JPH1152242A - Zoom lens having hand shake correcting function - Google Patents

Zoom lens having hand shake correcting function

Info

Publication number
JPH1152242A
JPH1152242A JP21367397A JP21367397A JPH1152242A JP H1152242 A JPH1152242 A JP H1152242A JP 21367397 A JP21367397 A JP 21367397A JP 21367397 A JP21367397 A JP 21367397A JP H1152242 A JPH1152242 A JP H1152242A
Authority
JP
Japan
Prior art keywords
group
lens
camera shake
shake correction
positive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP21367397A
Other languages
Japanese (ja)
Inventor
Kenji Konno
賢治 金野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Minolta Co Ltd
Original Assignee
Minolta Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Minolta Co Ltd filed Critical Minolta Co Ltd
Priority to JP21367397A priority Critical patent/JPH1152242A/en
Priority to US09/130,266 priority patent/US6081390A/en
Publication of JPH1152242A publication Critical patent/JPH1152242A/en
Pending legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To reduce a burden to a hand shake correction driving system and to obtain excellent optical performance even when a large hand shake is generated by making a lens group comparatively light in weight a hand shake correcting group. SOLUTION: This zoom lens has five components of positive, negative, positive, positive and negative and hand shake correction is performed by making a third group Gr3 composed of a positive lens and a negative lense, eccentric in the perpendicular direction to an optical axis. The moving sensitivity of a hand shake correcting group for every focal distance in zooming is stipulated and the ratio of a final group to a focal distance at a wide-angle end (W) is stipulated. Namely, in this case, the following conditions are satisfied. 8<f/ βr(1-βd)}<100, -0.8<flast/fw<-0.5, where (f) is the focal distance of a whole system, βr is the lateral magnification of all lens groups located on an image side closer than the hand shake correcting group, βd is the lateral magnification of the hand shake correcting group, flast is the focal distance of a final group and fw is the focal distance of the whole system at the wide-angle end.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、手ぶれ補正機能を
有するズームレンズに関するものであり、更に詳しく
は、手ぶれ(例えば、カメラの手持ち撮影時の振動)によ
る像のぶれを防ぐことができる、レンズシャッターカメ
ラに好適な手ぶれ補正機能を有するズームレンズに関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a zoom lens having a camera shake correction function, and more particularly, to a lens capable of preventing image blur due to camera shake (for example, vibration during hand-held shooting of a camera). The present invention relates to a zoom lens having a camera shake correction function suitable for a shutter camera.

【0002】[0002]

【従来の技術】従来、写真撮影の失敗の原因は、その殆
どが手ぶれとピンボケであった。ところが、近年、カメ
ラの殆どにオートフォーカス機構が採用されるようにな
り、また、オートフォーカス機構のピント精度が向上す
るに従って、ピンボケによる写真撮影の失敗は殆ど解消
されている。一方、カメラに標準装備されるレンズは、
単焦点レンズからズームレンズへと移行してきている。
その結果、現在では、写真撮影の失敗の原因は手ぶれに
よるものといっても過言ではなく、そのためズームレン
ズには手ぶれ補正機能が不可欠なものとなってきてい
る。
2. Description of the Related Art Heretofore, most of photographing failures have been caused by camera shake and blurring. However, in recent years, the autofocus mechanism has been adopted in almost all cameras, and as the focus accuracy of the autofocus mechanism has been improved, the failure in photographing due to out-of-focus has been almost eliminated. On the other hand, the lens that comes standard with the camera is
There is a shift from single focus lenses to zoom lenses.
As a result, it is not an exaggeration to say that the cause of photographing failure is due to camera shake. Therefore, a camera shake correction function has become indispensable for a zoom lens.

【0003】このような課題に対して、様々なズームレ
ンズが提案されている。例えば、特開平8−10136
2号公報では、正・負・正・正・負の5成分ズームの第
4群を3つに分割して、真ん中のレンズ群を平行偏心さ
せることによって手ぶれ補正を行うズームレンズが提案
されている。特開平6−265827号公報では、正・
正・負の3成分ズームの第2群を前群と後群とに分け
て、後群を平行偏心させることによって手ぶれ補正を行
うズームレンズが提案されている。特開平7−3188
65号公報では、正・負・正・正・負の5成分ズームの
第4群を平行偏心させることによって手ぶれ補正を行う
ズームレンズが提案されている。特開平6−13020
3号公報では、正・正・負の3成分ズームの第2群を透
明液体が封入されたレンズ群で構成し、そのレンズ群を
傾けることによって手ぶれ補正を行うズームレンズが提
案されている。
[0003] In response to such a problem, various zoom lenses have been proposed. For example, JP-A-8-10136
Japanese Patent Laid-Open Publication No. 2 (1998) -214566 proposes a zoom lens that corrects camera shake by dividing a fourth group of five-component zoom of positive, negative, positive, positive, and negative into three and decentering a middle lens group in parallel. I have. JP-A-6-265827 discloses that a positive
A zoom lens has been proposed which divides a second group of positive and negative three-component zoom into a front group and a rear group, and performs camera shake correction by decentering the rear group in parallel. JP-A-7-3188
Japanese Patent Application Laid-Open No. 65-26564 proposes a zoom lens that performs camera shake correction by performing parallel eccentricity on a fourth unit of a five-component zoom of positive, negative, positive, positive, and negative. JP-A-6-13020
In Japanese Patent Application Publication No. 3 (1999) -1995, there is proposed a zoom lens in which a second group of three component zooms of positive, positive, and negative is configured by a lens group in which a transparent liquid is sealed, and the lens group is tilted to perform camera shake correction.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、特開平
8−101362号公報,特開平6−265827号公
報,特開平7−318865号公報で提案されているズ
ームレンズでは、手ぶれ補正時に軸上の像点の動きと軸
外の像点の動きとの間に差が生じてしまう。このため、
軸外の像点が大きく動いて、良好な光学性能が得られな
いという問題があった。また、特開平6−130203
号公報で提案されているズームレンズでは、透明液体が
封入されたレンズ群を傾けて手ぶれ補正を行ったとき
に、軸上の色収差が発生してしまう。その軸上の色収差
を補正することは難しく、良好な結像性能が得られない
という問題があった。
However, in the zoom lens proposed in Japanese Patent Application Laid-Open Nos. 8-101362, 6-265827 and 7-318865, an on-axis image is not corrected when camera shake is corrected. There is a difference between the movement of the point and the movement of the off-axis image point. For this reason,
There has been a problem that an off-axis image point largely moves and good optical performance cannot be obtained. Also, JP-A-6-130203
In the zoom lens proposed in Japanese Patent Application Laid-Open Publication No. H11-27095, axial chromatic aberration occurs when the lens group in which the transparent liquid is sealed is tilted to perform camera shake correction. It is difficult to correct the chromatic aberration on the axis, and there is a problem that good imaging performance cannot be obtained.

【0005】本発明は、このような状況に鑑みてなされ
たものであって、比較的軽量なレンズ群を手ぶれ補正群
とすることにより手ぶれ補正駆動系への負担を小さく
し、大きな手ぶれが発生した場合でも良好な光学性能が
得られる手ぶれ補正機能を有するズームレンズを提供す
ることを目的とする。
The present invention has been made in view of such a situation, and a relatively light lens group is used as a camera shake correction group to reduce a load on a camera shake correction drive system and generate a large camera shake. It is an object of the present invention to provide a zoom lens having a camera shake correction function capable of obtaining good optical performance even in the case where the zooming is performed.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するた
め、第1の発明の手ぶれ補正機能を有するズームレンズ
は、物体側から順に、正のパワーを有する第1群と、負
のパワーを有する第2群と、正のパワーを有する第3群
とを備え、かつ、最も像側に負のパワーを有する最終群
を備えたズームレンズであって、前記第3群が少なくと
も1枚の正レンズと少なくとも1枚の負レンズとを有す
る手ぶれ補正群であり、この第3群を光軸に対して垂直
方向に偏心させることにより手ぶれ補正を行い、ズーミ
ングにおける任意の位置で以下の条件式(1)を満足し、
かつ、以下の条件式(2)を満足することを特徴とする。 8<f/{βr×(1-βd)}<100 …(1) -0.8<flast/fw<-0.5 …(2) ただし、 f :全系の焦点距離、 βr :手ぶれ補正群よりも像側に位置する全レンズ群
の横倍率、 βd :手ぶれ補正群の横倍率、 flast:最終群の焦点距離、 fw :広角端での全系の焦点距離 である。
In order to achieve the above object, a zoom lens having a camera shake correction function according to a first aspect of the present invention includes, in order from an object side, a first lens unit having a positive power and a negative lens having a negative power. A zoom lens comprising a second group, a third group having a positive power, and a final group having a negative power closest to the image side, wherein the third group has at least one positive lens. And at least one negative lens. The third group is decentered in the vertical direction with respect to the optical axis to perform camera shake correction, and the following conditional expression (1) )
Further, it is characterized by satisfying the following conditional expression (2). 8 <f / {βr × (1-βd)} <100 (1) -0.8 <flast / fw <-0.5 (2) where f: focal length of the entire system, βr: image rather than camera shake correction group Is the lateral magnification of all the lens groups located on the side, βd is the lateral magnification of the camera shake correction group, flast is the focal length of the last group, and fw is the focal length of the entire system at the wide-angle end.

【0007】第2の発明の手ぶれ補正機能を有するズー
ムレンズは、物体側から順に、正のパワーを有する第1
群と、負のパワーを有する第2群と、正のパワーを有す
る第3群とを備え、かつ、最も像側に負のパワーを有す
る最終群を備えたズームレンズであって、前記第3群が
物体側から順に前群と後群とから成り、前記前群が少な
くとも1枚の正レンズと少なくとも1枚の負レンズとを
有する手ぶれ補正群であり、この前群を光軸に対して垂
直方向に偏心させることにより手ぶれ補正を行い、ズー
ミングにおける任意の位置で以下の条件式(1)を満足
し、かつ、以下の条件式(2)を満足することを特徴とす
る。 8<f/{βr×(1-βd)}<100 …(1) -0.8<flast/fw<-0.5 …(2) ただし、 f :全系の焦点距離、 βr :手ぶれ補正群よりも像側に位置する全レンズ群
の横倍率、 βd :手ぶれ補正群の横倍率、 flast:最終群の焦点距離、 fw :広角端での全系の焦点距離 である。
According to a second aspect of the present invention, there is provided a zoom lens having a camera shake correcting function, comprising a first lens having a positive power in order from an object side.
A zoom lens comprising a group, a second group having a negative power, and a third group having a positive power, and a final group having a negative power closest to the image side. The group consists of a front group and a rear group in order from the object side, and the front group is a camera shake correction group having at least one positive lens and at least one negative lens. It is characterized in that camera shake correction is performed by decentering in the vertical direction, and the following conditional expression (1) is satisfied at any position in zooming, and the following conditional expression (2) is satisfied. 8 <f / {βr × (1-βd)} <100 (1) -0.8 <flast / fw <-0.5 (2) where f: focal length of the entire system, βr: image rather than camera shake correction group Is the lateral magnification of all the lens groups located on the side, βd is the lateral magnification of the camera shake correction group, flast is the focal length of the last group, and fw is the focal length of the entire system at the wide-angle end.

【0008】第3の発明の手ぶれ補正機能を有するズー
ムレンズは、上記第1又は第2の発明の構成において、
無限遠物体から近接物体へのフォーカシングに際し、前
記第2群を物体側に繰り出すことを特徴とする。
According to a third aspect of the present invention, there is provided a zoom lens having a camera shake correction function according to the first or second aspect of the invention.
In focusing from an infinitely distant object to a close object, the second lens unit is moved toward the object side.

【0009】[0009]

【発明の実施の形態】以下、本発明を実施した手ぶれ補
正機能を有するズームレンズを、図面を参照しつつ説明
する。図1〜図4は、第1〜第4の実施の形態のズーム
レンズにそれぞれ対応するレンズ構成図であり、広角端
[W]でのレンズ配置を示している。各レンズ構成図中の
矢印mi(i=1,2,3,...)は、広角端[W]から望遠端[T]へ
のズーミングにおける第i群(Gri)の移動をそれぞれ模式
的に示している。また、各レンズ構成図中、ri(i=1,2,
3,...)が付された面は物体側から数えてi番目の面であ
り、riに*印が付された面は非球面である。di(i=1,2,
3,...)が付された各群間の軸上面間隔は、物体側から数
えてi番目の軸上面間隔のうち、ズーミングにおいて変
化する可変間隔である。なお、図1〜図4中、矢印mDは
手ぶれ補正群の平行偏心(すなわち光軸に対して垂直方
向の移動)を表しており、矢印mFはフォーカス群のフォ
ーカス移動を表している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A zoom lens having a camera shake correction function according to the present invention will be described below with reference to the drawings. 1 to 4 are lens configuration diagrams corresponding to the zoom lenses according to the first to fourth embodiments, respectively.
The lens arrangement at [W] is shown. Arrows mi (i = 1, 2, 3,...) In each lens configuration diagram schematically show movement of the i-th lens unit (Gri) during zooming from the wide-angle end [W] to the telephoto end [T]. Is shown in In each lens configuration diagram, ri (i = 1,2,
The surface marked with (3, ...) is the i-th surface counted from the object side, and the surface marked with * in ri is an aspheric surface. di (i = 1,2,
The axial top surface interval between the groups denoted by (3,...) Is a variable interval that changes during zooming, of the i-th axial top surface interval counted from the object side. 1 to 4, an arrow mD indicates the parallel eccentricity of the camera shake correction group (that is, a movement in a direction perpendicular to the optical axis), and an arrow mF indicates the focus movement of the focus group.

【0010】第1〜第3の実施の形態のズームレンズ
は、いずれも物体側から順に、正のパワーを有する第1
群(Gr1)と、負のパワーを有する第2群(Gr2)と、正のパ
ワーを有する第3群(Gr3)と、正のパワー有する第4群
(Gr4)と、負のパワーを有する第5群(Gr5)と、で構成さ
れている。そして、図1〜図3中の矢印m1〜m5で示すよ
うに、広角端[W]から望遠端[T]へのズーミングに際し
て、第1群(Gr1)と第2群(Gr2)との間隔が広くなり、第
2群(Gr2)と第3群(Gr3)との間隔が狭くなり、第4群(G
r4)と第5群(Gr5)との間隔が狭くなるように、各群が移
動する。なお、第2群(Gr2)の最も像側の面と第3群(Gr
3)の最も物体側の面との間には、第3群(Gr3)と共にズ
ーム移動する絞り(S)が配置されている。
Each of the zoom lenses according to the first to third embodiments has, in order from the object side, a first lens having a positive power.
Group (Gr1), second group (Gr2) with negative power, third group (Gr3) with positive power, and fourth group with positive power
(Gr4) and a fifth lens unit (Gr5) having negative power. As shown by arrows m1 to m5 in FIGS. 1 to 3, at the time of zooming from the wide-angle end [W] to the telephoto end [T], the distance between the first unit (Gr1) and the second unit (Gr2). Becomes wider, the interval between the second group (Gr2) and the third group (Gr3) becomes narrower, and the fourth group (Gr3) becomes
Each group moves so that the distance between r4) and the fifth group (Gr5) becomes narrow. The most image-side surface of the second group (Gr2) and the third group (Gr2)
An aperture (S) that zooms together with the third lens unit (Gr3) is disposed between the third lens unit (Gr3) and the most object side surface of (3).

【0011】第4の実施の形態のズームレンズは、物体
側から順に、正のパワーを有する第1群(Gr1)と、負の
パワーを有する第2群(Gr2)と、正のパワーを有する第
3群(Gr3)と、負のパワーを有する第4群(Gr4)と、で構
成されている。そして、図4中の矢印m1〜m4で示すよう
に、広角端[W]から望遠端[T]へのズーミングに際し
て、第1群(Gr1)と第2群(Gr2)との間隔が広くなり、第
2群(Gr2)と第3群(Gr3)との間隔が狭くなり、第3群(G
r3)と第4群(Gr4)との間隔が狭くなるように、各群が移
動する。なお、第2群(Gr2)の最も像側の面と第3群(Gr
3)の最も物体側の面との間には、第3群(Gr3)と共にズ
ーム移動する絞り(S)が配置されている。
The zoom lens according to the fourth embodiment has, in order from the object side, a first lens unit (Gr1) having a positive power, a second lens unit (Gr2) having a negative power, and a positive lens. The zoom lens includes a third lens unit (Gr3) and a fourth lens unit (Gr4) having negative power. Then, as shown by arrows m1 to m4 in FIG. 4, during zooming from the wide-angle end [W] to the telephoto end [T], the distance between the first unit (Gr1) and the second unit (Gr2) increases. The distance between the second group (Gr2) and the third group (Gr3) is reduced, and the third group (Gr3)
Each group moves so that the distance between r3) and the fourth group (Gr4) becomes narrow. The most image-side surface of the second group (Gr2) and the third group (Gr2)
An aperture (S) that zooms together with the third lens unit (Gr3) is disposed between the third lens unit (Gr3) and the most object side surface of (3).

【0012】第1〜第3の実施の形態において、各群は
物体側から順に以下のように構成されている。第1群(G
r1)は、物体側に凸の負メニスカスレンズと、物体側に
凸の正レンズと、で構成されている。第2群(Gr2)は、
両凹の負レンズと、物体側に凸の正レンズと、で構成さ
れている。第3群(Gr3)は、両凸の正レンズと、像側に
凹の負レンズと、で構成されている。第4群(Gr4)は、
両凸の正の接合レンズで構成されている。第5群(Gr5)
は、像側に凸の正レンズと、物体側に凹の負レンズと、
で構成されている。
In the first to third embodiments, each group is configured as follows in order from the object side. Group 1 (G
r1) is composed of a negative meniscus lens convex on the object side and a positive lens convex on the object side. The second group (Gr2)
It is composed of a biconcave negative lens and a positive lens convex on the object side. The third unit (Gr3) includes a biconvex positive lens and a negative lens concave on the image side. The fourth group (Gr4)
It consists of a biconvex positive cemented lens. 5th group (Gr5)
Is a positive lens convex on the image side, a negative lens concave on the object side,
It is composed of

【0013】第4の実施の形態において、各群は物体側
から順に以下のように構成されている。第1群(Gr1)
は、物体側に凸の負メニスカスレンズと、物体側に凸の
正レンズと、で構成されている。第2群(Gr2)は、両凹
の負レンズと、物体側に凸の正レンズと、で構成されて
いる。第3群(Gr3)は、両凸の正レンズと、像側に凹の
負レンズと、両凸の正の接合レンズと、で構成されてい
る。第4群(Gr4)は、像側に凸の正レンズと、物体側に
凹の負レンズと、で構成されている。
In the fourth embodiment, each group is configured as follows in order from the object side. First group (Gr1)
Is composed of a negative meniscus lens convex on the object side and a positive lens convex on the object side. The second group (Gr2) includes a biconcave negative lens and a positive lens convex on the object side. The third group (Gr3) includes a biconvex positive lens, a negative lens concave on the image side, and a biconvex positive cemented lens. The fourth group (Gr4) includes a positive lens convex on the image side and a negative lens concave on the object side.

【0014】第1〜第4の実施の形態は、物体側から順
に、正のパワーを有する第1群(Gr1)と、負のパワーを
有する第2群(Gr2)と、正のパワーを有する第3群(Gr3)
とを備え、かつ、最も像側に負の最終群を備えたズーム
レンズ構成となっている。少なくとも4つのズーム群の
間隔を変化させることによってズーミングを行うため、
少なくとも3つの変倍群を有している。この場合、変倍
を少なくとも3つの群で分担することができるため、各
群の収差補正を分担して高倍率ズームを実現することが
可能となる。また、全体でテレフォトタイプの構成にな
るので、レンズバックが小さくコンパクトな光学系を実
現することができる。
In the first to fourth embodiments, a first lens unit (Gr1) having a positive power, a second lens unit (Gr2) having a negative power, and a positive lens having a positive power are arranged in order from the object side. 3rd group (Gr3)
, And a negative lens group closest to the image side. In order to perform zooming by changing the interval between at least four zoom groups,
It has at least three zoom groups. In this case, since the zooming can be shared by at least three groups, it is possible to realize the high-power zoom by sharing the aberration correction of each group. In addition, since the configuration is a telephoto type as a whole, a compact optical system with a small lens back can be realized.

【0015】第1〜第4の実施の形態のように、物体側
から順に、正のパワーを有する第1群(Gr1)と、負のパ
ワーを有する第2群(Gr2)と、正のパワーを有する第3
群(Gr3)とを備え、かつ、最も像側に負のパワーを有す
る最終群を備えたズームレンズであって、第1〜第3の
実施の形態のように、第3群(Gr3)を光軸に対して垂直
方向に偏心させることにより手ぶれ補正を行う、第3群
(Gr3)が手ぶれ補正群であるズームレンズ構成(以下「第
1のズーム構成」という。)、あるいは、第4の実施の
形態のように、第3群(Gr3)が物体側から順に前群(GrA)
と後群(GrB)とから成り、前群(GrA)を光軸に対して垂直
方向に偏心させることにより手ぶれ補正を行う、前群(G
rA)が手ぶれ補正群であるズームレンズ構成(以下「第2
のズーム構成」という。)においては、ズーミングにお
ける任意の位置で以下の条件式(1)を満足することが望
ましい。 8<f/{βr×(1-βd)}<100 …(1) ただし、 f :全系の焦点距離、 βr:手ぶれ補正群よりも像側に位置する全レンズ群の
横倍率{例えば、第1の実施の形態では第4群(Gr4)及び
第5群(Gr5)の横倍率}、 βd:手ぶれ補正群の横倍率{例えば、第1の実施の形態
では第3群(Gr3)の横倍率} である。
As in the first to fourth embodiments, in order from the object side, a first unit (Gr1) having a positive power, a second unit (Gr2) having a negative power, The third with
And a final lens group having a negative power closest to the image side, and a third lens unit (Gr3) as in the first to third embodiments. A third group that performs camera shake correction by decentering in the direction perpendicular to the optical axis.
A zoom lens configuration in which (Gr3) is a camera shake correction group (hereinafter, referred to as a “first zoom configuration”), or as in the fourth embodiment, a third group (Gr3) is sequentially arranged from the object side to the front group. (GrA)
And a rear group (GrB), which performs camera shake correction by decentering the front group (GrA) in a direction perpendicular to the optical axis.
rA) is a zoom lens configuration (hereinafter referred to as “second
The zoom configuration. " In (2), it is desirable that the following conditional expression (1) be satisfied at an arbitrary position in zooming. 8 <f / {βr × (1-βd)} <100 (1) where, f: focal length of the entire system, βr: lateral magnification of all lens groups located on the image side of the camera shake correction group {for example, In the first embodiment, the lateral magnification of the fourth group (Gr4) and the fifth group (Gr5)}, βd: the lateral magnification of the camera shake correction group {for example, in the first embodiment, the lateral magnification of the third group (Gr3) Lateral magnification}.

【0016】条件式(1)は、焦点距離ごとの手ぶれ補正
群の移動感度を規定している。条件式(1)の上限を超え
ると、手ぶれ補正群の移動量が大きくなりすぎるため、
手ぶれ補正群のレンズ径を大きくしなければならなくな
る。したがって、光学系が大きくなるという問題が生じ
る。条件式(1)の下限を超えると、手ぶれ補正群の移動
量が小さくなりすぎるため、手ぶれ補正群を駆動させる
時に手ぶれ補正群の位置精度を高精度で制御する必要が
生じる。したがって、高い性能の駆動手段及び位置検出
手段が必要になるため、コストが高くなる。
Conditional expression (1) defines the movement sensitivity of the camera shake correction group for each focal length. When the value exceeds the upper limit of the conditional expression (1), the movement amount of the camera shake correction group becomes too large.
The lens diameter of the camera shake correction unit must be increased. Therefore, there is a problem that the optical system becomes large. If the lower limit of conditional expression (1) is exceeded, the amount of movement of the camera shake correction group will be too small, and it will be necessary to control the position accuracy of the camera shake correction group with high accuracy when driving the camera shake correction group. Therefore, high-performance driving means and position detecting means are required, so that the cost is increased.

【0017】また、前記第1,第2のズーム構成におい
ては、次の条件式(2)を満足することが望ましい。 -0.8<flast/fw<-0.5 …(2) ただし、 flast:最終群の焦点距離、 fw :広角端[W]での全系の焦点距離 である。
In the first and second zoom configurations, it is desirable that the following conditional expression (2) is satisfied. -0.8 <flast / fw <-0.5 (2) where flast is the focal length of the last lens unit, and fw is the focal length of the entire system at the wide-angle end [W].

【0018】条件式(2)は、最終群と広角端[W]での焦
点距離との比を規定している。条件式(2)の上限を超え
ると、最終群のパワーが強くなりすぎるため、最終群で
発生する収差(特に像面湾曲)が大きくなりすぎて、良好
な光学性能を得ることができなくなる。条件式(2)の下
限を超えると、最終群のパワーが弱くなるので収差補正
上は有利となるが、テレフォトの度合いが小さくなり光
学系が大きくなりすぎるため、コンパクトな光学系を得
ることができなくなる。
Condition (2) defines the ratio between the last lens unit and the focal length at the wide-angle end [W]. When the value exceeds the upper limit of conditional expression (2), the power of the final lens unit becomes too strong, so that aberration (particularly, curvature of field) generated in the final lens unit becomes too large, so that good optical performance cannot be obtained. If the lower limit of conditional expression (2) is exceeded, the power of the final lens group becomes weak, which is advantageous for aberration correction.However, since the degree of telephoto becomes small and the optical system becomes too large, a compact optical system can be obtained. become unable.

【0019】第1〜第4の実施の形態では、矢印mF(図
1〜図4)で示すように第2群(Gr2)を物体側に移動させ
ることによって、無限遠物体から近接物体へのフォーカ
シングを行う構成となっている。手ぶれ補正は第3群(G
r3)で行われるため、フォーカシングと手ぶれ補正を別
々のレンズ群で行うことができる。また、フォーカス群
(Gr2)よりも像側に手ぶれ補正群(Gr3又はGrA)があるの
で、撮影距離によって手ぶれ補正群の倍率が変化せず、
したがって、手ぶれ補正群の移動量を一定にすることが
できる。
In the first to fourth embodiments, the second lens unit (Gr2) is moved to the object side as shown by the arrow mF (FIGS. 1 to 4), so that the object from the object at infinity to the nearby object is moved. Focusing is performed. Image stabilization is performed in the third group (G
Since this is performed in r3), focusing and camera shake correction can be performed by separate lens groups. Also focus group
Since there is a camera shake correction group (Gr3 or GrA) on the image side than (Gr2), the magnification of the camera shake correction group does not change depending on the shooting distance,
Therefore, the amount of movement of the camera shake correction group can be made constant.

【0020】前記第1,第2のズーム構成においては、
次の条件式(3)を満足することが望ましい。 0.1<Bfw/Yim<0.25 …(3) ただし、 Bfw:広角端[W]でのバックフォーカス、 Yim:画面対角長 である。
In the first and second zoom configurations,
It is desirable to satisfy the following conditional expression (3). 0.1 <Bfw / Yim <0.25 (3) where Bfw is the back focus at the wide-angle end [W], and Yim is the screen diagonal length.

【0021】条件式(3)は、広角端[W]でのレンズバッ
クと画面対角長との比を規定している。条件式(3)の上
限を超えると、広角端[W]でのバックフォーカスが大き
くなりすぎてしまう。通常、レンズシャッターカメラ
は、携帯時には広角端[W]の状態にある。バックフォー
カスが大きくなると、光学系が光軸方向に大きくなって
全長が増大してしまうので、携帯に不便になる。条件式
(3)の下限を超えると、広角端[W]でのバックフォーカ
スが小さくなりすぎてしまう。バックフォーカスが小さ
くなると、最終レンズから像面までの距離が小さくな
る。その結果、最終レンズの径を広げる必要が生じるた
め、光学系が光軸に対して垂直方向に大きくなる。
Conditional expression (3) defines the ratio between the lens back at the wide angle end [W] and the screen diagonal length. If the upper limit of conditional expression (3) is exceeded, the back focus at the wide-angle end [W] becomes too large. Usually, the lens shutter camera is in the state of the wide-angle end [W] when carried. When the back focus becomes large, the optical system becomes large in the optical axis direction and the total length increases, which is inconvenient to carry. Conditional expression
If the lower limit of (3) is exceeded, the back focus at the wide-angle end [W] becomes too small. As the back focus decreases, the distance from the final lens to the image plane decreases. As a result, it is necessary to increase the diameter of the final lens, so that the optical system becomes large in the direction perpendicular to the optical axis.

【0022】以下の条件式(3')は、条件式(3)のなかで
も更に望ましい条件範囲を示している。条件式(3')を満
たす構成とすることにより、レンズシャッターカメラ用
の光学系として、更にコンパクトな手ぶれ補正機能を有
するズームレンズを得ることができる。 0.13<Bfw/Yim<0.21 …(3')
The following conditional expression (3 ') shows a more desirable conditional range in conditional expression (3). By adopting a configuration that satisfies the conditional expression (3 ′), a more compact zoom lens having a camera shake correction function can be obtained as an optical system for a lens shutter camera. 0.13 <Bfw / Yim <0.21 (3 ')

【0023】前記第1,第2のズーム構成においては、
次の条件式(4)を満足することが望ましい。 0.6<Lt/ft<1.0 …(4) ただし、 Lt:望遠端[T]での全長、 ft:望遠端[T]での全系の焦点距離 である。
In the first and second zoom configurations,
It is desirable to satisfy the following conditional expression (4). 0.6 <Lt / ft <1.0 (4) where Lt is the total length at the telephoto end [T], and ft is the focal length of the entire system at the telephoto end [T].

【0024】条件式(4)は、望遠端[T]での望遠比を規
定している。条件式(4)の上限を超えると、望遠端[T]
での望遠比が大きくなりすぎて、コンパクト性に反する
ことになる。条件式(4)の下限を超えると、望遠端[T]
の全長は小さくなるが、各群のパワーを強くする必要が
生じる。その結果、強いパワーで発生する収差の発生を
抑えることが困難になり、良好な光学性能を得ることが
できなくなる。
Conditional expression (4) defines the telephoto ratio at the telephoto end [T]. If the upper limit of conditional expression (4) is exceeded, the telephoto end [T]
Telephoto ratio becomes too large, which is against compactness. If the lower limit of conditional expression (4) is exceeded, the telephoto end [T]
Has a smaller overall length, but the power of each group must be increased. As a result, it becomes difficult to suppress the occurrence of aberrations generated with strong power, and it becomes impossible to obtain good optical performance.

【0025】以下の条件式(4')は、条件式(4)のなかで
も更に望ましい条件範囲を示している。条件式(4')を満
たす構成とすることにより、レンズシャッターカメラ用
の光学系として、更にコンパクトで高性能な手ぶれ補正
機能を有するズームレンズを得ることができる。 0.7<Lt/ft<0.8 …(4')
The following conditional expression (4 ') shows a more desirable conditional range in conditional expression (4). By adopting a configuration that satisfies the conditional expression (4 ′), it is possible to obtain a more compact and high-performance zoom lens having a camera shake correction function as an optical system for a lens shutter camera. 0.7 <Lt / ft <0.8 ... (4 ')

【0026】前記第1,第2のズーム構成においては、
次の条件式(5)を満足することが望ましい。 4.0<ft/fw2×Yim<9.0 …(5) ただし、 fw:広角端[W]での全系の焦点距離 である。
In the first and second zoom configurations,
It is desirable to satisfy the following conditional expression (5). 4.0 <ft / fw 2 × Yim <9.0 (5) where fw is the focal length of the entire system at the wide-angle end [W].

【0027】条件式(5)は、ズーム比と広角端焦点距離
との比を規定している。一般に広角端[W]での焦点距離
を大きくするほど、ズーム比の増大とともに高倍率化を
達成することができる。条件式(5)の上限を超えると、
ズーム比が大きくなりすぎるために、カメラが大きくな
ってしまう。条件式(5)の下限を超えると、高倍率化を
達成することができなくなったり、高倍率ではあっても
望遠寄りの焦点距離になったりするため、高倍率のレン
ズシャッターカメラ用の光学系としてはそぐわなくな
る。
Conditional expression (5) defines the ratio between the zoom ratio and the focal length at the wide-angle end. In general, as the focal length at the wide-angle end [W] is increased, the zoom ratio can be increased and higher magnification can be achieved. When the upper limit of conditional expression (5) is exceeded,
The camera becomes large because the zoom ratio is too large. If the lower limit of conditional expression (5) is exceeded, high magnification cannot be achieved, or even at high magnification the focal length will be closer to the telephoto end. Will not fit.

【0028】手ぶれ時にレンズを偏心させると軸上横色
収差が発生するが、これを抑えるためには、手ぶれ補正
群が色補正されていることが望ましい。そのためには、
手ぶれ補正群に少なくとも1枚の正レンズと少なくとも
1枚の負レンズとが含まれている必要がある。第1〜第
3の実施の形態では、手ぶれ補正群として使用される第
3群(Gr3)が正レンズと負レンズの各1枚で構成されて
おり、第4の実施の形態では、手ぶれ補正群として使用
される第3群(Gr3)の前群(Gr3)が正レンズと負レンズの
各1枚で構成されている。このため、手ぶれ補正時の軸
上横色収差を補正することができ、しかも、色補正に必
要な最少枚数のレンズで手ぶれ補正群が構成されている
ため、レンズ重量を最小限に抑えることができて、手ぶ
れ補正駆動系にかかる負担が小さくなるというメリット
もある。
When the lens is decentered during camera shake, axial lateral chromatic aberration occurs. To suppress this, it is desirable that the camera shake correction group be color-corrected. for that purpose,
It is necessary that the camera shake correction group includes at least one positive lens and at least one negative lens. In the first to third embodiments, the third group (Gr3) used as a camera shake correction group is constituted by one each of a positive lens and a negative lens. In the fourth embodiment, the camera shake correction is performed. The front group (Gr3) of the third group (Gr3) used as a group includes one positive lens and one negative lens. For this reason, axial lateral chromatic aberration during camera shake correction can be corrected, and since the camera shake correction group is composed of the minimum number of lenses required for color correction, lens weight can be minimized. Therefore, there is also an advantage that the load on the camera shake correction drive system is reduced.

【0029】上記した観点から、前記第1のズーム構成
においては、第3群(Gr3)が少なくとも1枚の正レンズ
と少なくとも1枚の負レンズとを有することが望まし
く、更に次の条件式(6)を満足することが望ましい。ま
た、前記第2のズーム構成においては、前群(GrA)が少
なくとも1枚の正レンズと少なくとも1枚の負レンズと
を有することが望ましく、更に次の条件式(6)を満足す
ることが望ましい。条件式(6)を満たすことによって、
手ぶれ補正時の軸上横色収差の発生を抑えることができ
る。 νp>νn …(6) ただし、 νp:手ぶれ補正群中の正レンズのアッベ数、 νn:手ぶれ補正群中の負レンズのアッベ数 である。
From the above viewpoint, in the first zoom configuration, it is desirable that the third unit (Gr3) has at least one positive lens and at least one negative lens, and further, the following conditional expression (Gr3). It is desirable to satisfy 6). In the second zoom configuration, it is desirable that the front group (GrA) has at least one positive lens and at least one negative lens, and further satisfies the following conditional expression (6). desirable. By satisfying conditional expression (6),
The occurrence of axial lateral chromatic aberration during camera shake correction can be suppressed. νp> νn (6) where νp is the Abbe number of the positive lens in the camera shake correction group, and νn is the Abbe number of the negative lens in the camera shake correction group.

【0030】第1〜第4の実施の形態のように手ぶれ補
正群を最少枚数で構成した場合、手ぶれ補正時に発生す
る収差を除去するために、手ぶれ補正群に非球面を設け
ることが望ましい。手ぶれ補正群を2枚のレンズで構成
することによって、手ぶれ補正群の構成枚数を最少化す
ることができるが、レンズ2枚の構成では設計的自由度
が不足するため、良好な手ぶれ補正時の性能を得ること
が困難になる。手ぶれ補正群に非球面を付加すると、更
なる設計的自由度を付加することができるので、良好な
手ぶれ補正時の光学性能を得ることができる。この手ぶ
れ補正群に付加する非球面は、以下の条件式(7)を満足
することが望ましい。また、手ぶれ補正群に付加する非
球面の最大有効半径をymaxとするとき、0.5ymax≦y≦1.
0ymaxのすべての光軸垂直方向高さyに対して、その非球
面が以下の条件式(7)を満足することが更に望ましい。
When the camera shake correction group is composed of a minimum number of images as in the first to fourth embodiments, it is desirable to provide an aspherical surface in the camera shake correction group in order to remove aberrations generated at the time of camera shake correction. By configuring the camera shake correction group with two lenses, the number of components of the camera shake correction group can be minimized. However, the design with two lenses lacks the degree of freedom in design. It becomes difficult to obtain performance. By adding an aspherical surface to the camera shake correction group, it is possible to add a further degree of freedom in design, so that good optical performance during camera shake correction can be obtained. It is desirable that the aspherical surface added to the camera shake correction group satisfies the following conditional expression (7). When the maximum effective radius of the aspheric surface added to the camera shake correction group is ymax, 0.5ymax ≦ y ≦ 1.
More preferably, the aspheric surface satisfies the following conditional expression (7) for all heights y in the optical axis vertical direction of 0ymax.

【0031】 -10<(|x|-|x0|)/{C0・(N'-N)}<-0.05 …(7) ただし、 |x|-|x0|:非球面とその基準曲率を有する参照球面との
光軸方向の差、 C0 :参照球面の曲率(すなわち非球面の基準曲
率)、 N' :非球面の像側媒質の屈折率、 N :非球面の物体側媒質の屈折率 である。
-10 <(| x | − | x0 |) / {C0 · (N′−N)} <− 0.05 (7) where | x | − | x0 |: the aspherical surface and its reference curvature Difference in the optical axis direction from the reference sphere, C0: curvature of the reference sphere (that is, reference curvature of the aspheric surface), N ': refractive index of the aspherical image-side medium, N: refractive index of the aspherical object-side medium It is.

【0032】条件式(7)において、xは非球面の面形状、
x0は参照球面の面形状を表し、具体的には以下の式(A
S),(RE)でそれぞれ表される。 x={C0・y2}/{1+√(1-ε・C02・y2)}+Σ(Ai・yi) …(AS) x0={C0・y2}/{1+√(1-C02・y2)} …(RE) ただし、式(AS)及び(RE)中、 y:光軸に垂直な方向の高さ、 ε:2次曲面パラメータ、 Ai:i次の非球面係数 である。
In the conditional expression (7), x is an aspheric surface shape;
x0 represents the surface shape of the reference spherical surface, and specifically, the following formula (A
S) and (RE). x = {C0 · y 2 } / {1 + √ (1-ε · C0 2 · y 2 )} + Σ (Ai · y i )… (AS) x0 = {C0 · y 2 } / {1 + √ (1-C0 2 · y 2 )} (RE) where, in equations (AS) and (RE), y: height in the direction perpendicular to the optical axis, ε: quadratic surface parameter, Ai: i-th order The aspheric coefficient is

【0033】条件式(7)は、手ぶれ補正群が有する非球
面の効果の程度を表している。条件式(7)の上限を上回
ると、手ぶれ補正群の非球面の効果がほとんど表れない
ことになる。つまり、手ぶれ補正群の非球面によって手
ぶれ補正時の収差の発生を抑えることが困難になる。条
件式(7)の下限を下回ると、手ぶれ補正群の非球面の効
果が強くなりすぎてしまい、そこで発生する非常に大き
な収差を他の要素で抑えることが困難になる。したがっ
て、満足な光学性能を得ることができなくなる。
Conditional expression (7) represents the degree of the effect of the aspherical surface of the camera shake correction group. When the value exceeds the upper limit of the conditional expression (7), the effect of the aspheric surface of the camera shake correction group hardly appears. That is, it is difficult to suppress the occurrence of aberrations at the time of camera shake correction due to the aspherical surface of the camera shake correction group. When the value goes below the lower limit of conditional expression (7), the effect of the aspheric surface of the camera shake correction group becomes too strong, and it becomes difficult to suppress a very large aberration generated there by another factor. Therefore, satisfactory optical performance cannot be obtained.

【0034】手ぶれ補正のためにレンズ群を光軸に対し
て垂直に移動させると、通常状態(偏心前状態)では光線
の通らない所を、手ぶれ補正状態(偏心後状態)では光線
が通ることになる。この光線が有害光線となって、結像
性能を低下させてしまうおそれがある。そのため、手ぶ
れ補正群の物体側、手ぶれ補正群中、又は手ぶれ補正群
の像側に固定絞りを設けることによって、手ぶれ補正時
の有害光線を遮断するのが望ましく、これにより、手ぶ
れ補正状態においても良好な結像性能を得ることができ
る。
When the lens group is moved perpendicularly to the optical axis for camera shake correction, light rays pass through where no light beam passes in a normal state (before decentering), and light rays pass in a camera shake correction state (after decentering). become. This light beam may become harmful light beam and degrade imaging performance. Therefore, it is desirable to block a harmful ray at the time of camera shake correction by providing a fixed stop on the object side of the camera shake correction group, in the camera shake correction group, or on the image side of the camera shake correction group, thereby also in the camera shake correction state. Good imaging performance can be obtained.

【0035】なお、第1〜第4の実施の形態を構成して
いる各レンズ群は、入射光線を屈折により偏向させる屈
折型レンズのみで構成されているが、これに限らない。
例えば、回折により入射光線を偏向させる回折型レン
ズ,回折作用と屈折作用との組み合わせで入射光線を偏
向させる屈折・回折ハイブリッド型レンズ等で、各レン
ズ群を構成してもよい。
Each of the lens groups constituting the first to fourth embodiments is constituted only by a refraction type lens which deflects an incident light beam by refraction, but is not limited to this.
For example, each lens group may be composed of a diffractive lens that deflects an incident light beam by diffraction, a refraction / diffraction hybrid lens that deflects an incident light beam by a combination of a diffraction action and a refraction action, or the like.

【0036】[0036]

【実施例】以下、本発明に係る手ぶれ補正機能を有する
ズームレンズを、コンストラクションデータ,収差図等
を挙げて、更に具体的に示す。ここで例として挙げる実
施例1〜4は、前述した第1〜第4の実施の形態にそれ
ぞれ対応しており、第1〜第4の実施の形態を表す図1
〜図4は、実施例1〜4の広角端[W]でのレンズ構成を
それぞれ示している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A zoom lens having a camera shake correction function according to the present invention will be described more specifically with reference to construction data, aberration diagrams, and the like. Examples 1 to 4 given here as examples correspond to the first to fourth embodiments described above, respectively, and FIG. 1 showing the first to fourth embodiments.
4 to 4 show the lens configurations at the wide-angle end [W] of Examples 1 to 4, respectively.

【0037】各実施例のコンストラクションデータにお
いて、ri(i=1,2,3,...)は物体側から数えてi番目の面の
曲率半径、di(i=1,2,3,...)は物体側から数えてi番目の
軸上面間隔(ここでは偏心前状態について示す。)であ
り、ズーミングによって変化する軸上面間隔(可変間隔)
は、広角端[W]〜中間焦点距離状態[M]〜望遠端[T]で
の各群間の実際の面間隔である。また、Ni(i=1,2,
3,...),νi(i=1,2,3,...)は、物体側から数えてi番目
のレンズのd線に対する屈折率(Nd),アッベ数(νd)
である。各焦点距離状態[W],[M],[T]に対応する全
系の焦点距離f及びFナンバーFNOを、コンストラクシ
ョンデータと併せて示す。
In the construction data of each embodiment, ri (i = 1, 2, 3,...) Is the radius of curvature of the i-th surface counted from the object side, and di (i = 1, 2, 3,. ..) is the i-th shaft upper surface distance counted from the object side (shown here before the eccentricity), which is changed by zooming (variable space).
Is the actual surface distance between the groups at the wide-angle end [W] to the intermediate focal length state [M] to the telephoto end [T]. Also, Ni (i = 1,2,
3, ...) and νi (i = 1,2,3, ...) are the refractive index (Nd) and Abbe number (νd) for the d-line of the i-th lens counted from the object side.
It is. The focal length f and F number FNO of the entire system corresponding to each focal length state [W], [M], [T] are shown together with the construction data.

【0038】また、曲率半径riに*印が付された面は、
非球面で構成された面であることを示し、非球面の面形
状を表わす前記式(AS)で定義されるものとする。非球面
データ及び非球面に関する条件式(7)の対応値{ただし、
ymax:非球面の光軸に垂直方向の最大高さ(最大有効径)
である。}を、各実施例のコンストラクションデータと
併せて示し、表1〜表4に、各実施例についての条件式
の対応データ及び関連データを示す。
Also, the surface marked with * for the radius of curvature ri is:
It indicates that the surface is constituted by an aspherical surface, and is defined by the above-mentioned formula (AS) representing the surface shape of the aspherical surface. Aspherical surface data and corresponding value of conditional expression (7) regarding aspherical surface {However,
ymax: Maximum height in the direction perpendicular to the optical axis of the aspherical surface (maximum effective diameter)
It is. } Is shown together with the construction data of each embodiment, and Tables 1 to 4 show corresponding data of conditional expressions and related data of each embodiment.

【0039】《実施例1(正・負・正・正・負)》 Example 1 (positive / negative / positive / positive / negative)

【0040】[第5面(r5)の非球面データ] ε= 1.0000 A4=-0.23226926×10-5 A6= 0.24289203×10-5 A8=-0.19328866×10-6 A10= 0.55259730×10-8 A12=-0.59688894×10-10 [Aspherical surface data of the fifth surface (r5)] ε = 1.0000 A4 = -0.23226926 × 10 -5 A6 = 0.24289203 × 10 -5 A8 = -0.19328866 × 10 -6 A10 = 0.55259730 × 10 -8 A12 = -0.59688894 × 10 -10

【0041】[第12面(r12)の非球面データ] ε= 1.0000 A4=-0.14966353×10-3 A6= 0.28637080×10-5 A8= 0.15408591×10-6 A10=-0.14391373×10-7 A12= 0.36520585×10-9 [Aspherical surface data of twelfth surface (r12)] ε = 1.0000 A4 = -0.14966353 × 10 -3 A6 = 0.28637080 × 10 -5 A8 = 0.15408591 × 10 -6 A10 = -0.14391373 × 10 -7 A12 = 0.36520585 × 10 -9

【0042】[第13面(r13)の非球面データ] ε= 1.0000 A4= 0.23828815×10-3 A6= 0.40913268×10-5 A8= 0.54738265×10-6 A10=-0.25318420×10-7 A12= 0.68885480×10-9 [Aspherical surface data of the thirteenth surface (r13)] ε = 1.0000 A4 = 0.23828815 × 10 -3 A6 = 0.40913268 × 10 -5 A8 = 0.54738265 × 10 -6 A10 = -0.25318420 × 10 -7 A12 = 0.68885480 × 10 -9

【0043】[第17面(r17)の非球面データ] ε= 1.0000 A4= 0.88752120×10-4 A6=-0.21184436×10-5 A8=-0.17095904×10-7 A10= 0.22562399×10-9 A12=-0.15753558×10-11 [Aspherical surface data of the 17th surface (r17)] ε = 1.0000 A4 = 0.88752120 × 10 -4 A6 = -0.21184436 × 10 -5 A8 = -0.17095904 × 10 -7 A10 = 0.22562399 × 10 -9 A12 = -0.15753558 × 10 -11

【0044】[第18面(r18)の非球面データ] ε= 1.0000 A4=-0.16495778×10-4 A6=-0.27860747×10-6 A8=-0.97662853×10-7 A10= 0.14249911×10-8 A12=-0.11663813×10-10 [Aspherical surface data of the eighteenth surface (r18)] ε = 1.0000 A4 = -0.16495778 × 10 -4 A6 = -0.27860747 × 10 -6 A8 = -0.97662853 × 10 -7 A10 = 0.14249911 × 10 -8 A12 = -0.11663813 × 10 -10

【0045】 [第12面(r12)の条件式(7)の対応値] y=2.150=0.50ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.22005 y=2.580=0.60ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.43224 y=3.010=0.70ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.75052 y=3.440=0.80ymax … (|x|-|x0|)/{C0・(N'-N)}=-1.18992 y=3.870=0.90ymax … (|x|-|x0|)/{C0・(N'-N)}=-1.75645 y=4.300=1.00ymax … (|x|-|x0|)/{C0・(N'-N)}=-2.41874[Corresponding value of conditional expression (7) on twelfth surface (r12)] y = 2.150 = 0.50ymax (| x |-| x0 |) / {C0 · (N′-N)} = − 0.22005 y = 2.580 = 0.60ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-0.43224 y = 3.010 = 0.70ymax… (| x |-| x0 |) / {C0 ・(N'-N)} =-0.75052 y = 3.440 = 0.80ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-1.18992 y = 3.870 = 0.90ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-1.75645 y = 4.300 = 1.00ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-2.41874

【0046】 [第13面(r13)の条件式(7)の対応値] y=2.100=0.50ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.09598 y=2.520=0.60ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.21098 y=2.940=0.70ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.42016 y=3.360=0.80ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.78075 y=3.780=0.90ymax … (|x|-|x0|)/{C0・(N'-N)}=-1.38119 y=4.200=1.00ymax … (|x|-|x0|)/{C0・(N'-N)}=-2.36679[Corresponding value of conditional expression (7) on the thirteenth surface (r13)] y = 2.100 = 0.50ymax ... (| x |-| x0 |) / {C0 · (N′-N)} = − 0.09598 y = 2.520 = 0.60ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-0.21098 y = 2.940 = 0.70ymax… (| x |-| x0 |) / {C0 ・(N'-N)} =-0.42016 y = 3.360 = 0.80ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-0.78075 y = 3.780 = 0.90ymax… (| x |-| x0 |) / {C0 • (N'-N)} =-1.38119 y = 4.200 = 1.00ymax… (| x |-| x0 |) / {C0 • (N'-N)} =-2.36679

【0047】《実施例2(正・負・正・正・負)》 << Embodiment 2 (positive / negative / positive / positive / negative) >>

【0048】[第5面(r5)の非球面データ] ε= 1.0000 A4= 0.10111289×10-3 A6= 0.21505482×10-7 A8=-0.87414283×10-7 A10= 0.21612691×10-8 A12=-0.13584310×10-10 [Aspherical surface data of fifth surface (r5)] ε = 1.0000 A4 = 0.10111289 × 10 -3 A6 = 0.21505482 × 10 -7 A8 = -0.87414283 × 10 -7 A10 = 0.21612691 × 10 -8 A12 =- 0.13584310 × 10 -10

【0049】[第12面(r12)の非球面データ] ε= 1.0000 A4=-0.14403947×10-3 A6= 0.69288421×10-5 A8= 0.20236022×10-6 A10=-0.53419421×10-8 A12=-0.29533142×10−9 [Aspherical surface data of twelfth surface (r12)] ε = 1.0000 A4 = -0.14403947 × 10 -3 A6 = 0.69288421 × 10 -5 A8 = 0.20236022 × 10 -6 A10 = -0.53419421 × 10 -8 A12 = -0.29533142 × 10 -9

【0050】[第13面(r13)の非球面データ] ε= 1.0000 A4= 0.44525941×10-3 A6= 0.13592128×10-4 A8= 0.40128381×10-6 A10= 0.16002588×10-7 A12=-0.65528297×10-10 [Aspherical surface data of the thirteenth surface (r13)] ε = 1.0000 A4 = 0.44525941 × 10 -3 A6 = 0.13592128 × 10 -4 A8 = 0.40128381 × 10 -6 A10 = 0.16002588 × 10 -7 A12 = -0.65528297 × 10 -10

【0051】[第17面(r17)の非球面データ] ε= 1.0000 A4= 0.84835506×10-4 A6=-0.57112122×10-5 A8= 0.76284527×10-8 A10= 0.10258861×10-8 A12=-0.54191954×10-11 [Aspherical surface data of the 17th surface (r17)] ε = 1.0000 A4 = 0.84835506 × 10 -4 A6 = -0.57112122 × 10 -5 A8 = 0.76284527 × 10 -8 A10 = 0.10258861 × 10 -8 A12 =- 0.54191954 × 10 -11

【0052】[第18面(r18)の非球面データ] ε= 1.0000 A4=-0.22838633×10-4 A6=-0.51555924×10-5 A8= 0.41095423×10-7 A10=-0.88630934×10-9 A12= 0.80173768×10-11 [Aspherical surface data of the eighteenth surface (r18)] ε = 1.0000 A4 = -0.22838633 × 10 -4 A6 = -0.51555924 × 10 -5 A8 = 0.41095423 × 10 -7 A10 = -0.88630934 × 10 -9 A12 = 0.80173768 × 10 -11

【0053】 [第12面(r12)の条件式(7)の対応値] y=2.150=0.50ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.09096 y=2.580=0.60ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.15860 y=3.010=0.70ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.22774 y=3.440=0.80ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.26603 y=3.870=0.90ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.24395 y=4.300=1.00ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.20188[Corresponding value of conditional expression (7) on twelfth surface (r12)] y = 2.150 = 0.50ymax (| x |-| x0 |) / {C0 · (N′-N)} = − 0.09096 y = 2.580 = 0.60ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-0.15860 y = 3.010 = 0.70ymax… (| x |-| x0 |) / {C0 ・(N'-N)} =-0.22774 y = 3.440 = 0.80ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-0.26603 y = 3.870 = 0.90ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-0.24395 y = 4.300 = 1.00ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-0.20188

【0054】 [第13面(r13)の条件式(7)の対応値] y=2.100=0.50ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.25192 y=2.520=0.60ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.56037 y=2.940=0.70ymax … (|x|-|x0|)/{C0・(N'-N)}=-1.13400 y=3.360=0.80ymax … (|x|-|x0|)/{C0・(N'-N)}=-2.15643 y=3.780=0.90ymax … (|x|-|x0|)/{C0・(N'-N)}=-3.93506 y=4.200=1.00ymax … (|x|-|x0|)/{C0・(N'-N)}=-6.98538[Corresponding value of conditional expression (7) on the thirteenth surface (r13)] y = 2.100 = 0.50ymax (| x | − | x0 |) / {C0 · (N′-N)} = − 0.25192 y = 2.520 = 0.60ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-0.56037 y = 2.940 = 0.70ymax… (| x |-| x0 |) / {C0 ・(N'-N)} =-1.13400 y = 3.360 = 0.80ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-2.15643 y = 3.780 = 0.90ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-3.93506 y = 4.200 = 1.00ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-6.98538

【0055】《実施例3(正・負・正・正・負)》 << Embodiment 3 (Positive / Negative / Positive / Positive / Negative) >>

【0056】[第5面(r5)の非球面データ] ε= 1.0000 A4= 0.44102260×10-4 A6= 0.13060845×10-5 A8=-0.12149621×10-6 A10= 0.31977675×10-8 A12=-0.30665015×10-10 [Aspherical surface data of fifth surface (r5)] ε = 1.0000 A4 = 0.44102 260 × 10 -4 A6 = 0.13060845 × 10 -5 A8 = -0.12149621 × 10 -6 A10 = 0.31977675 × 10 -8 A12 =- 0.30665015 × 10 -10

【0057】[第12面(r12)の非球面データ] ε= 1.0000 A4=-0.11014643×10-3 A6= 0.36957163×10-5 A8= 0.34919248×10-6 A10=-0.15077736×10-7 A12= 0.99586085×10-10 [Aspherical surface data of twelfth surface (r12)] ε = 1.0000 A4 = -0.11014643 × 10 -3 A6 = 0.36957163 × 10 -5 A8 = 0.34919248 × 10 -6 A10 = -0.15077736 × 10 -7 A12 = 0.99586085 × 10 -10

【0058】[第13面(r13)の非球面データ] ε= 1.0000 A4= 0.33602127×10-3 A6= 0.11652681×10-4 A8= 0.28498565×10-6 A10= 0.23550255×10-8 A12= 0.15881534×10-9 [Aspherical surface data of the thirteenth surface (r13)] ε = 1.0000 A4 = 0.33602127 × 10 -3 A6 = 0.11652681 × 10 -4 A8 = 0.28498565 × 10 -6 A10 = 0.23550 255 × 10 -8 A12 = 0.15881534 × 10 -9

【0059】[第17面(r17)の非球面データ] ε= 1.0000 A4=-0.12540073×10-4 A6=-0.38323764×10-5 A8= 0.48272704×10-8 A10= 0.18319485×10-10 A12= 0.27778381×10−11 [Aspherical surface data of the 17th surface (r17)] ε = 1.0000 A4 = -0.12540073 × 10 -4 A6 = -0.38323764 × 10 -5 A8 = 0.48272704 × 10 -8 A10 = 0.18319485 × 10 -10 A12 = 0.27778381 × 10 -11

【0060】[第18面(r18)の非球面データ] ε= 1.0000 A4=-0.11335230×10-3 A6=-0.36221525×10-5 A8= 0.16449921×10-8 A10=-0.33786813×10-9 A12= 0.98664015×10-12 [Aspherical surface data of the eighteenth surface (r18)] ε = 1.0000 A4 = -0.11335 230 × 10 -3 A6 = -0.36221525 × 10 -5 A8 = 0.16449921 × 10 -8 A10 = -0.33786813 × 10 -9 A12 = 0.98664015 × 10 -12

【0061】 [第12面(r12)の条件式(7)の対応値] y=2.150=0.50ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.10285 y=2.580=0.60ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.18211 y=3.010=0.70ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.26574 y=3.440=0.80ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.31398 y=3.870=0.90ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.27427 y=4.300=1.00ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.11538[Corresponding value of conditional expression (7) on twelfth surface (r12)] y = 2.150 = 0.50ymax (| x | − | x0 |) / {C0 · (N′-N)} = − 0.10285 y = 2.580 = 0.60ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-0.18211 y = 3.010 = 0.70ymax… (| x |-| x0 |) / {C0 ・(N'-N)} =-0.26574 y = 3.440 = 0.80ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-0.31398 y = 3.870 = 0.90ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-0.27427 y = 4.300 = 1.00ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-0.11538

【0062】 [第13面(r13)の条件式(7)の対応値] y=2.100=0.50ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.15236 y=2.520=0.60ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.33937 y=2.940=0.70ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.68539 y=3.360=0.80ymax … (|x|-|x0|)/{C0・(N'-N)}=-1.29477 y=3.780=0.90ymax … (|x|-|x0|)/{C0・(N'-N)}=-2.33561 y=4.200=1.00ymax … (|x|-|x0|)/{C0・(N'-N)}=-4.08289[Corresponding value of conditional expression (7) on the thirteenth surface (r13)] y = 2.100 = 0.50ymax ... (| x |-| x0 |) / {C0 · (N′-N)} = − 0.15236 y = 2.520 = 0.60ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-0.33937 y = 2.940 = 0.70ymax… (| x |-| x0 |) / {C0 ・(N'-N)} =-0.68539 y = 3.360 = 0.80ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-1.29477 y = 3.780 = 0.90ymax… (| x |-| x0 |) / {C0 • (N'-N)} =-2.33561 y = 4.200 = 1.00ymax… (| x |-| x0 |) / {C0 • (N'-N)} =-4.08289

【0063】《実施例4(正・負・正・負)》 Embodiment 4 (Positive / Negative / Positive / Negative)

【0064】[第5面(r5)の非球面データ] ε= 1.0000 A4=-0.56466397×10-5 A6= 0.23541041×10-5 A8=-0.18607380×10-6 A10= 0.51965024×10-8 A12=-0.54259401×10-10 [Aspherical surface data of fifth surface (r5)] ε = 1.0000 A4 = -0.56466397 × 10 -5 A6 = 0.23541041 × 10 -5 A8 = -0.18607380 × 10 -6 A10 = 0.51965024 × 10 -8 A12 = -0.54259401 × 10 -10

【0065】[第12面(r12)の非球面データ] ε= 1.0000 A4=-0.13681632×10-3 A6= 0.40347946×10-5 A8= 0.21406378×10-6 A10=-0.13217151×10-7 A12= 0.21490713×10-9 [Aspherical surface data of twelfth surface (r12)] ε = 1.0000 A4 = -0.13681632 × 10 -3 A6 = 0.40347946 × 10 -5 A8 = 0.21406378 × 10 -6 A10 = -0.13217151 × 10 -7 A12 = 0.21490713 × 10 -9

【0066】[第13面(r13)の非球面データ] ε= 1.0000 A4= 0.26667577×10-3 A6= 0.71599621×10-5 A8= 0.61486343×10-6 A10=-0.26183906×10-7 A12= 0.78268536×10-9 [Aspherical surface data of the thirteenth surface (r13)] ε = 1.0000 A4 = 0.26667577 × 10 -3 A6 = 0.71599621 × 10 -5 A8 = 0.61486343 × 10 -6 A10 = -0.26183906 × 10 -7 A12 = 0.78268536 × 10 -9

【0067】[第17面(r17)の非球面データ] ε= 1.0000 A4= 0.78470218×10-4 A6=-0.35112216×10-5 A8=-0.20703399×10-7 A10= 0.12008926×10-9 A12= 0.12261269×10-11 [Aspherical surface data of the 17th surface (r17)] ε = 1.0000 A4 = 0.78470218 × 10 -4 A6 = -0.35112216 × 10 -5 A8 = -0.20703399 × 10 -7 A10 = 0.12008926 × 10 -9 A12 = 0.12261269 × 10 -11

【0068】[第18面(r18)の非球面データ] ε= 1.0000 A4= 0.36409028×10-5 A6=-0.19544500×10-5 A8=-0.11133922×10-6 A10= 0.15788545×10-8 A12=-0.11258060×10-10 [Aspherical surface data of the eighteenth surface (r18)] ε = 1.0000 A4 = 0.36409028 × 10 -5 A6 = -0.19544500 × 10 -5 A8 = -0.11133922 × 10 -6 A10 = 0.15788545 × 10 -8 A12 = -0.11258060 × 10 -10

【0069】 [第12面(r12)の条件式(7)の対応値] y=2.150=0.50ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.23764 y=2.580=0.60ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.44620 y=3.010=0.70ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.72421 y=3.440=0.80ymax … (|x|-|x0|)/{C0・(N'-N)}=-1.04163 y=3.870=0.90ymax … (|x|-|x0|)/{C0・(N'-N)}=-1.34642 y=4.300=1.00ymax … (|x|−|x0|)/{C0・(N’−N)}=−
1.57190
[Corresponding value of conditional expression (7) on twelfth surface (r12)] y = 2.150 = 0.50ymax ... (| x |-| x0 |) / {C0 · (N′-N)} = − 0.23764 y = 2.580 = 0.60ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-0.44620 y = 3.010 = 0.70ymax… (| x |-| x0 |) / {C0 ・(N'-N)} =-0.72421 y = 3.440 = 0.80ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-1.04163 y = 3.870 = 0.90ymax… (| x |-| x0 |) / {C0. (N'-N)} =-1.34642 y = 4.300 = 1.00ymax (| x |-| x0 |) / {C0. (N'-N)} =-
1.57190

【0070】 [第13面(r13)の条件式(7)の対応値] y=2.100=0.50ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.10681 y=2.520=0.60ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.23819 y=2.940=0.70ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.48182 y=3.360=0.80ymax … (|x|-|x0|)/{C0・(N'-N)}=-0.91042 y=3.780=0.90ymax … (|x|-|x0|)/{C0・(N'-N)}=-1.63959 y=4.200=1.00ymax … (|x|-|x0|)/{C0・(N'-N)}=-2.86276[Corresponding value of conditional expression (7) on the thirteenth surface (r13)] y = 2.100 = 0.50ymax (| x | − | x0 |) / {C0 · (N′−N)} = − 0.10681 y = 2.520 = 0.60ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-0.23819 y = 2.940 = 0.70ymax… (| x |-| x0 |) / {C0 ・(N'-N)} =-0.48182 y = 3.360 = 0.80ymax… (| x |-| x0 |) / {C0 ・ (N'-N)} =-0.91042 y = 3.780 = 0.90ymax… (| x |-| x0 |) / {C0 • (N'-N)} =-1.63959 y = 4.200 = 1.00ymax… (| x |-| x0 |) / {C0 • (N'-N)} =-2.86276

【0071】[0071]

【表1】 [Table 1]

【0072】[0072]

【表2】 [Table 2]

【0073】[0073]

【表3】 [Table 3]

【0074】[0074]

【表4】 [Table 4]

【0075】図5〜図12に、各実施例の偏心前(通常
状態)の収差性能を示す。図5,図7,図9,図11
は、実施例1〜実施例4の偏心前(通常状態),無限遠撮
影状態での縦収差図であり、図6,図8,図10,図1
2は実施例1〜実施例4の偏心前,近接撮影状態(撮影
距離50cm)での縦収差図である。図5〜図12中、
[W]は広角端,[M]は中間焦点距離状態(ミドル),[T]
は望遠端における諸収差(左から順に、球面収差等,非
点収差,歪曲;Y':像高)を示しており、実線(d)はd線
に対する収差、破線(SC)は正弦条件を表しており、破
線(DM)と実線(DS)はメリディオナル面とサジタル面
でのd線に対する非点収差をそれぞれ表わしている。
FIGS. 5 to 12 show the aberration performance before decentering (normal state) of each embodiment. FIGS. 5, 7, 9, and 11
FIGS. 6, 8, 10, and 1 are longitudinal aberration diagrams of Examples 1 to 4 before decentering (normal state) and in an infinity shooting state.
2 is a longitudinal aberration diagram of Examples 1 to 4 before decentering and in a close-up shooting state (a shooting distance of 50 cm). 5 to 12,
[W] is the wide-angle end, [M] is the intermediate focal length state (middle), [T]
Indicates various aberrations at the telephoto end (in order from the left, spherical aberration and the like, astigmatism, distortion; Y ′: image height), the solid line (d) indicates the aberration with respect to the d-line, and the broken line (SC) indicates the sine condition. The dashed line (DM) and the solid line (DS) represent astigmatism with respect to the d-line on the meridional surface and the sagittal surface, respectively.

【0076】図13〜図24に、各実施例の偏心前(通
常状態)及び偏心後(手ぶれ補正状態)の収差性能を示
す。図13〜図24は、各実施例の偏心前後,無限遠撮
影状態,メリディオナル面での横収差図であり、図13
〜図15は実施例1、図16〜図18は実施例2、図1
9〜図21は実施例3、図22〜図24は実施例4にそ
れぞれ対応しており、図13,図16,図19及び図2
2は広角端[W]、図14,図17,図20及び図23
は中間焦点距離状態(ミドル)[M]、図15,図18,図
21及び図24は望遠端[T]にそれぞれ対応している。
また、図13〜図24中、[A]は0.7度の手ぶれ補正
状態{手ぶれ補正群の手ぶれ補正角θ=0.7°(=0.012217
3rad)の補正状態}における像高Y'=+12,0,-12での横収差
図であり、[B]は通常状態における像高Y'=+12,0での横
収差図である。
FIGS. 13 to 24 show the aberration performance before eccentricity (normal state) and after eccentricity (camera shake correction state) of each embodiment. 13 to 24 are lateral aberration diagrams before and after eccentricity, in infinity shooting state, and on the meridional surface in each embodiment.
15 to 15 show the first embodiment, and FIGS. 16 to 18 show the second embodiment, FIG.
FIGS. 9 to 21 correspond to the third embodiment, and FIGS. 22 to 24 correspond to the fourth embodiment, respectively.
2 is the wide-angle end [W], FIG. 14, FIG. 17, FIG. 20 and FIG.
Indicates an intermediate focal length state (middle) [M], and FIGS. 15, 18, 21 and 24 respectively correspond to the telephoto end [T].
13 to 24, [A] indicates a camera shake correction state of 0.7 degrees {the camera shake correction angle θ of the camera shake correction group θ = 0.7 ° (= 0.012217).
FIG. 3B is a lateral aberration diagram at an image height Y ′ = + 12, 0, -12 in a correction state of 3 rad), and [B] is a lateral aberration diagram at an image height Y ′ = + 12, 0 in a normal state. .

【0077】[0077]

【発明の効果】以上説明したように本発明によれば、手
ぶれ補正駆動系への負担が小さく、通常状態だけでなく
大きな手ぶれが発生したときの手ぶれ補正状態において
も、十分な光学性能が得られるコンパクトな手ぶれ補正
機能を有するズームレンズを実現することができる。
As described above, according to the present invention, a sufficient load is not imposed on the camera shake correction drive system, and sufficient optical performance can be obtained not only in the normal state but also in the camera shake correction state when a large camera shake occurs. A compact zoom lens having a compact camera shake correction function can be realized.

【図面の簡単な説明】[Brief description of the drawings]

【図1】第1の実施の形態(実施例1)のレンズ構成図。FIG. 1 is a lens configuration diagram of a first embodiment (Example 1).

【図2】第2の実施の形態(実施例2)のレンズ構成図。FIG. 2 is a lens configuration diagram of a second embodiment (Example 2).

【図3】第3の実施の形態(実施例3)のレンズ構成図。FIG. 3 is a lens configuration diagram of a third embodiment (Example 3).

【図4】第4の実施の形態(実施例4)のレンズ構成図。FIG. 4 is a lens configuration diagram of a fourth embodiment (Example 4).

【図5】実施例1の偏心前,無限遠撮影状態での縦収差
図。
FIG. 5 is a longitudinal aberration diagram of Example 1 in an infinity shooting state before decentering.

【図6】実施例1の偏心前,近接撮影状態(撮影距離5
0cm)での縦収差図。
FIG. 6 shows a close-up photographing state (photographing distance 5) before eccentricity in the first embodiment.
0 cm).

【図7】実施例2の偏心前,無限遠撮影状態での縦収差
図。
FIG. 7 is a longitudinal aberration diagram of Embodiment 2 in an infinity shooting state before decentering.

【図8】実施例2の偏心前,近接撮影状態(撮影距離5
0cm)での縦収差図。
FIG. 8 shows a close-up photographing state (with a photographing distance of 5 before eccentricity in Example 2).
0 cm).

【図9】実施例3の偏心前,無限遠撮影状態での縦収差
図。
FIG. 9 is a longitudinal aberration diagram of Example 3 in an infinity shooting state before decentering.

【図10】実施例3の偏心前,近接撮影状態(撮影距離
50cm)での縦収差図。
FIG. 10 is a longitudinal aberration diagram in a close-up shooting state (a shooting distance of 50 cm) before decentering according to the third embodiment.

【図11】実施例4の偏心前,無限遠撮影状態での縦収
差図。
FIG. 11 is a longitudinal aberration diagram of Example 4 in an infinity shooting state before decentering.

【図12】実施例4の偏心前,近接撮影状態(撮影距離
50cm)での縦収差図。
FIG. 12 is a longitudinal aberration diagram of Example 4 in a close-up shooting state (a shooting distance of 50 cm) before decentering.

【図13】実施例1の偏心前後,広角端,無限遠撮影状
態でのメリディオナル横収差図。
FIG. 13 is a meridional lateral aberration diagram before and after decentering, at a wide-angle end, and at infinity, according to the first embodiment.

【図14】実施例1の偏心前後,ミドル,無限遠撮影状
態でのメリディオナル横収差図。
FIG. 14 is a meridional lateral aberration diagram before and after eccentricity, middle, and infinity in Example 1;

【図15】実施例1の偏心前後,望遠端,無限遠撮影状
態でのメリディオナル横収差図。
FIG. 15 is a meridional lateral aberration diagram before and after eccentricity, at a telephoto end, and at infinity in Example 1;

【図16】実施例2の偏心前後,広角端,無限遠撮影状
態でのメリディオナル横収差図。
FIG. 16 is a meridional lateral aberration diagram before and after decentering, at the wide-angle end, and at infinity in Example 2;

【図17】実施例2の偏心前後,ミドル,無限遠撮影状
態でのメリディオナル横収差図。
FIG. 17 is a meridional lateral aberration diagram before and after decentering, middle, and infinity photographing in Example 2.

【図18】実施例2の偏心前後,望遠端,無限遠撮影状
態でのメリディオナル横収差図。
FIG. 18 is a meridional lateral aberration diagram before and after eccentricity, at a telephoto end, and at infinity in Example 2;

【図19】実施例3の偏心前後,広角端,無限遠撮影状
態でのメリディオナル横収差図。
FIG. 19 is a meridional lateral aberration diagram before and after decentering, at a wide-angle end, and at infinity in Example 3;

【図20】実施例3の偏心前後,ミドル,無限遠撮影状
態でのメリディオナル横収差図。
FIG. 20 is a view showing meridional lateral aberrations before and after decentering, middle, and infinity photographing in Example 3;

【図21】実施例3の偏心前後,望遠端,無限遠撮影状
態でのメリディオナル横収差図。
FIG. 21 is a meridional lateral aberration diagram before and after decentering, at a telephoto end, and at infinity, according to a third embodiment.

【図22】実施例4の偏心前後,広角端,無限遠撮影状
態でのメリディオナル横収差図。
FIG. 22 is a view showing meridional lateral aberrations before and after decentering, at the wide-angle end, and at infinity in Example 4;

【図23】実施例4の偏心前後,ミドル,無限遠撮影状
態でのメリディオナル横収差図。
FIG. 23 is a view showing meridional lateral aberrations before and after eccentricity, middle, and infinity photographing in Example 4.

【図24】実施例4の偏心前後,望遠端,無限遠撮影状
態でのメリディオナル横収差図。
FIG. 24 is a meridional lateral aberration diagram before and after eccentricity, at a telephoto end, and at infinity in Example 4;

【符号の説明】[Explanation of symbols]

Gr1 …第1群 Gr2 …第2群 Gr3 …第3群 Gr4 …第4群 Gr5 …第5群 GrA …前群 GrB …後群 S …絞り Gr1 ... first group Gr2 ... second group Gr3 ... third group Gr4 ... fourth group Gr5 ... fifth group GrA ... front group GrB ... rear group S ... diaphragm

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 物体側から順に、正のパワーを有する第
1群と、負のパワーを有する第2群と、正のパワーを有
する第3群とを備え、かつ、最も像側に負のパワーを有
する最終群を備えたズームレンズであって、 前記第3群が少なくとも1枚の正レンズと少なくとも1
枚の負レンズとを有する手ぶれ補正群であり、この第3
群を光軸に対して垂直方向に偏心させることにより手ぶ
れ補正を行い、ズーミングにおける任意の位置で以下の
条件式(1)を満足し、かつ、以下の条件式(2)を満足する
ことを特徴とする手ぶれ補正機能を有するズームレン
ズ; 8<f/{βr×(1-βd)}<100 …(1) -0.8<flast/fw<-0.5 …(2) ただし、 f :全系の焦点距離、 βr :手ぶれ補正群よりも像側に位置する全レンズ群
の横倍率、 βd :手ぶれ補正群の横倍率、 flast:最終群の焦点距離、 fw :広角端での全系の焦点距離 である。
1. An image processing apparatus comprising: a first unit having a positive power, a second unit having a negative power, and a third unit having a positive power, in order from the object side. A zoom lens comprising a last group having power, wherein the third group includes at least one positive lens and at least one positive lens.
This is a camera shake correction group having three negative lenses.
Perform camera shake correction by decentering the group in the vertical direction with respect to the optical axis, and satisfy the following conditional expression (1) at any position in zooming and satisfy the following conditional expression (2). 8 <f / {βr × (1-βd)} <100 (1) -0.8 <flast / fw <-0.5 (2) where f is the entire system Focal length, βr: lateral magnification of all lens groups located closer to the image side than the camera shake correction group, βd: lateral magnification of camera shake correction group, flast: focal length of the last group, fw: focal length of the entire system at the wide-angle end It is.
【請求項2】 物体側から順に、正のパワーを有する第
1群と、負のパワーを有する第2群と、正のパワーを有
する第3群とを備え、かつ、最も像側に負のパワーを有
する最終群を備えたズームレンズであって、 前記第3群が物体側から順に前群と後群とから成り、前
記前群が少なくとも1枚の正レンズと少なくとも1枚の
負レンズとを有する手ぶれ補正群であり、この前群を光
軸に対して垂直方向に偏心させることにより手ぶれ補正
を行い、ズーミングにおける任意の位置で以下の条件式
(1)を満足し、かつ、以下の条件式(2)を満足することを
特徴とする手ぶれ補正機能を有するズームレンズ; 8<f/{βr×(1-βd)}<100 …(1) -0.8<flast/fw<-0.5 …(2) ただし、 f :全系の焦点距離、 βr :手ぶれ補正群よりも像側に位置する全レンズ群
の横倍率、 βd :手ぶれ補正群の横倍率、 flast:最終群の焦点距離、 fw :広角端での全系の焦点距離 である。
2. An image processing apparatus, comprising, in order from the object side, a first group having positive power, a second group having negative power, and a third group having positive power. A zoom lens including a final group having power, wherein the third group includes a front group and a rear group in order from the object side, and the front group includes at least one positive lens and at least one negative lens. The front group is decentered in the vertical direction with respect to the optical axis to perform camera shake correction, and the following conditional expression is set at an arbitrary position during zooming.
A zoom lens having a camera shake correction function, which satisfies (1) and the following conditional expression (2): 8 <f / {βr × (1-βd)} <100 (1) -0.8 <flast / fw <-0.5 (2) where, f: focal length of the whole system, βr: lateral magnification of all lens groups located on the image side of the camera shake correction group, βd: lateral of the camera shake correction group Magnification, flast: focal length of the last group, fw: focal length of the entire system at the wide-angle end.
【請求項3】 無限遠物体から近接物体へのフォーカシ
ングに際し、前記第2群を物体側に繰り出すことを特徴
とする請求項1又は請求項2記載の手ぶれ補正機能を有
するズームレンズ。
3. The zoom lens having a camera shake correction function according to claim 1, wherein the second lens unit is moved toward the object side when focusing from an object at infinity to a close object.
JP21367397A 1997-08-07 1997-08-07 Zoom lens having hand shake correcting function Pending JPH1152242A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP21367397A JPH1152242A (en) 1997-08-07 1997-08-07 Zoom lens having hand shake correcting function
US09/130,266 US6081390A (en) 1997-08-07 1998-08-06 Zoom lens system having camera shake compensating function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21367397A JPH1152242A (en) 1997-08-07 1997-08-07 Zoom lens having hand shake correcting function

Publications (1)

Publication Number Publication Date
JPH1152242A true JPH1152242A (en) 1999-02-26

Family

ID=16643082

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21367397A Pending JPH1152242A (en) 1997-08-07 1997-08-07 Zoom lens having hand shake correcting function

Country Status (1)

Country Link
JP (1) JPH1152242A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008032924A (en) * 2006-07-27 2008-02-14 Nikon Corp Zoom lens, image pickup device, zoom lens magnification change method, and zoom lens vibration-proofing method
US7483210B2 (en) 2005-06-10 2009-01-27 Samsung Electronics Co., Ltd. Zoom lens optical system
JP2009042699A (en) * 2007-08-13 2009-02-26 Nikon Corp Zoom lens, optical apparatus and image formation method using zoom lens
JP2011237832A (en) * 2011-08-25 2011-11-24 Nikon Corp Zoom lens and imaging device
JP2020122823A (en) * 2019-01-29 2020-08-13 株式会社タムロン Zoom lens and image capturing device
JP2020122822A (en) * 2019-01-29 2020-08-13 株式会社タムロン Zoom lens and image capturing device
JP2021081660A (en) * 2019-11-21 2021-05-27 キヤノン株式会社 Zoom lens and image capturing device having the same
WO2021153221A1 (en) * 2020-01-29 2021-08-05 株式会社ニコン Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7483210B2 (en) 2005-06-10 2009-01-27 Samsung Electronics Co., Ltd. Zoom lens optical system
JP2008032924A (en) * 2006-07-27 2008-02-14 Nikon Corp Zoom lens, image pickup device, zoom lens magnification change method, and zoom lens vibration-proofing method
JP2009042699A (en) * 2007-08-13 2009-02-26 Nikon Corp Zoom lens, optical apparatus and image formation method using zoom lens
US8411361B2 (en) 2007-08-13 2013-04-02 Nikon Corporation Zoom lens, and optical apparatus and method for forming an image of an object using the zoom lens
JP2011237832A (en) * 2011-08-25 2011-11-24 Nikon Corp Zoom lens and imaging device
JP2020122823A (en) * 2019-01-29 2020-08-13 株式会社タムロン Zoom lens and image capturing device
JP2020122822A (en) * 2019-01-29 2020-08-13 株式会社タムロン Zoom lens and image capturing device
JP2021081660A (en) * 2019-11-21 2021-05-27 キヤノン株式会社 Zoom lens and image capturing device having the same
WO2021153221A1 (en) * 2020-01-29 2021-08-05 株式会社ニコン Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
JPWO2021153221A1 (en) * 2020-01-29 2021-08-05
CN115023639A (en) * 2020-01-29 2022-09-06 株式会社尼康 Variable magnification optical system, optical apparatus, and method for manufacturing variable magnification optical system
CN115023639B (en) * 2020-01-29 2024-02-13 株式会社尼康 Variable magnification optical system and optical device

Similar Documents

Publication Publication Date Title
JP5064837B2 (en) Zoom lens with anti-vibration function
JP4138324B2 (en) Zoom lens and video camera using the same
KR102385167B1 (en) Zoom lens and image pickup apparatus including same
JP5292756B2 (en) Zoom lens and optical apparatus having the same
JP4630423B2 (en) Zoom lens and optical apparatus using the same
JP6292898B2 (en) Zoom lens and imaging apparatus having the same
JP3072815B2 (en) Variable power optical system
JP4789530B2 (en) Zoom lens and imaging apparatus having the same
JP2009086535A (en) Zoom lens and optical apparatus equipped with the same
JP2005128186A (en) Zoom lens and video camera and digital still camera using the lens
JPH11119092A (en) Inner focusing optical system provided with vibration-proof
JP2017078763A (en) Zoom lens and imaging device having the same
JP5448574B2 (en) Zoom lens and imaging apparatus having the same
JP4374853B2 (en) Anti-shake zoom lens
JP3919580B2 (en) Zoom lens and optical apparatus having the same
JPH1164728A (en) Zoom lens having camera shake correction function
JP4630424B2 (en) Zoom lens and optical apparatus having the same
JPH11258504A (en) Vibration proof zoom lens
JP4323584B2 (en) Variable magnification optical system with anti-vibration function
JP2001296476A (en) Zoom lens and optical equipment using the same
JP5361496B2 (en) Zoom lens and imaging apparatus having the same
JP4829445B2 (en) Zoom lens and optical apparatus having the same
JPH10161024A (en) Zoom lens having camera shake correcting function
JP4109854B2 (en) Zoom lens and optical apparatus having the same
JPH09218346A (en) Optical system