させるようにした画像偏向手段を有した撮影系に
おいて、全系の焦点距離を1と正規化したときの前記第
1レンズ群と第2レンズ群の倍率色収差係数を各々TI
(Means for solving the problem) A fixed first lens group, a variable apex angle prism whose apex angle is variable, and a fixed second lens group are arranged in order from the object side, and the apex angle of the variable apex angle prism is fixed. In a photographing system having an image deflecting means configured to deflect a photographed image by changing the chromatic aberration coefficient of magnification of the first lens group and the second lens group when the focal length of the entire system is normalized to 1. each TI
.

T2、前記可変頂角プリズムの基準波長と第2波長に対
する屈折率を各々NP、NP′としδN P= I N
P  NP ’ Iとしたとき−0,012<  T2
−  (δNP) / (NP−1)  < 0.01
2・・・・・・・−(1) なる条件を満足することである。
T2, the refractive index of the variable apex prism for the reference wavelength and the second wavelength is NP and NP', respectively, and δN P= I N
When P NP ' I -0,012< T2
- (δNP) / (NP-1) < 0.01
2...-(1) The following conditions must be satisfied.

(実施例) 第1図、第2図、第3図は本発明の数値実施例1.2.
3のレンズ断面図である。同図において工は固定の第1
レンズ群、Pは頂角が可変の可変頂角プリズムで画像偏
向手段の一部を構成している。■は固定の第2レンズ群
である。
(Example) Figures 1, 2, and 3 are numerical examples 1.2 of the present invention.
FIG. 3 is a cross-sectional view of the lens of No. 3. In the same figure, the work is the fixed first
The lens group P is a variable apex angle prism having a variable apex angle, and constitutes a part of the image deflection means. 3 is a fixed second lens group.

本実施例では可変頂角プリズムPのプリズム頂角を変化
させることにより、撮影画像のブレを補正している。こ
のうち第1.第2図に示す実施例では2枚の硝子板の間
に透明なシリコンゴムな封入し、可変頂角プリズムを構
成し、その頂角をアクチュエーターで駆動して変化させ
画像ブレを補正している。
In this embodiment, the blur of the captured image is corrected by changing the prism apex angle of the variable apex angle prism P. The first of these. In the embodiment shown in FIG. 2, a transparent silicone rubber is sealed between two glass plates to constitute a variable apex angle prism, and the apex angle is changed by being driven by an actuator to correct image blur.

本実施例においては第1レンズ群を射出する光線が略ア
フォーカルになっている。可変頂角プリズムに入射する
光束の軸上光束がアフォーカルに近いと、即ち全系の焦
点距離をfTとしたとき軸上近軸光線の傾角αが略1α
l<0.3<fアの条件を満たす程度に小さいと、アフ
ォーカル光束でない場合に比べて可変頂角プリズムに於
ける偏心コマ収差、偏心非点収差、偏心像面湾曲の発生
が小さく、第2レンズ群の部分系の球面収差、コマ収差
及び非点収差を小さく補正しておけば偏心コマ収差、偏
心非点収差、偏心像面湾曲の発生を原理的に小さくでき
、第2レンズ群の構成レンズ枚数を少なくすることがで
きる、。
In this embodiment, the light beam exiting the first lens group is approximately afocal. When the axial ray of light incident on the variable apex prism is close to afocal, that is, when the focal length of the entire system is fT, the inclination α of the axial paraxial ray is approximately 1α.
If it is small enough to satisfy the condition l<0.3<fa, the occurrence of decentered comatic aberration, decentered astigmatism, and decentered curvature of field in the variable apex angle prism will be smaller than in the case where it is not an afocal light beam. If the spherical aberration, coma aberration, and astigmatism of the partial system of the second lens group are corrected to a small value, the occurrence of decentered comatic aberration, decentered astigmatism, and decentered curvature of field can be reduced in principle, and the second lens group The number of constituent lenses can be reduced.

又、本実施例の様に2枚の硝子板の間に透明なシリコン
ゴムを封入したもので可変頂角プリズムを構成すると、
厚さの薄い可変頂角プリズムを達成することができる特
長がある。
Furthermore, if the variable apex angle prism is constructed by sealing transparent silicone rubber between two glass plates as in this example,
It has the advantage of being able to create a variable apex angle prism with a small thickness.

第3図に示す実施例では相対するレンズ面が同じ曲率半
径を有する平凸レンズと平凹レンズより可変頂角プリズ
ムを形成し、対向するレンズ面を互いに摺動することに
よって相対する平面のなす角度を可変とし実質的に頂角
を変化させている。
In the embodiment shown in FIG. 3, a variable apex prism is formed by a plano-convex lens and a plano-concave lens whose opposing lens surfaces have the same radius of curvature, and the angle formed by the opposing planes is adjusted by sliding the opposing lens surfaces against each other. It is made variable and the apex angle is essentially changed.

本発明では以上のような構成において第1レンズ群と第
2レンズ群のレンズ構成、及び可変頂角プリズムの構成
を前述の如く設定することにより、画面全体の光学性能
を良好に維持しつつ撮影画像のブレを補正している。
In the present invention, in the above configuration, by setting the lens configurations of the first lens group and the second lens group and the configuration of the variable apex prism as described above, it is possible to take pictures while maintaining good optical performance of the entire screen. Corrects image blur.

第7図はレンズ系中の任意に1つのレンズ面νが角度ε
V偏心したときの偏心収差係数の説明図、第8図は本発
明に係る撮影系において可変頂角プリズムの頂角を変化
させない場合、第9図は可変頂角プリズムの頂角を変化
させた場合の説明図である。
Figure 7 shows that any one lens surface ν in the lens system has an angle ε
An explanatory diagram of the decentering aberration coefficient when V eccentricity is applied. Fig. 8 shows a case where the apex angle of the variable apex angle prism is not changed in the imaging system according to the present invention, and Fig. 9 shows a case where the apex angle of the variable apex angle prism is changed. FIG.

このうち第8図は基準波長としてのd線と第2波長とし
てのg線の2つの波長における軸上光束と軸外光束の光
路を示している。又、第9図は可変頂角プリズムの頂角
を6変化させたとき、d線とg線の2つの波長における
軸上光束の光路がΔY偏向した状態を示している。
Of these, FIG. 8 shows the optical paths of the on-axis light beam and the off-axis light beam at two wavelengths, the d-line as the reference wavelength and the g-line as the second wavelength. Further, FIG. 9 shows a state in which the optical path of the axial light beam at two wavelengths, d-line and g-line, is deflected by ΔY when the apex angle of the variable apex angle prism is changed by 6.

まず本実施例における偏心収差について第7図を用いて
説明する。第7図に示すようにレンズ系中の第υレンズ
面νが角度ε9傾いたときの偏心収差については「三次
の偏心収差と公差の設定、1975年、レンズ設計セミ
ナー、 chapter 7  ;尾関」に述べられて
いる。それによると偏心倍率色収差Δ(ΔY)は Δ(ΔY) =−cosφV ”TV・εν・fT /
  αに′〒v= hv (Nv−NV)(Σe+IT
 −(π/h)9 Σe+IL)−NV−LV/ (h
−q)V と表わせる。ここで収差係数及び近軸量は全系の焦点距
離を1に規格化したときの値であり、fTは全系の焦点
距離、TVは第Vレンズ面υが傾いたときの偏心倍率色
収差係数である。
First, decentering aberration in this example will be explained using FIG. 7. Regarding eccentric aberration when the υ-th lens surface ν in the lens system is tilted by an angle ε9 as shown in Fig. 7, see "Setting third-order eccentric aberration and tolerance, 1975, Lens Design Seminar, chapter 7; Ozeki". It has been stated. According to this, the decentered lateral chromatic aberration Δ(ΔY) is Δ(ΔY) = -cosφV ”TV・εν・fT/
α′〒v=hv (Nv-NV)(Σe+IT
−(π/h)9 Σe+IL) −NV−LV/ (h
-q) It can be expressed as V. Here, the aberration coefficient and paraxial amount are values when the focal length of the entire system is normalized to 1, fT is the focal length of the entire system, and TV is the eccentric magnification chromatic aberration coefficient when the V-th lens surface υ is tilted. It is.

次にこの式を可変頂角プリズムに適用し、変形して整理
する。プリズム面を添字P、可変頂角プリズム以後の固
定レンズ群、即ち第2レンズ群を添字2で表わすと、 Δ (ΔY) = −cosφ2・ε2・fT・((N
Pl) (hpL2−hpT2)”hp(δNP) )
  /  αえ′となる。ここでNPは可変頂角プリズ
ムに対する基準波長、例えばd線の屈折率、(δNp)
は可変頂角プリズムの第2波長、例え゛ばg線の屈折率
をN2としたときの基準波長d線の屈折率の差1NP−
N2Iである。偏心倍率色収差が発生しないためにはΔ
(Δy)=oである必要があるから (NPl) (hPL2−hPT2)  +hp(δN
P)  幻 0の条件を第2レンズ群の係数L2及びT
2が満たせば良い。この式では第2レンズ群の軸上色収
差と倍率色収差の両者が関係するようになっているが、
本発明の様にレンズ内部に可変頂角プリズムを設ける場
合には絞りの近傍とみなせることが多く、その場合には
hPは小さな値となり第2レンズ群の倍率色収差が偏心
倍率色収差の補正に対して支配的になってくる。従って
、一般にはT2Lr(δNP) / (NP−1)の条
件を満足するように第2レンズ群の色収差補正を行なえ
ば良い。
Next, apply this formula to a variable apex angle prism, transform it, and organize it. If the prism surface is represented by a subscript P, and the fixed lens group after the variable apex prism, that is, the second lens group is represented by a subscript 2, then Δ (ΔY) = −cosφ2・ε2・fT・((N
Pl) (hpL2-hpT2)"hp(δNP))
/ becomes αe′. Here, NP is the reference wavelength for the variable apex prism, for example, the refractive index of the d-line, (δNp)
is the second wavelength of the variable apex prism, for example, when the refractive index of the g-line is N2, the difference in the refractive index of the reference wavelength d-line is 1NP-
It is N2I. In order to prevent decentering lateral chromatic aberration, Δ
Since it is necessary that (Δy)=o (NPl) (hPL2-hPT2) +hp(δN
P) The condition for phantom 0 is the coefficient L2 and T of the second lens group.
2 should be satisfied. In this equation, both the axial chromatic aberration and the lateral chromatic aberration of the second lens group are related,
When a variable apex angle prism is provided inside the lens as in the present invention, it is often considered to be near the aperture, and in that case, hP will be a small value and the lateral chromatic aberration of the second lens group will be smaller than the correction of eccentric lateral chromatic aberration. becomes dominant. Therefore, in general, the chromatic aberration of the second lens group may be corrected so as to satisfy the condition T2Lr(δNP)/(NP-1).

この式の右辺は正の値なので、第2レンズ群の倍率色収
差をアンダーに大きく発生する様に補正しておけば偏心
倍率色収差の発生が小さくなることができる。実際には
、係数T2が前述の如くの条件式を満足する程度になっ
ていれば偏心倍率色収差の発生を影雷ない程度に小さく
することができる。条件式(1)の下限値を越えると偏
心倍率色収差の補正が不足であり、上限値を越えると偏
心倍率色収差が補正過剰であり、補正していないときと
は逆の方向に偏心倍率色収差が発生する。
Since the right side of this equation is a positive value, if the chromatic aberration of magnification of the second lens group is corrected so as to be significantly under-produced, the occurrence of eccentric chromatic aberration of magnification can be reduced. In fact, if the coefficient T2 satisfies the above-mentioned conditional expression, the occurrence of decentered lateral chromatic aberration can be minimized to the extent that there is no negative effect. If the lower limit of conditional expression (1) is exceeded, the eccentric chromatic aberration of magnification is insufficiently corrected, and if the upper limit is exceeded, the eccentric chromatic aberration of magnification is overcorrected, and the eccentric chromatic aberration of magnification is moved in the opposite direction to that when no correction is made. Occur.

さらに、基準状態の倍率色収差を補正するためには、T
1を第1レンズ群の倍率色収差係数とすると I −1,3<   −<   −0,7・・・・・・−<
2)の条件式を満足することが良い。これは第1レンズ
群の倍率色収差を第2レンズ群とは逆方向に発生させ、
バランス良く補正することを意味している。
Furthermore, in order to correct the lateral chromatic aberration in the reference state, T
If 1 is the lateral chromatic aberration coefficient of the first lens group, then I −1,3<−<−0,7・・・・・・−<
It is preferable that conditional expression 2) be satisfied. This causes the lateral chromatic aberration of the first lens group to occur in the opposite direction to that of the second lens group,
This means making a well-balanced correction.

条件式(2)の下限値を外れると基準状態で倍率色収差
がオーバ一方向に残存し、条件式(2)の上限値を外れ
ると基準状態で倍率色収差がアンダー方向に残存し、基
準状態の倍率色収差が大きく、満足な画質が得られなく
なってくる。
When the lower limit of conditional expression (2) is exceeded, lateral chromatic aberration of magnification remains in the over direction in the reference state, and when the upper limit of conditional expression (2) is exceeded, lateral chromatic aberration remains in the under direction in the reference state, The chromatic aberration of magnification is large, making it impossible to obtain satisfactory image quality.

尚、以上の式で各レンズ面の倍率色収差係数T1は松属
の「レンズ設計法J(’、81共立出版社)によると全
系の焦点距離を1と正規化すると但し、 と表わせ、全系の倍率色収差Δ(Δy)はで表わせる。
In addition, in the above formula, the coefficient of magnification chromatic aberration T1 of each lens surface is calculated according to Matsugen's "Lens Design Method J (', 81 Kyoritsu Shuppansha). If the focal length of the entire system is normalized to 1, The lateral chromatic aberration Δ(Δy) of the system can be expressed as follows.

次に第8図、第9図を用いて可変頂角プリズムによる倍
率色収差係数について説明する。
Next, the lateral chromatic aberration coefficient due to the variable apex angle prism will be explained using FIGS. 8 and 9.

楔角εがついた可変頂角プリズムに於いては、d線より
もg線の光線のほうが大きく屈折するため可変頂角プリ
ズムによる倍率色収差(これは偏心倍率色収差でもある
)Δ(ΔY)PはΔ (ΔY )  P a:  ta
n(Δω)Δω勾−6・ (NPl) (NPはプリズムの屈折率) と可変頂角プリズムの偏向角に比例してオーバー方向に
発生する。一方、倍率色収差は画角に比例する。頂角を
変化させた偏心の状態では上記光線が第2レンズ群に入
射するときの画角は可変頂角プリズムを通過する光線の
偏向角に相当する。
In a variable apex angle prism with a wedge angle ε, the g-line ray is refracted more than the d-line, so lateral chromatic aberration due to the variable apex prism (this is also decentered lateral chromatic aberration) Δ(ΔY)P is Δ(ΔY) P a: ta
n(Δω)Δω gradient-6·(NPl) (NP is the refractive index of the prism) and occurs in the over direction in proportion to the deflection angle of the variable apex prism. On the other hand, lateral chromatic aberration is proportional to the angle of view. In the eccentric state where the apex angle is changed, the angle of view when the light beam is incident on the second lens group corresponds to the deflection angle of the light beam passing through the variable apex angle prism.

第2レンズ群で倍率色収差が発生するようにし補正し、
このとき第2レンズ群で発生する倍率色収差Δ(ΔY)
2は第2レンズ群の倍率色収差係数なT2とすると、 Δ(ΔY ) 2 CCT2tan (Δω)と画角に
比例する値だけ発生する。
Corrects lateral chromatic aberration by causing it to occur in the second lens group,
At this time, lateral chromatic aberration Δ(ΔY) occurring in the second lens group
Assuming that 2 is the lateral chromatic aberration coefficient of the second lens group T2, Δ(ΔY) 2 CCT2tan (Δω), which is a value proportional to the angle of view, is generated.

本実施例では第2レンズ群の倍率色収差係数T2を正の
値に選び、即ち第2レンズ群で倍率色収差をアンダーに
発生するように補正し、これにより可変頂角プリズムで
発生した倍率色収差を打ち消し、全系ではバランス良く
偏心倍率色収差を補正している。
In this example, the lateral chromatic aberration coefficient T2 of the second lens group is selected to be a positive value, that is, the second lens group corrects the lateral chromatic aberration so as to generate an undervalue, thereby reducing the lateral chromatic aberration generated in the variable apex prism. The entire system corrects eccentric lateral chromatic aberration in a well-balanced manner.

軸外光の主光線も偏向方向と同じ側では第2レンズ群へ
の入射角が基準状態よりも偏心状態の方が大きくなり、
第2レンズ群で発生するアンダーの倍率色収差が大きく
なる。これにより可変頂角プリズムで発生するオーバー
の倍率色収差を補正している。
The principal ray of off-axis light also has a larger angle of incidence on the second lens group in the decentered state than in the reference state on the same side as the deflection direction.
The under magnification chromatic aberration generated in the second lens group becomes large. This corrects excessive chromatic aberration of magnification that occurs with the variable apex prism.

又、本実施例では第1レンズ群では倍率色収差がオーバ
ーに発生するような色収差の補正をし、第2レンズ群で
倍率色収差がアンダーに大きく発生するような色収差の
補正をし、全体的にバランス良く倍率色収差を補正して
いる。
Additionally, in this example, the first lens group corrects chromatic aberrations such as excessive chromatic aberration of magnification, and the second lens group corrects chromatic aberrations such as under-occurring chromatic aberrations of magnification. It corrects lateral chromatic aberration in a well-balanced manner.

本実施例にように2つの固定レンズ群の間に可変頂角プ
リズムを設けた撮影系においては可変頂角プリズムによ
る像面上の画像の偏向ΔYは第1レンズ群の像が可変頂
角プリズムによりΔY、たけ偏向されて然る後に第2レ
ンズ群によって結像倍率β2でリレーされて生ずる。す
なわち、Δy 1 =S−jan  ((NP −1)
”ep )ΔY  =(ΔYl)・β2 =S−β2−jan  ((NP −1)・ep )と
なる。
In a photographing system in which a variable apex angle prism is provided between two fixed lens groups as in this embodiment, the deflection ΔY of the image on the image plane due to the variable apex angle prism is such that the image of the first lens group is the variable apex angle prism. The beam is deflected by ΔY and then relayed by the second lens group at an imaging magnification β2. That is, Δy 1 =S-jan ((NP-1)
"ep)ΔY=(ΔYl)・β2=S−β2−jan((NP−1)・ep).

ここでSは可変頂角プリズムから第1レンズ群の結像面
上の距離である。同様に第2波長の像の偏向ΔY′は、 ΔY’=S’β2 ’ 4an ((NP ’  −]
 )’gp )これから偏心倍率色収差Δ(ΔY)=Δ
Y”−ΔYが0になる条件は、 S′β2  ′/(S・β2) =tan  ((NP−1)” 6p ) /  ja
n ((NP−1)6p )幻(NP−])/ (NP
′−1) である。
Here, S is the distance from the variable apex prism to the imaging plane of the first lens group. Similarly, the deflection ΔY' of the image at the second wavelength is ΔY'=S'β2' 4an ((NP' -]
)'gp) From this, eccentric lateral chromatic aberration Δ(ΔY)=Δ
The condition for Y"-ΔY to be 0 is S'β2'/(S・β2) = tan ((NP-1)"6p)/ja
n ((NP-1)6p)phantom(NP-])/(NP
'-1).

第1レンズ群の色収差が小さいときはs ’=sなので
、 β2 ′/β2幻(NP−1)/(NP’  −1)と
近似できる。これから第2レンズ群の各波長の結像倍率
を、可変頂角プリズムの各波長の(NP  1)に反比
例するように設計すれば良い。
When the chromatic aberration of the first lens group is small, s'=s, so it can be approximated as β2'/β2phantom (NP-1)/(NP'-1). From now on, the imaging magnification of each wavelength of the second lens group may be designed to be inversely proportional to (NP 1) of each wavelength of the variable apex angle prism.

本実施例では第1レンズ群がアフォーカルでないとき、
即ち第1レンズ群の全系の焦点距離な各々f、、fとし
たときlfIl<20fのとき結像倍率β2及びβ2 
′が ・・・・・・・−(3) を満足するように設定し、これにより偏心倍率色収差の
発生を影響ない程度に小さくしている。
In this embodiment, when the first lens group is not afocal,
That is, when the focal lengths of the entire first lens group are respectively f, , f, and when lfIl<20f, the imaging magnifications β2 and β2
' is set so as to satisfy . . . -(3), thereby minimizing the occurrence of eccentric lateral chromatic aberration to the extent that it has no effect.

条件式(3)の上限値を越えると偏心倍率色収差の補正
が不足となり、下限値を越えると偏心倍率色収差が補正
過剰であり、補正していないときとは逆の方向に偏心倍
率色収差が発生するので良くない。
If the upper limit of conditional expression (3) is exceeded, eccentric chromatic aberration of magnification will be insufficiently corrected, and if the lower limit is exceeded, eccentric lateral chromatic aberration will be overcorrected, and eccentric lateral chromatic aberration will occur in the opposite direction to that when no correction is made. It's not good because it does.

又、第1レンズ群を射出する光束がアフォーカルの場合
、特にlfI 1>2Ofのときは第2レンズ群の焦点
距離をf2とすると、 ΔY=f2− tan  ((NP −1)・6p )
と表わされる。同様に第2波長に付いてもΔY ’ =
f2’ ・tan  ((NP’ −1)・6P )と
表わされる。これから偏心倍率色収差Δ(ΔY)=ΔY
′−ΔYが0になる条件は、f2 ′/ f2 =jan  ((NP−1)・εp ) /  jan
 ((NP−1)6p )幻(NP−i)/  (NP
’  −+  )となる。
Also, when the light beam exiting the first lens group is afocal, especially when lfI 1>2Of, if the focal length of the second lens group is f2, then ΔY=f2-tan ((NP-1)・6p)
It is expressed as Similarly, for the second wavelength, ΔY' =
It is expressed as f2'·tan ((NP' −1)·6P). From this, eccentric magnification chromatic aberration Δ(ΔY) = ΔY
The condition for '-ΔY to be 0 is f2 '/ f2 = jan ((NP-1)・εp) / jan
((NP-1)6p)Illusion(NP-i)/(NP
'-+).

第2レンズ群の各波長の焦点距離を、可変頂角プリズム
の各波長の(NP−1)に反比例するように設定すれば
良い。これも第2レンズ群で倍率色収差をアンダーに発
生して可変頂角プリズムで発生する偏心倍率色収差を補
正することを意味している。
The focal length of each wavelength of the second lens group may be set to be inversely proportional to (NP-1) of each wavelength of the variable apex angle prism. This also means that chromatic aberration of magnification is under-produced in the second lens group to correct eccentric chromatic aberration of magnification produced by the variable apex angle prism.

本実施例では第2レンズ群の基準波長の焦点距離f2及
び第2波長の焦点距Mt2 ”がの条件式を満足するよ
うに設定し、偏心倍率色収差の発生を539ない程度に
小さくしている。
In this example, the focal length f2 of the reference wavelength of the second lens group and the focal length Mt2 of the second wavelength are set so as to satisfy the following conditional expressions, and the occurrence of eccentric chromatic aberration of magnification is reduced to 539. .

条件式(4)の上限値を越えると偏心倍率色収差の補正
が不足であり、下限値を越えると偏心倍率色収差が補正
過剰であり、補正していないときとは逆の方向に偏心倍
率色収差が発生するので良くない。
If the upper limit of conditional expression (4) is exceeded, the eccentric chromatic aberration of magnification is insufficiently corrected, and if the lower limit is exceeded, the eccentric chromatic aberration of magnification is overcorrected, and the eccentric chromatic aberration of magnification is moved in the opposite direction to that when no correction is made. It's not good because it happens.

尚、本実施例において撮影系が写真レンズの場合は基準
波長にd線をとり、第2波長にg線を選ぶのが良いが第
2波長としてd線より長い波長の光を選択しても良い。
In this example, if the imaging system is a photographic lens, it is preferable to select the d-line as the reference wavelength and the g-line as the second wavelength, but it is also possible to select light with a wavelength longer than the d-line as the second wavelength. good.

その他の光学機器に於いては、基準波長はその光学機器
に於ける主波長をとり、第2波長は使用する最も短い波
長の光を選択するのが良い。
In other optical devices, it is preferable to select the reference wavelength as the dominant wavelength of the optical device, and select the second wavelength as light with the shortest wavelength used.

本実施例に於いて、第1.第2レンズ群は偏心駆動に関
して固定であるが、該レンズ群にフォーカスレンズ群や
変倍レンズ群の様な光軸方向に移動するレンズ群を有し
ていても良い。
In this embodiment, the first. Although the second lens group is fixed with respect to decentering drive, it may include a lens group that moves in the optical axis direction, such as a focus lens group or a variable magnification lens group.

尚、本実施例において更に良好なる倍率色収差の補正を
行う為には第2レンズ群で倍率色収差をアンダ一方向に
発生させるのが良く、この為には第2レンズ群を次に如
く構成するのが良い。
In this embodiment, in order to further correct the chromatic aberration of magnification, it is preferable to generate the chromatic aberration of magnification in the under direction in the second lens group, and for this purpose, the second lens group is configured as follows. It's good.

即ち、第2レンズ群をレンズ群中の最も大きな空気間隔
を境にして物体側より第2Aレンズ群と第2Bレンズ群
の2つのレンズ群に分け、該第2Bレンズ群を構成する
各レンズの屈折力をφ2Bi、材質のアツベ数をシ2B
i、等価アツベ数をV2Bとし、 としたとき V2B  <  40       ・・・・・・・・
・・−(5)なる条件を満足することである。
That is, the second lens group is divided from the object side into two lens groups, the 2A lens group and the 2B lens group, with the largest air gap in the lens groups as a boundary, and each lens constituting the 2B lens group is The refractive power is φ2Bi, and the Atsbe number of the material is 2B.
i, the equivalent Atsube number is V2B, and when V2B < 40...
...-(5) must be satisfied.

条件式(5)を外れて等価アツベ数V2Bが大きくなっ
てくると、第2Bレンズ群の屈折力を増加させねばなら
ず、この結果、コマ収差や非点収差が多く発生してくる
ので良くない。
If conditional expression (5) is exceeded and the equivalent Abbe number V2B becomes large, the refractive power of the second B lens group must be increased, and as a result, coma and astigmatism will occur in large quantities. do not have.

尚、以上の各実施例において可変頂角プリズムの両側の
面は全くの平面でなくても緩い曲率が付いていても良い
In each of the above embodiments, the surfaces on both sides of the variable apex angle prism need not be completely flat, but may have a gentle curvature.

本実施例のおける撮影系はシフトレンズやオートレベル
等の光学器機にも適用することができる。
The photographing system in this embodiment can also be applied to optical equipment such as a shift lens and an auto level.

次に本発明の数値実施例を示す。数値実施例においてR
iは物体側より順に第i番目のレンズ面の曲率半径、D
iは物体側より第i番目のレンズ厚及び空気間隔、Ni
とνiは各々物体側より順に第i番目のレンズのガラス
の屈折率とアツベ数である。
Next, numerical examples of the present invention will be shown. In numerical examples R
i is the radius of curvature of the i-th lens surface in order from the object side, D
i is the i-th lens thickness and air distance from the object side, Ni
and νi are the refractive index and Abbe number of the glass of the i-th lens, respectively, in order from the object side.

尚、比較参考の為に数値実施例1の可変頂角プリズムを
第1レンズ群の物体側に配置した場合(第11図)の諸
収差図を第12図(A) 、 (B)に示す。
For comparative reference, various aberration diagrams when the variable apex angle prism of Numerical Example 1 is placed on the object side of the first lens group (Fig. 11) are shown in Fig. 12 (A) and (B). .

数値実施例I F−:100    FNo−l:2.8    2ω
−8,25゜数値実施例2 F−300FNo=1+2.8    2ω−8,25
゜数値実施例3 !−300FNo−I:2.8    2ω・8.25
’(発明の効果) 本発明によれば前述の如く各レンズ群及び可変頂角プリ
ズムを構成することにより、特別な機構を設けることな
く可変頂角プリズム方式を利用したときの問題点であっ
た偏心倍率色収差の発生を小さく補正することができ、
偏心駆動したときの色のにじみが少なくコントラストの
高い、高画質の画像が得られ、しかも基準状態の倍率色
収差も小さく補正した画像偏向手段を有した撮影系を達
成することができる。
Numerical Example I F-: 100 FNo-l: 2.8 2ω
-8,25° Numerical Example 2 F-300FNo=1+2.8 2ω-8,25
゜Numerical Example 3! -300FNo-I: 2.8 2ω・8.25
(Effects of the Invention) According to the present invention, by configuring each lens group and the variable apex angle prism as described above, the problem that occurred when using the variable apex angle prism method without providing a special mechanism can be solved. The occurrence of eccentric lateral chromatic aberration can be corrected to a small extent,
It is possible to achieve a photographing system having an image deflecting means that can obtain a high-quality image with little color blurring and high contrast when eccentrically driven, and further corrects the lateral chromatic aberration of magnification to a small value in a reference state.

【図面の簡単な説明】[Brief explanation of the drawing]

第1.第2.第3図は各々本発明の数値実施例1.2.
3のレンズ断面図、第4.第5.第6図は各々本発明の
数値実施例、1,2.3の諸収差図、第7図は本発明に
おける偏心収差係数の説明図、第8.第9図は各々本発
明における倍率色収差係数についての説明図である。第
10図(A)。 (B)は従来の可変頂角プリズムの説明図、第11.第
12図は数値実施例1において可変頂角プリズムを第1
レンズ群の物体側に配置したときのレンズ断面図と収差
図である。 収差図において(A)は物体距915 m、(B)は画
像をΔY = 1 mm偏向させたときの横収差である
。 図中、■は第1レンズ群、■!は第2レンズ群、Pは可
変頂角プリズム、ΔMはメリディオナル像面、ΔSはサ
ジタル像面である。 も   1    y 第2図 I      PII Y5  3    図 第   4  7(A) 夷    5   図 (A) F/2.8     1!、l:4.+2’     
 tJ: 4.12°    、4=4,129第  
 5   図(B) 第    6   図(A) F/2.Is      (AJ: 4.12’   
  Q : 4.+2°    ω:4.128第  
  6    霞([13) 第   7   図 第  8   図 串   9   ロ 工   ρ   ■ 第  10  (2) (A) ビ         r4 第   11   図 可変項内 7°’Iス゛′へ 夷   12    霞 (A)
1st. Second. FIG. 3 shows numerical examples 1, 2, and 2 of the present invention, respectively.
3. Lens sectional view of No. 3, No. 4. Fifth. 6 is a numerical example of the present invention, various aberration diagrams in 1 and 2.3, FIG. 7 is an explanatory diagram of eccentric aberration coefficients in the present invention, and 8. FIG. 9 is an explanatory diagram of the lateral chromatic aberration coefficients in the present invention. Figure 10(A). (B) is an explanatory diagram of a conventional variable apex angle prism, No. 11. Figure 12 shows the first variable apex angle prism in Numerical Example 1.
FIG. 4 is a cross-sectional view of the lens and an aberration diagram when the lens group is placed on the object side. In the aberration diagram, (A) shows the object distance of 915 m, and (B) shows the lateral aberration when the image is deflected by ΔY = 1 mm. In the figure, ■ is the first lens group, ■! is the second lens group, P is a variable apex angle prism, ΔM is a meridional image surface, and ΔS is a sagittal image surface. 1 y Figure 2 I PII Y5 3 Figure 4 7 (A) 夷 5 Figure (A) F/2.8 1! , l:4. +2'
tJ: 4.12°, 4=4,129th
5 Figure (B) Figure 6 (A) F/2. Is (AJ: 4.12'
Q: 4. +2° ω: 4.128th
6 Kasumi ([13) Fig. 7 Fig. 8 Fig. 9 RO work ρ ■ No. 10 (2) (A) Bi r4 Fig. 11 Change to 7°'I SW within the variable term 12 Kasumi (A)

Claims (1)

【特許請求の範囲】 (1)物体側より順に固定の第1レンズ群、頂角が可変
の可変頂角プリズム、そして固定の第2レンズ群を有し
、該可変頂角プリズムの頂角を変化させることにより撮
影画像を偏向させるようにした画像偏向手段を有した撮
影系において、全系の焦点距離を1と正規化したときの
前記第1レンズ群と第2レンズ群の倍率色収差係数を各
々T_1、T_2、前記可変頂角プリズムの基準波長と
第2波長に対する屈折率を各々N_P、N_P′としδ
NP=|N_P−N_P′|としたとき −0.012<T_2−(δNP)/(N_P−1)<
0.012−1.3<T_1/T_2<−0.7 なる条件を満足することを特徴とする画像偏向手段を有
した撮影系。 (2)前記第1レンズ群の焦点距離f_1が|f_1|
≦20fのとき、前記第2レンズ群の基準波長と第2波
長に対する結像倍率を各々β_2、β_2′としたとき 0.985<(β_2′)・(N_P′−1)/{(β
_2)・(N_P−1)}<1.015なる条件を満足
することを特徴とする特許請求の範囲第1項記載の画像
偏向手段を有した撮影系。 (3)前記第1レンズ群の焦点距離f_1が|f_1|
>20fのとき、前記第2レンズ群の基準波長と第2波
長に対する焦点距離を各々f_2、f_2′としたとき 0.985<(f_2′)・(N_P′−1)/{(f
_2)・(N_P−1)}<1.015なる条件を満足
することを特徴とする特許請求の範囲第1項記載の画像
偏向手段を有した撮影系。 (4)前記第2レンズ群をレンズ群中の最も大きな空気
間隔を境にして物体側より第2Aレンズ群と第2Bレン
ズ群の2つのレンズ群に分け、該第2Bレンズ群を構成
する各レンズの屈折力をφ2Bi、材質のアッベ数をν
2Bi、等価アッベ数をV2Bとし、 ▲数式、化学式、表等があります▼ としたとき V2B<40 なる条件を満足することを特徴とする特許請求の範囲第
2項、又は第3項記載の画像偏向手段を有した撮影系。
[Scope of Claims] (1) In order from the object side, there is a fixed first lens group, a variable apex angle prism whose apex angle is variable, and a fixed second lens group, and the apex angle of the variable apex prism is In a photographing system having an image deflecting means that deflects a photographed image by changing the focal length of the entire system, the lateral chromatic aberration coefficient of the first lens group and the second lens group is δ
When NP=|N_P-N_P'|, -0.012<T_2-(δNP)/(N_P-1)<
0.012-1.3<T_1/T_2<-0.7 A photographing system having an image deflecting means is characterized in that it satisfies the following condition. (2) The focal length f_1 of the first lens group is |f_1|
When ≦20f, when the imaging magnifications of the second lens group for the reference wavelength and the second wavelength are β_2 and β_2′, respectively, 0.985<(β_2′)・(N_P′−1)/{(β
_2)·(N_P-1)}<1.015. An imaging system having an image deflecting means according to claim 1, wherein the image deflecting means satisfies the following condition. (3) The focal length f_1 of the first lens group is |f_1|
>20f, and when the focal lengths of the second lens group for the reference wavelength and the second wavelength are f_2 and f_2', respectively, 0.985<(f_2')・(N_P'-1)/{(f
_2)·(N_P-1)}<1.015. An imaging system having an image deflecting means according to claim 1, wherein the image deflecting means satisfies the following condition. (4) The second lens group is divided from the object side into two lens groups, a 2A lens group and a 2B lens group, with the largest air gap among the lens groups as a boundary, and each lens group constituting the 2B lens group The refractive power of the lens is φ2Bi, and the Abbe number of the material is ν.
2Bi, the equivalent Abbe number is V2B, ▲There are mathematical formulas, chemical formulas, tables, etc.▼ The image according to claim 2 or 3, which satisfies the condition that V2B<40 Photographing system with deflection means.
JP62335219A 1987-12-29 1987-12-29 Imaging system having image deflection means Expired - Fee Related JP2754547B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62335219A JP2754547B2 (en) 1987-12-29 1987-12-29 Imaging system having image deflection means
US07/701,326 US5140462A (en) 1987-12-29 1991-05-07 Optical system having image deflecting function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62335219A JP2754547B2 (en) 1987-12-29 1987-12-29 Imaging system having image deflection means

Publications (2)

Publication Number Publication Date
JPH01178916A true JPH01178916A (en) 1989-07-17
JP2754547B2 JP2754547B2 (en) 1998-05-20

Family

ID=18286093

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62335219A Expired - Fee Related JP2754547B2 (en) 1987-12-29 1987-12-29 Imaging system having image deflection means

Country Status (1)

Country Link
JP (1) JP2754547B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5579045A (en) * 1990-11-30 1996-11-26 Canon Kabushiki Kaisha Apparatus for detecting movement using a difference between first and second image signals
US5661597A (en) * 1993-07-29 1997-08-26 Canon Kabushiki Kaisha Image deflection apparatus
US6130709A (en) * 1990-01-05 2000-10-10 Canon Kabushiki Kaisha Image processing apparatus for correcting image vibration

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621133A (en) * 1979-07-31 1981-02-27 Ricoh Co Ltd Electrophotographic receptor

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5621133A (en) * 1979-07-31 1981-02-27 Ricoh Co Ltd Electrophotographic receptor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6130709A (en) * 1990-01-05 2000-10-10 Canon Kabushiki Kaisha Image processing apparatus for correcting image vibration
US5579045A (en) * 1990-11-30 1996-11-26 Canon Kabushiki Kaisha Apparatus for detecting movement using a difference between first and second image signals
US5861916A (en) * 1990-11-30 1999-01-19 Canon Kabushiki Kaisha Apparatus for detecting movement using a difference between first and second image signals
US5661597A (en) * 1993-07-29 1997-08-26 Canon Kabushiki Kaisha Image deflection apparatus

Also Published As

Publication number Publication date
JP2754547B2 (en) 1998-05-20

Similar Documents

Publication Publication Date Title
US7586690B2 (en) Projection type zoom lens and projection type display apparatus
JP3869895B2 (en) Optical system with anti-vibration function
EP2378336B1 (en) Zoom lens of the retrofocus type and having five lens groups
US6384975B1 (en) Image stabilizing optical lens device with decentering of lens sub-unit
JPS61223819A (en) Vibration-proof optical system
JP3486532B2 (en) Zoom lens having vibration compensation function and camera having the same
JP3072815B2 (en) Variable power optical system
US6377399B1 (en) Image stabilizing optical system
US20110304922A1 (en) Zoom lens and image projection apparatus including the same
JP2560377B2 (en) Variable magnification optical system with anti-vibration function
JP2605326B2 (en) Variable power optical system with anti-vibration function
JPH02135408A (en) Vibration compensation type telephoto lens
JP2540932B2 (en) Shooting system with anti-vibration function
JP2535969B2 (en) Variable magnification optical system with anti-vibration function
JP2621280B2 (en) Variable power optical system with anti-vibration function
JPS62203119A (en) Photographic lens with vibration isolating function
US8218238B2 (en) Zoom lens system and image taking apparatus including the same
JP3860231B2 (en) Anti-vibration optical system
JP4095131B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus having the same
JPH11174326A (en) Optical system having vibration-proof function
JPH01178916A (en) Photography system with image deflecting method
JPH1152242A (en) Zoom lens having hand shake correcting function
JPH11295594A (en) Variable power optical system provided with vibration proof function
JP3272413B2 (en) Decenterable lens and vibration compensation lens system
JP2547834B2 (en) Optical system with image deflection function

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees