JP2547834B2 - Optical system with image deflection function - Google Patents

Optical system with image deflection function

Info

Publication number
JP2547834B2
JP2547834B2 JP63325557A JP32555788A JP2547834B2 JP 2547834 B2 JP2547834 B2 JP 2547834B2 JP 63325557 A JP63325557 A JP 63325557A JP 32555788 A JP32555788 A JP 32555788A JP 2547834 B2 JP2547834 B2 JP 2547834B2
Authority
JP
Japan
Prior art keywords
lens
group
image
lens group
optical system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP63325557A
Other languages
Japanese (ja)
Other versions
JPH02168223A (en
Inventor
望 北岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP63325557A priority Critical patent/JP2547834B2/en
Publication of JPH02168223A publication Critical patent/JPH02168223A/en
Priority to US07/701,326 priority patent/US5140462A/en
Application granted granted Critical
Publication of JP2547834B2 publication Critical patent/JP2547834B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/64Imaging systems using optical elements for stabilisation of the lateral and angular position of the image
    • G02B27/646Imaging systems using optical elements for stabilisation of the lateral and angular position of the image compensating for small deviations, e.g. due to vibration or shake
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B15/00Optical objectives with means for varying the magnification
    • G02B15/14Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective
    • G02B15/142Optical objectives with means for varying the magnification by axial movement of one or more lenses or groups of lenses relative to the image plane for continuously varying the equivalent focal length of the objective having two groups only

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は画像偏向手段を有した撮像系に関し、特にレ
ンズ系中にプリズム頂角を可変とする可変頂角プリズム
を設け、該可変頂角プリズムにより撮像画像を偏向させ
振動等による画像のブレを補正した写真用カメラやビデ
オカメラ等に好適な画像偏向手段を有した撮影系に関す
るものである。
Description: TECHNICAL FIELD The present invention relates to an image pickup system having an image deflecting means, and in particular, a variable apex angle prism for varying a prism apex angle is provided in a lens system, and the variable apex angle is provided. The present invention relates to a photographing system having image deflecting means suitable for a photographic camera, a video camera or the like, in which a captured image is deflected by a prism and image blurring due to vibration or the like is corrected.

〔従来の技術〕[Conventional technology]

進行中の車上等から撮影すると撮影系に振動が伝わ
り、撮影画像にブレが生じてくる。従来よりこのときの
画像のブレを光学系中に平行平面板や可変頂角プリズム
を配置して補正した画像偏向手段を有した撮影系が種々
と提案されている。
When shooting from an on-going vehicle or the like, vibrations are transmitted to the shooting system and the shot image is blurred. Conventionally, there have been proposed various photographing systems having an image deflecting unit which corrects the image blur at this time by disposing a plane parallel plate or a variable apex angle prism in an optical system.

例えば、可変頂角プリズムを利用して画像のブレを補
正した撮影系が特公昭56−21133号公報で提案されてい
る。同公報では2枚の平行平面ガラスの間に液体や透明
弾性体を封入し、2枚の平行平面板のなす角度を可変と
して画像のブレを補正している。
For example, Japanese Patent Publication No. Sho 56-21133 proposes an image pickup system in which image blurring is corrected by using a variable apex angle prism. In this publication, a liquid or a transparent elastic body is enclosed between two parallel plane glasses, and the blurring of the image is corrected by changing the angle formed by the two parallel plane plates.

この他、同公報では曲率を有する平凸レンズと平凹レ
ンズを球面間で摺動させることにより、相対する平面の
なす角度を可変にして画像のブレを補正した撮影系を提
案している。
In addition, the publication proposes a photographing system in which a plano-convex lens and a plano-concave lens having a curvature are slid between spherical surfaces to change the angle formed by the opposing planes to correct the blur of an image.

同公報に開示されている従来例では、レンズ系の中に
可変頂角プリズムが設けられているので可変頂角プリズ
ムの径を一般的に小さくできるという利点がある。
The conventional example disclosed in the publication has an advantage that the diameter of the variable vertical angle prism can be generally reduced because the variable vertical angle prism is provided in the lens system.

〔発明が解決しようとしている問題点〕[Problems that the invention is trying to solve]

しかし、上記従来例の様にレンズ系の内部に可変頂角
プリズムを設ける構成にすると像を偏向したとき、つま
り頂角を変化させた時に生じる偏心歪曲収差が大きくな
るという欠点がある。以下にその説明を行う。
However, when the variable apex prism is provided inside the lens system as in the above-mentioned conventional example, there is a drawback that decentering distortion that occurs when the image is deflected, that is, when the apex is changed, becomes large. The description will be given below.

第6図及び第7図は可変頂角プリズムの偏心歪曲収差
発生の様子を示す図である。
6 and 7 are views showing how decentering distortion occurs in the variable apex angle prism.

第6図(A)は可変頂角プリズムの2つの面が平行に
なっている基準状態を示し、光線0,a,bはそれぞれ画面
中心0′、軸外a′,b′に結像する光束の主光線を夫々
示す。第6図(B)及び第7図は可変頂角プリズムにA
の頂角が付いた時の主光線0,a,bの様子を示すものであ
る。画角をθとし、第2図がA傾いてAの頂角を有する
可変頂角プリズムにθの角度で入射する光線は、 θ=sin-1(sinθ/NP) (1) θ=θ+A (2) θ=sin-1(NP・sinθ)−A (3) の式で表わされる様に屈折して光軸となす角がθpで可
変頂角プリズムを射出する。ここでθは可変頂角プリ
ズムの第1面に於ける屈折角、θは第2面の入射角、
θ′はその射出角、θpは射出光線が光軸となす角度
である。尚、NPはプリズムの屈折率を示す。そして光軸
0に対してθpの角度を持つ主光線はy′=f・tanθ
pで表わされる像高に結像することになる。
FIG. 6A shows a reference state in which the two surfaces of the variable apex angle prism are parallel to each other, and the rays 0, a and b are imaged at the screen center 0'and off-axis a ', b', respectively. The principal rays of the luminous flux are shown respectively. Figures 6 (B) and 7 show the variable apex angle prism
It shows the states of chief rays 0, a, and b when the apex angle of is attached. Letting the angle of view be θ, a ray incident on the variable apex angle prism having an apex angle of A as shown in FIG. 2 is θ 1 = sin −1 (sin θ / N P ) (1) θ 2 = Θ 1 + A (2) θ P = sin −1 (N P · sin θ 2 ) −A (3) Refraction is performed and the angle formed with the optical axis is θp and the variable angle prism is emitted. . Where θ 1 is the refraction angle on the first surface of the variable apex prism, θ 2 is the incident angle on the second surface,
θ 2 ′ is the exit angle, and θp is the angle formed by the exit ray with the optical axis. Note that N P represents the refractive index of the prism. And the chief ray having an angle of θp with respect to the optical axis 0 is y ′ = f · tan θ
The image is formed at the image height represented by p.

従って、もし可変頂角プリズムの第2面に於ける主光
線の偏向角δ(δ=θp−θ)が全て同一であれば像面
上で像は元の形を保ったまま偏向されるが、実際には可
変頂角プリズムへの入射角が異なると各主光線の偏向角
も異なり、第6図(B)の様に像面上の各点0′,a′,
b′は夫々異なった動きをする。このことを定量的に示
すと第7図の可変頂角プリズムに於いて基準状態から頂
角が微小角dA変化した時の射出角の変化量dθpとの比
すなわち敏感度を可変頂角プリズムへの入射角θの関数
で表わすと、 と示すことができる。この式は入射角θの絶対値が大き
くなる程敏感度dθP/dAは正の値で大きくなることを示
している。
Therefore, if the deflection angles δ (δ = θp−θ) of the chief rays on the second surface of the variable apex angle prism are all the same, the image is deflected on the image plane while maintaining the original shape. Actually, when the incident angle to the variable apex angle prism is different, the deflection angle of each principal ray is also different, and each point 0 ', a', on the image plane as shown in FIG.
b'behaves differently. To quantitatively show this, in the variable apex prism of FIG. 7, the ratio with respect to the change amount dθp of the exit angle when the apex angle changes from the reference state by a minute angle dA, that is, the sensitivity is set to the variable apex prism. When expressed as a function of the incident angle θ of Can be shown as This expression shows that the sensitivity dθ P / dA increases with a positive value as the absolute value of the incident angle θ increases.

そして第7図に示す通り、軸上光線0はプリズム面へ
の入射角が小さいので、頂角A、つまりプリズム第2面
への入射角が角度Aに変化したときの偏向角δ(δ=θ
−θ)は、頂角Aに比例した関係つまりδ≒(NP
1)Aで示される。
As shown in FIG. 7, since the axial ray 0 has a small incident angle on the prism surface, the deflection angle δ (δ = δ = δ) when the incident angle on the prism second surface, that is, the prism second surface changes to the angle A. θ
P− θ) is proportional to the apex angle A, that is, δ≈ (N P
1) Indicated by A.

一方、軸外光線aのように第2面への入射角が比較的
大きい場合には頂角Aが同様に角度A変化しても偏向角
は前式δ=(NP−1)Aで表わされる値より絶対値で大
きい値をとる。
On the other hand, when the incident angle on the second surface is relatively large like the off-axis ray a, even if the apex angle A also changes by the angle A, the deflection angle is expressed by the above equation δ = (N P −1) A. The absolute value is larger than the represented value.

例えばaの光線は頂角が第7図の方向にAになったと
き、可変頂角プリズムの第2面への入射角θは基準状
態より大きい方向に変化するので射出光の傾角θはθ
+δより大きくなる。従って、像面上では第6図(B)
のaα′に示す様にオーバー方向に歪む。
For example, when the apex angle of the ray a becomes A in the direction of FIG. 7, the incident angle θ 2 on the second surface of the variable apex prism changes to a direction larger than the reference state, and therefore the inclination angle θ P of the emitted light Is θ
It becomes larger than + δ. Therefore, on the image plane, FIG.
As indicated by a α ′ in FIG.

一方bの光線は頂角がAになったとき、可変頂角プリ
ズムの第2面への入射角θは基準状態より絶対値で小
さい方向に変化するので射出光の傾角θは絶対値でθ
+δより小さくなる。従って像面上では第6図(B)の
α′に示す様にやなりオーバー方向に歪むことにな
る。
On the other hand, when the apex angle of the light beam of b becomes A, the incident angle θ 2 of the variable apex angle prism on the second surface changes in a direction smaller in absolute value than in the reference state, so the inclination angle θ P of the emitted light is an absolute value. At θ
It becomes smaller than + δ. Therefore, on the image plane, as shown by b α ′ in FIG. 6 (B), the image is distorted in the over direction.

この様に偏心歪曲収差があるときは、第8図(A)に
示す様な被写体の像は(B)の実線で示す様な形に歪
む。尚、点線は歪曲収差のない場合の理想像である。
When there is such eccentric distortion, the image of the subject as shown in FIG. 8 (A) is distorted into the shape shown by the solid line in (B). The dotted line is an ideal image when there is no distortion.

従って手ブレで生ずり像ブレを、可変頂角プリズムで
像を逆方向に偏向して補正すう防振光学系に於いては、
上述した通りの偏心歪曲収差があると、画面中心の点と
軸外の点で移動量が異なることになるので画面中心で像
ブレを補正したとしても周辺では像の流れを生じてしま
う。第8図(C)は(A)の様な被写体を偏心歪曲収差
のある防振光学系で像ブレ補正した結果である。
Therefore, in the image stabilization optical system that corrects the image blur caused by camera shake by deflecting the image in the opposite direction with the variable apex angle prism,
When the eccentric distortion aberration as described above is present, the amount of movement differs between the point at the center of the screen and the point off-axis, so even if the image blur is corrected at the center of the screen, a flow of images will occur in the periphery. FIG. 8C shows the result of image blur correction of a subject as shown in FIG. 8A with an image stabilization optical system having eccentric distortion.

可変頂角ブリズムをレンズ系の内部に設ける構成とす
ると上述した通り可変頂角プリズムの径を小さくできる
という利点がある。しかし防振が望まれる望遠系の対物
レンズに於ては軸外光束の主光線の傾角は大きくなるこ
と、そして、像面上で同じ偏向量を得るにもレンズ系の
前に設ける場合より大きく頂角を変化する必要があるこ
と、この2つの要因で偏心歪曲収差がより大きく発生し
てしもう傾向にある。
When the variable apex prism is provided inside the lens system, there is an advantage that the diameter of the variable apex prism can be reduced as described above. However, in a telephoto objective lens for which image stabilization is desired, the tilt angle of the principal ray of the off-axis light beam becomes large, and even if the same amount of deflection is obtained on the image plane, it is larger than when it is provided in front of the lens system. It is necessary to change the apex angle, and these two factors tend to cause more eccentric distortion aberration.

本発明は、この問題点に鑑みて、光学系の小型化を図
る一方、光学的性能の高い特に歪曲収差の良好な像偏向
機能を有する光学系を提供することにある。
In view of this problem, it is an object of the present invention to provide an optical system having a high optical performance and, in particular, an image deflecting function with a good distortion, while reducing the size of the optical system.

〔問題点を解決するための手段(及び作用)〕[Means (and Action) for Solving Problems]

本発明は、物体側より順に、偏心に関して固定の第1
レンズ群、頂角が可変の可変頂角プリズム、そして偏心
に関して固定の第2レンズ群を有し、該可変頂角プリズ
ムの頂角を変化させることにより像を偏向させるように
した像偏向手段を有した光学系に於いて、全系の焦点距
離を1と正規化したときの前記第1レンズ群と第2レン
ズ群の歪曲収差係数を各々V1,V2とするとき、 V2>0 (4) −1.3<V1/V2<−0.7 (5) なる条件を満足する様な収差補正方式をとることによ
り、可変頂角プリズムをレンズ内部に設け像偏向を行う
光学系の偏心歪曲収差を小さく補正することにある。
The present invention, in order from the object side, has a first fixed eccentricity.
An image deflecting unit having a lens group, a variable apex prism having a variable apex angle, and a second lens group fixed with respect to decentering, and deflecting an image by changing the apex angle of the variable apex prism. In the optical system provided, when the distortion aberration coefficients of the first lens group and the second lens group when the focal length of the entire system is normalized to 1 are V 1 and V 2 , respectively, V 2 > 0 (4) −1.3 <V 1 / V 2 <−0.7 (5) By adopting an aberration correction method that satisfies the condition, a variable apex angle prism is provided inside the lens to decenter the eccentric distortion of the optical system for image deflection. The purpose is to correct aberrations to be small.

〔実施例〕〔Example〕

以下、本発明の実施例を説明していく。第5図は、本
発明に係る光学系の概略図を示す図である。Iは歪曲収
差をオーバー傾向発生させている一方、可変頂角プリズ
ムPの前方に配置される第1レンズ群、IIは歪曲収差を
アンダー傾向に保つとともに可変頂角プリズムPの後方
に配置される第2レンズ群である。Fはフイルム面を示
す。aは画面θの主光線を示す。
Examples of the present invention will be described below. FIG. 5 is a diagram showing a schematic view of the optical system according to the present invention. I is the first lens group disposed in front of the variable apex angle prism P while I is causing the distortion to be over-prone, and II is disposed behind the variable apex angle prism P while keeping the distortion in the under tendency. It is a second lens group. F indicates a film surface. a shows the chief ray of the screen θ 0 .

本実施例が示す光学系に於いては、第1レンズ群Iと
第2レンズ群IIがそれぞれ大きい歪曲収差を持っている
が、特にプリズムPの頂角を変化させる以前つまり基準
状態にあっては、第1レンズ群が発生しているオーバー
の歪曲収差を第2レンズ群が発生しているアンダーの歪
曲収差で打ち消し合い、全体の撮影系(I,P,II)として
第5図(A)に示す如く良好に収差補正を行っている。
In the optical system shown in this embodiment, the first lens group I and the second lens group II each have a large distortion, but especially before the apex angle of the prism P is changed, that is, in the reference state. Shows that the over-distortion aberration generated by the first lens group is canceled by the under-distortion aberration generated by the second lens group, so that the entire photographing system (I, P, II) is shown in FIG. As shown in (), the aberration is satisfactorily corrected.

即ち、基準状態い於いて第1レンズ群Iと第2レンズ
群IIが発生する歪曲収差を夫々Dis(θI,Dis
(θIIとする時、 Dis(θ≒−Dis(θII という関係を満足させている。
That is, in the reference state, the distortion aberrations generated by the first lens group I and the second lens group II are respectively Dis (θ 0 ) I , Dis
When (θ 0 ) II is set, the relationship Dis (θ 0 ) I ≈−Dis (θ 0 ) II is satisfied.

さて次に2つのレンズ群I,IIがこの様に収差補正され
たうえで頂角を変化させて像偏向を行った状態を第5図
(B)に示す。初期状態と同じ画角θの主光線は、当
然のことながら第1レンズ群1で初期状態と全く同じ値
の歪曲収差を発生する。そして第1レンズ群Iをθの傾
角で射出した主光線aはAの頂角のついた可変頂角プリ
ズムPでΔだけ偏向されるが、前の述べた様に、光軸付
近の光線の偏向量δ≒(NP−1)Aより大きく偏向され
て偏向量が過剰となっている。
Next, FIG. 5 (B) shows a state in which the two lens groups I and II have been subjected to aberration correction in this way and then subjected to image deflection by changing the apex angle. The chief ray having the same angle of view θ 0 as in the initial state naturally causes distortion aberration of the same value as in the initial state in the first lens group 1. Then, the principal ray a emitted from the first lens group I at an inclination angle of θ is deflected by Δ by the variable apex angle prism P having the apex angle of A, but as described above, The deflection amount is excessively large by deflecting more than the deflection amount δ≈ (N P −1) A.

従って可変頂角プリズムPを射出した主光線は(θ+
Δ)と基準状態よりΔだけ大きい傾角で第2レンズ群II
に入射することになる。この時、第2レンズ群IIの傾角
θの時の歪曲収差量より傾角(θ+Δ)の時の歪曲収差
量は、よりアンダー方向で大きくなっているので可変頂
角プリズムで偏向された主光線の偏向過剰(すなわち可
変頂角プリズムの偏心歪曲収差になる)が補正され、像
面上での偏向量と光軸上を入射してくる光線0の偏向量
との差を小さく補正することができる。すなわち偏心歪
曲収差を小さく補正することができる。この時の歪曲収
差の関係は、 Dis(θ+Dis(θ,A)≒−Dis(θ+Δ)II と示すことができる。尚、Dis(θ,A)はAの頂角を
有する可変頂角プリズムで生ずる歪曲収差、Dis(θ+
Δ)IIは頂角(θ+Δ)の光線の第2レンズ群の歪曲収
差を表わす。
Therefore, the principal ray emitted from the variable apex angle prism P is (θ +
Δ) and the second lens group II with an inclination angle larger than the reference state by Δ
Will be incident on. At this time, the amount of distortion aberration at the tilt angle (θ + Δ) is larger in the under direction than the amount of distortion aberration at the tilt angle θ of the second lens group II, so that the principal ray deflected by the variable apex angle prism is Excessive deflection (that is, eccentric distortion of the variable apex prism) is corrected, and the difference between the deflection amount on the image plane and the deflection amount of the ray 0 incident on the optical axis can be corrected to be small. . That is, the eccentric distortion can be corrected to be small. The relation of the distortion aberration at this time can be expressed as Dis (θ 0 ) 1 + Dis (θ, A) P ≈−Dis (θ + Δ) II . Note that Dis (θ, A) P is the distortion aberration that occurs in the variable apex angle prism having the apex angle of A, and Dis (θ +
Δ) II represents the distortion of the second lens group of the light beam having the apex angle (θ + Δ).

ここで第2レンズ群に入射する軸外光束の傾角が大き
くなるに従い歪曲収差が大きくなるという必要条件は第
2レンズ群の3次の歪曲収差係数をV2とするとき、 V2>0 (4) とすることである。尚、この(4)式が意味することは
歪曲収差がアンダーであることを示す。
Here, the necessary condition that the distortion aberration increases as the tilt angle of the off-axis light beam incident on the second lens group increases, V 2 > 0 (where V 2 is the third-order distortion aberration coefficient of the second lens group) 4) The expression (4) means that the distortion aberration is under.

そして初期状態から像を偏向させる状態まで、全体に
わたって良好に歪曲収差を良好に補正するためには、第
1レンズ群Iの3次の歪曲収差係数をV1とした時、 −1.3<V1/V2<−0.7 (5) なる条件式を満足させるとよい。
Then, in order to satisfactorily correct the distortion aberration from the initial state to the state in which the image is deflected, when the third-order distortion aberration coefficient of the first lens group I is V 1 , -1.3 <V 1 / V 2 <−0.7 (5) It is recommended to satisfy the conditional expression.

条件式(5)の上限値を越えると、第1レンズ群の歪
曲収差が過剰ぎみのオーバーになるとともに、撮影系全
体としてみたときにも初期状態あるいは偏向時にオーバ
ー傾向の歪曲収差が残存して好ましくない。一方下限値
を越えると、第2レンズ群IIの歪曲収差が過剰ぎみのア
ンダーになり、撮影系全体としても、基準あるいは偏向
時にアンダー傾向の歪曲収差が残存して好ましくない。
If the upper limit of conditional expression (5) is exceeded, the distortion aberration of the first lens group will become excessively excessive, and also distortion aberration that tends to be excessive in the initial state or during deflection will remain when viewed as the entire shooting system. Not preferable. On the other hand, when the value goes below the lower limit, the distortion aberration of the second lens group II becomes excessively under, and the distortion aberration which tends to be under at the time of reference or deflection remains in the entire photographing system, which is not preferable.

次に本発明に関する技術の理論的裏付けを、偏心収差
論を用いて説明する。偏心収差と収差係数の関係式の導
出は種々試みられているが、ここでは第23回応用物理学
会講演会(1962年)に松居が発表した形式を使用する。
それによると偏心後の収差(ΔY′)は三次収差の領域
では(6)式の様に偏心前の収差ΔYと偏心によって発
生する偏心収差ΔY(ε)の和で表わされ、ある面がε
だけ傾いたことによって新たに発生する収差ΔY(ε)
は(7)式の様に表わされる。
Next, theoretical support for the technology relating to the present invention will be described using decentering aberration theory. Although various attempts have been made to derive the relational expression between the eccentric aberration and the aberration coefficient, here, the format presented by Matsui at the 23rd Annual Meeting of the Applied Physics Society of Japan (1962) is used.
According to this, the aberration (ΔY ′) after decentering is represented by the sum of the aberration ΔY before decentering and the decentering aberration ΔY (ε) generated by decentering in the region of the third-order aberration as shown in equation (6). ε
Aberration ΔY (ε) newly generated by tilting
Is expressed as in equation (7).

Δ′Y=ΔY+ΔY(ε) (6) この内偏心歪曲収差(Vε1)と偏心歪曲附加収差
(Vε2)に関し、傾いた面が平面として可変頂角プリ
ズムに適用し近軸量と第2レンズ群の収差係数で表現し
たものが(8)式及び(9)式である。メリジオナル断
面でプリズム面の法線が傾くとして偏心収差と偏心附加
収差をまとめてメリジオナル断面で書き表わしたものが
(10)式である。
Δ'Y = ΔY + ΔY (ε) (6) Regarding the inner eccentric distortion aberration (Vε1) and the eccentric distortion addition aberration (Vε2), the tilted surface is applied as a plane to the variable apex angle prism and expressed by the paraxial amount and the aberration coefficient of the second lens group (8). It is a formula and (9) Formula. In the meridional section, the normal line of the prism surface is inclined, and the decentering aberration and the eccentric addition aberration are summarized and expressed in the meridional section (10).

本発明の様に可変頂角プリズムをレンズ中に設ける場
合、可変頂角プリズムの近軸主光線の高さは小さな
値となる。そして、中でも支配的な値は(10)式の括弧
の中の(11)式で示される2項である。(11)式の第1
項は正の値をとるので第2項が負の値、従ってV2>0と
なれば偏心歪曲収差の減少に寄与することになる。偏心
歪曲収差を殆ど零にまで補正したいのであれば第2レン
ズ群の歪曲収差係数V2が(12)式を満たす様に発生させ
れば良い。この場合も全系の基準状態の歪曲収差補正の
ためには第1レンズ群の歪曲収差係数V1は(5)式を満
足しなければならない。
When the variable vertical angle prism is provided in the lens as in the present invention, the height P of the paraxial chief ray of the variable vertical angle prism has a small value. And, among them, the dominant values are the two terms represented by the equation (11) in the parentheses of the equation (10). The first of equation (11)
Since the term has a positive value, the second term has a negative value, so that when V 2 > 0, it contributes to the reduction of decentering distortion. If it is desired to correct the eccentric distortion aberration to almost zero, it may be generated so that the distortion aberration coefficient V 2 of the second lens group satisfies the expression (12). Also in this case, the distortion aberration coefficient V 1 of the first lens group must satisfy the expression (5) in order to correct the distortion aberration of the entire system in the reference state.

従って、を全系の焦点距離を1に規格化し、レン
ズ系に入射する時の傾角を=−1とした時の可変頂角
プリズムに入射する軸外主光線の傾角とする時、 を満足する様に第2レンズ群の3次の歪曲収差係数を決
めればさらに良い結果が得られる。
Therefore, when P is the focal length of the entire system is normalized to 1 and the tilt angle when entering the lens system is −1, the tilt angle of the off-axis chief ray entering the variable apex angle prism is If a third-order distortion aberration coefficient of the second lens group is determined so as to satisfy the above condition, a better result can be obtained.

更に、本実施例に於いて、第1レンズ群及び第2レン
ズ群をそれぞれレンズ群中最も大きい空気間隔を隔てて
第1レンズ前群、第1レンズ後群、及び第2レンズ前
群、第2レンズ後群として分け、順に各々の焦点距離を
fI-1とfI-2及びfII-1とfII-2とし、更に全系の焦点距離
をfTとするとき、 0.4<fI-1/fT<1.7 (14) 0.05<fII-2/fT<0.7 (15) の条件式を満足する様な焦点距離を採用すると、可変頂
角プリズムから離れた位置に比較的強いパワーの正レン
ズ群が配置されることになり、本発明に関する歪曲収差
のみならず他の収差補正をも無理なく行うことができ
る。つまり条件式(14)及び条件式(15)の下限値を越
えて焦点距離が短いと各レンズ群の歪曲収差補正に対し
ては有利であっても球面収差及び非点収差の補正に多く
のレンズ枚数を要することになる。一方、条件式(1
4),(15)の上限を越えると、光学系及びプリズム自
体が大型化してくるので好ましくない。
Furthermore, in the present embodiment, the first lens group and the second lens group are respectively separated by the largest air gap in the lens groups, and the first lens front group, the first lens rear group, the second lens front group, and the second lens front group. It is divided into 2 lens rear groups, and each focal length is
When f I-1 and f I-2 and f II-1 and f II-2 and the focal length of the entire system is f T , 0.4 <f I-1 / f T <1.7 (14) 0.05 < If a focal length that satisfies the conditional expression of f II-2 / f T <0.7 (15) is adopted, a positive lens group of relatively strong power will be arranged at a position away from the variable apex angle prism. Not only distortion aberration related to the present invention but also other aberration correction can be performed without difficulty. In other words, if the focal length is shorter than the lower limits of conditional expressions (14) and (15), it is advantageous for correction of distortion aberration of each lens group, but much for correction of spherical aberration and astigmatism. The number of lenses will be required. On the other hand, the conditional expression (1
If the upper limits of 4) and (15) are exceeded, the size of the optical system and the prism itself will increase, which is not preferable.

さらに、第1レンズ前群と第1レンズ後群の主点間隔
をeI、第2レンズ前群と第2レンズ後群の主点間隔をe
IIとするとき、 0.1<|fI-2|/fT<0.7,fI-2<0 (16) 0.1<|fII-1|/fT<0.5,fII-1<0 (17) 0.25<eI/fT<0.9 (18) 0.04<eII/fT<0.3 (19) を満足する様なパワー配置をとることにより、より少な
いレンズ構成でありながら、良好な光学性能を出すこと
ができる。条件式(16)及び条件式(17)の下限値を越
えて第1レンズ後群と第2レンズ前群のパワーが強くな
ると球面収差及びコマ収差の補正が困難となり、光学性
能を維持させようとすると多くのレンズを必要とする。
上限値を越えると所望の歪曲収差を発生させるために多
くのレンズ枚数が必要になってくる。又、条件式(18)
及び条件式(19)の上限値を越えて主点関係が長くなる
とレンズ全長が大きくなり過ぎることになる。
Further, the principal point distance between the first lens front group and the first lens rear group is e I , and the principal point distance between the second lens front group and the second lens rear group is e.
When II , 0.1 <| f I-2 | / f T <0.7, f I-2 <0 (16) 0.1 <| f II-1 | / f T <0.5, f II-1 <0 (17 ) By adopting a power distribution that satisfies 0.25 <e I / f T <0.9 (18) 0.04 <e II / f T <0.3 (19), it is possible to obtain good optical performance with a smaller lens configuration. Can be issued. If the lower limit values of conditional expressions (16) and (17) are exceeded and the powers of the rear group of the first lens and the front group of the second lens become strong, it becomes difficult to correct spherical aberration and coma, and optical performance is maintained. If so, many lenses are required.
If the upper limit is exceeded, a large number of lenses will be required to generate the desired distortion. Also, conditional expression (18)
If the principal point relationship becomes longer than the upper limit of conditional expression (19), the total lens length becomes too large.

一方、第2レンズ群の歪曲収差をアンダーに補正する
有効な手段は、第2レンズ群の全長の1/2より像側の位
置に正の屈折力を有し、物体に凸面を向けたレンズを配
置することである。そしてその凸面の曲率半径RXは、 0<1/RX<6/fT (20) とするのが望ましい。上限値を越えて曲率がきつくなる
と非点収差及びコマ収差の補正が困難となる。
On the other hand, an effective means for correcting the distortion aberration of the second lens group to be under is a lens having a positive refractive power at a position closer to the image side than half of the total length of the second lens group and having a convex surface facing the object. Is to place. The radius of curvature R X of the convex surface is preferably 0 <1 / R X <6 / f T (20). If the curvature exceeds the upper limit and becomes tight, it becomes difficult to correct astigmatism and coma.

ところで本発明の(10)式に於いて可変頂角プリズム
に於ける軸外主光線の高さが絶対値で大きくなると第2
レンズ群の非点収差及びペツツバールの項の寄与が増加
してくる。本発明の要な歪曲収差補正をするレンズ系で
は(3III2+P2)は正の値をとるのでの値が正の値
で大きくなることは偏心歪曲収差補正上不利である。
は絞りから可変頂角プリズムまでの距離lに関係して
いるので、全系の焦点距離を1に規格化したとき、 −0.4<l<0.25 の条件を満足する様に可変頂角プリズムの位置を決める
と良い。下限値を越えて可変頂角プリズムが光学系の前
側に位置すると可変頂角プリズムの径が大きくなり、内
蔵する意味が少くなってしまう。
By the way, in the formula (10) of the present invention, if the height of the off-axis chief ray in the variable apex angle prism becomes large in absolute value,
The astigmatism of the lens group and the contribution of Petzval's term increase. Since (3III 2 + P 2 ) has a positive value in the lens system which corrects the distortion aberration, which is an important aspect of the present invention, increasing the value of P with a positive value is disadvantageous in correcting the eccentric distortion aberration.
Since P is related to the distance l from the diaphragm to the variable apex prism, when the focal length of the entire system is normalized to 1, the variable apex prism of the variable apex is satisfied so that the condition of −0.4 <l <0.25 is satisfied. It is good to decide the position. If the variable apex angle prism is positioned on the front side of the optical system beyond the lower limit, the diameter of the variable apex angle prism becomes large and the meaning of incorporating it becomes small.

上限値を越えると、偏心歪曲収差補正のために第2レ
ンズ群でより大きな歪曲収差の発生が必要となり多くの
レンズ枚数が必要となってくる。
When the value exceeds the upper limit, a larger amount of distortion must be generated in the second lens group to correct decentering distortion, and a large number of lenses are needed.

第1図は本発明の実意例であり、防振光学系として使
用されるものである。物体側より偏心駆動に関して不動
の第1レンズ群、可変頂角プリズム、さらに偏心駆動に
関して不動の第2レンズ群で構成され、図示されていな
い加速度センサー等のブレ検知器の出力によりやはり図
示されていないアクチユエーターで可変頂角プリズムの
頂角を変化させ像ブレを逆補正する様に像を偏向するも
のである。可変頂角プリズムは2枚の平行平面板の間に
透明シリコンゴムを挟んだもので作られている。
FIG. 1 is an actual example of the present invention, which is used as a vibration-proof optical system. It is composed of a first lens group that is immobile with respect to eccentric drive from the object side, a variable apex angle prism, and a second lens group that is immobile with respect to eccentric drive, and is also shown by the output of a shake detector (not shown) such as an acceleration sensor. The image is deflected so as to reversely correct the image blur by changing the apex angle of the variable apex prism with an actuator. The variable apex angle prism is made by sandwiching transparent silicone rubber between two parallel plane plates.

本実施例に於いて、第1レンズ群Iの3次の歪曲収差
係数V1は−9.03、第2レンズ群IIの3次の歪曲収差係数
V2は7.8の値を持つ、つまり、第1レンズ群Iで歪曲収
差をオーバー方向に発生させ、又、第2レンズ群IIでは
アンダー方向に発生させて、しかも全系では歪曲収差は
像高21.63mmに於いて0.27%と小さな値に補正されてい
る。この様に、第2レンズ群IIの3次の歪曲収差V2がV2
>0であるので可変頂角プリズムで像を1mm偏向した時
の偏心歪曲収差は像高18mmで0.017mmと小さな値に補正
される。ここで偏心歪曲収差は、軸外光束の主光線の偏
向量と中心に結像する光束の主光線の偏向量の差を意味
する。ちなみに同じパワー配置のレンズでも本発明の原
理を導入しない場合、つまり、最も前方に頂角可変プリ
ズムを配置したとき中心点は1mm偏向されるとき像高18m
mの点は1.064mm偏向され、従って、偏心歪曲収差は0.06
4と大きな値になっている。
In this embodiment, the third-order distortion aberration coefficient V 1 of the first lens group I is −9.03, and the third-order distortion aberration coefficient of the second lens group II is
V 2 has a value of 7.8, that is, the first lens group I causes distortion aberration in the over direction, and the second lens group II causes distortion in the under direction. It is corrected to a small value of 0.27% at 21.63 mm. Thus, the third-order distortion aberration V 2 of the second lens group II is V 2
Since> 0, the eccentric distortion when the image is deflected by 1 mm by the variable apex angle prism is corrected to a small value of 0.017 mm at an image height of 18 mm. Here, the eccentric distortion aberration means the difference between the deflection amount of the principal ray of the off-axis light beam and the deflection amount of the principal ray of the light beam focused on the center. By the way, when the principle of the present invention is not introduced even with lenses having the same power arrangement, that is, when the variable apex angle prism is arranged at the most front, the center point is deflected by 1 mm and the image height is 18 m.
The point m is deflected 1.064 mm, so the eccentric distortion is 0.06
It is a big value of 4.

第1実施例の第1レンズ群Iは、D11で物体側より第
1正レンズ前群I−I,第1負レンズ後群I−2に、そし
て第2レンズ群IIは、D24で物体側より第2負レンズ前
群II−1と第2正レンズ後群II−2に分けられ、第1レ
ンズ群Iと第2レンズ群IIで歪曲収差が条件式(4)及
び(5)を容易に満足できるパラー配置としている。
The first lens group I of the first embodiment is at D11 from the object side to the first positive lens front group II and the first negative lens rear group I-2, and the second lens group II is at D24 the object side. Is divided into a second negative lens front group II-1 and a second positive lens rear group II-2, and the distortions in the first lens group I and the second lens group II can easily satisfy the conditional expressions (4) and (5). The layout is set to satisfy the requirements.

尚、本発明に於いては、第3図に示す様に、向き合う
球面の曲率半径が略同一の値を有する平凹レンズP1と平
凸レンズP2を球面に沿って相対的に回転する方式の可変
頂角ブリズムに対しても本発明の原理は融合に適用し得
るものである。
In the present invention, as shown in FIG. 3, a plano-concave lens P 1 and a plano-convex lens P 2 in which the facing spheres have substantially the same radius of curvature are relatively rotated along the spherical surface. The principles of the invention are also applicable to fusion for variable apex brisms.

また、本発明は防振装置に限るものではなく、シヒト
レンズやオートレベル等の光機器にも適用することがで
きる。
Further, the present invention is not limited to the vibration isolation device, but can be applied to optical devices such as a sicht lens and an auto level.

本発明に於いて可変頂角プリズムの両側の面は全くの
平面でなくてもプリズム自体にレンズ作用を持たせても
さしつかえなく、その時、1.5fT<|R|の緩い曲率が付い
ていても良い。
In the present invention, the surfaces on both sides of the variable apex angle prism may be perfectly flat or may have a lens action on the prism itself, and at that time, a gentle curvature of 1.5f T <| R | Is also good.

ところで、本発明に於いて固定とは、偏心に関して不
動という意味であり、フオーカシングあるいはズーミン
グのために光軸に沿って移動することがあっても良い。
By the way, in the present invention, fixed means immovable with respect to eccentricity, and it may move along the optical axis for focusing or zooming.

第4図にその例を示す。第1レンズ群Iは順にフオー
カシングに際して光軸に沿って移動するフオーカシング
レンズF、ズーミングに際して光軸に沿って移動するバ
リエーターレンズVとコンペンセーターレンズCで構成
される。第2レンズ群IIは結像作用を果すリレーレンズ
Rで構成される。そして第1レンズ群Iの歪曲収差をオ
ーバーに維持する一方、第2レンズ群IIの歪曲収差をア
ンダーに維持している。
An example is shown in FIG. The first lens group I comprises a focusing lens F that moves along the optical axis during focusing, a variator lens V and a compensator lens C that move along the optical axis during zooming. The second lens group II is composed of a relay lens R that performs an image forming action. The distortion of the first lens group I is kept over while the distortion of the second lens group II is kept under.

次に本発明の数値実施例を示す。数値実施例において
Riは物体側より順に第i番目のレンズ面の曲率半径、Di
は物体側より第i番目のレンズ厚及び空気間隔、Niとν
iは各々物体側より順に第i番目のレンズのガラスの屈
折率とアツベ数である。
Next, numerical examples of the present invention will be shown. In the numerical example
Ri is the radius of curvature of the i-th lens surface in order from the object side, Di
Is the i-th lens thickness and air gap from the object side, Ni and ν
i is the refractive index and the Abbe number of the glass of the i-th lens in order from the object side.

〔発明の効果〕 可変頂角プリズムをレンズ系中に内蔵する構成の像偏
向光学系は可変頂角プリズム径を小さくでき、従ってま
わりの機構も含めた偏向光学系の大きさを小さくできる
他の可変頂角プリズムの駆動力も小さくできる利点があ
るが、本発明の原理によりその様な像偏向光学系で発生
する偏心歪曲収差を小さく補正することができる。従っ
て像ブレ補正を行ったとき第7図(c)の様な周辺の像
の流れを生ぜず、像ブレ補正を行ったとき全画面に亙っ
て高品質の像が得られる。
[Advantages of the Invention] In an image deflection optical system having a configuration in which a variable apex angle prism is built in a lens system, the diameter of the variable apex angle prism can be reduced, and thus the size of the deflection optical system including the surrounding mechanism can be reduced. Although there is an advantage that the driving force of the variable apex angle prism can be reduced, the decentration distortion aberration generated in such an image deflecting optical system can be corrected to be small according to the principle of the present invention. Therefore, when the image blur correction is performed, the flow of the peripheral image as shown in FIG. 7C is not generated, and when the image blur correction is performed, a high quality image is obtained over the entire screen.

また、本発明は可変頂角プリズムを用いてビームを偏
向させる光学系にも有効に適用することができる。
The present invention can also be effectively applied to an optical system that deflects a beam using a variable apex angle prism.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に関する数値実施例のレンズ断面図、第
2図(A)はその初期状態の収差図、第2図(B)は像
面上で1mm像偏向を行ったときの収差図、第3図は本発
明に関する第2の実施例のレンズ断面図、第4図は本発
明に関する第3の実施例のレンズ断面図、第5図は本発
明に関する光学作用の原理を示す概略図、第6図及び第
7図は偏心歪曲収差の発生原理の説明図、第8図は偏心
歪曲収差の画像への影響を説明する図である。 I……第1レンズ群、II……第2レンズ群 P……頂角可変プリズム
FIG. 1 is a lens cross-sectional view of a numerical example according to the present invention, FIG. 2 (A) is an aberration diagram in its initial state, and FIG. 2 (B) is an aberration diagram when 1 mm image deflection is performed on the image plane. FIG. 3 is a sectional view of a lens according to a second embodiment of the present invention, FIG. 4 is a sectional view of a lens according to a third embodiment of the present invention, and FIG. , FIG. 6 and FIG. 7 are explanatory views of the principle of generation of decentering distortion, and FIG. 8 is a diagram illustrating the effect of decentering distortion on an image. I: first lens group, II: second lens group P: variable apex angle prism

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】物体側より順に、偏心に関して固定の第1
レンズ群、頂角が可変の可変頂角プリズム、そして偏心
に関して固定の第2レンズ群を有し、該可変頂角プリズ
ムの頂角を変化させることにより像を偏向させるように
した像偏向機能を有した光学系に於いて、全系の焦点距
離を1と正規化したときの前記第1レンズ群と第2レン
ズ群の歪曲収差係数を各々V1,V2とするとき、 V2>0 −1.3<V1/V2<−0.7 なる条件を満足することを特徴とする像偏向機能を有し
た光学系。
1. A first fixed unit for eccentricity, in order from the object side.
An image deflection function is provided which has a lens group, a variable apex prism with a variable apex angle, and a second lens group that is fixed with respect to eccentricity, and which deflects an image by changing the apex angle of the variable apex angle prism. In the optical system provided, when the distortion aberration coefficients of the first lens group and the second lens group when the focal length of the entire system is normalized to 1 are V 1 and V 2 , respectively, V 2 > 0 An optical system having an image deflection function, which satisfies the condition of −1.3 <V 1 / V 2 <−0.7.
【請求項2】前記第1レンズ群及び前記第2レンズ群中
のそえぞれ最も大きい空気間隔を隔てて、順に第1レン
ズ前群、第1レンズ後群及び第2レンズ前群、第2レン
ズ後群とし、各群の焦点距離を順にfI-1,fI-2,fII-1,f
II-2、そして全系の焦点距離をfTとした時、 0.4<fI-1/fT<1.7 0.05<fII-2/fT<0.7 なる条件式を満足することを特徴とする特許請求の範囲
第1項記載の像偏向機能を有した光学系。
2. A first lens front group, a first lens rear group, a second lens front group, and a second lens group, respectively, with a largest air gap in each of the first lens group and the second lens group. The focal length of each group is f I-1 , f I-2 , f II-1 , f
II-2 , and when the focal length of the entire system is f T , it satisfies the conditional expression 0.4 <f I-1 / f T <1.7 0.05 <f II-2 / f T <0.7. An optical system having an image deflecting function according to claim 1.
【請求項3】前記第1レンズ前群と前記第1レンズ後群
との主点間隔をeI,前記第2レンズ前群と前記第2レン
ズ後群との主点間隔をeIIとした時、 0.1<|fI-2|/fT<0.7,fI-2<0 0.1<|fII-1|/fT<0.5,fII-1<0 0.25<eI/fT<0.9 0.04<eII/fT<0.3 を満足することを特徴とする特許請求の範囲第2項記載
の光学系。
3. A principal point interval between the first lens front group and the first lens rear group is e I , and a principal point interval between the second lens front group and the second lens rear group is e II . 0.1 <| f I-2 | / f T <0.7, f I-2 <0 0.1 <| f II-1 | / f T <0.5, f II-1 <0 0.25 <e I / f T < The optical system according to claim 2, wherein 0.9 0.04 <e II / f T <0.3 is satisfied.
【請求項4】上記第2レンズ群は、第2レンズ群の第1
面から最終面までの距離の1/2より像側に、正の屈折力
を有し、物体に凸面を向けたレンズを有することを特徴
とする特許請求の範囲第1項記載の像偏向機能を有した
光学系。
4. The second lens group is the first lens group of the second lens group.
The image deflecting function according to claim 1, further comprising a lens having a positive refracting power and having a convex surface facing the object, which is located closer to the image side than 1/2 of the distance from the surface to the final surface. Optical system with.
【請求項5】全系の焦点距離を1に規格し、光学系の絞
りから上記可変頂角プリズムまでの距離をlとすると
き、 −0.4<l<0.25 を満足することを特徴とする特許請求の範囲第1項記載
の像偏向機能を有した光学系。
5. A patent characterized in that when the focal length of the entire system is standardized to 1 and the distance from the diaphragm of the optical system to the variable apex angle prism is l, -0.4 <l <0.25 is satisfied. An optical system having an image deflecting function according to claim 1.
JP63325557A 1987-12-29 1988-12-22 Optical system with image deflection function Expired - Fee Related JP2547834B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63325557A JP2547834B2 (en) 1988-12-22 1988-12-22 Optical system with image deflection function
US07/701,326 US5140462A (en) 1987-12-29 1991-05-07 Optical system having image deflecting function

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63325557A JP2547834B2 (en) 1988-12-22 1988-12-22 Optical system with image deflection function

Publications (2)

Publication Number Publication Date
JPH02168223A JPH02168223A (en) 1990-06-28
JP2547834B2 true JP2547834B2 (en) 1996-10-23

Family

ID=18178226

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63325557A Expired - Fee Related JP2547834B2 (en) 1987-12-29 1988-12-22 Optical system with image deflection function

Country Status (1)

Country Link
JP (1) JP2547834B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007334051A (en) 2006-06-15 2007-12-27 Sony Corp Zoom lens and imaging apparatus
JP5230554B2 (en) 2009-07-23 2013-07-10 キヤノン株式会社 Optical equipment

Also Published As

Publication number Publication date
JPH02168223A (en) 1990-06-28

Similar Documents

Publication Publication Date Title
JP3869895B2 (en) Optical system with anti-vibration function
JP3363571B2 (en) Rear focus zoom lens and imaging system
JP3486541B2 (en) Inner focus optical system having vibration proof function and camera having the same
JP4630423B2 (en) Zoom lens and optical apparatus using the same
JP3072815B2 (en) Variable power optical system
JP4672880B2 (en) Variable magnification optical system and optical apparatus using the same
JP3486532B2 (en) Zoom lens having vibration compensation function and camera having the same
JPH09230234A (en) Zoom lens provided with vibration-proof function
JP2540932B2 (en) Shooting system with anti-vibration function
JP2560377B2 (en) Variable magnification optical system with anti-vibration function
JP3919580B2 (en) Zoom lens and optical apparatus having the same
JP2605326B2 (en) Variable power optical system with anti-vibration function
JP2535969B2 (en) Variable magnification optical system with anti-vibration function
JP4146134B2 (en) Zoom lens
JP2621280B2 (en) Variable power optical system with anti-vibration function
JP4323584B2 (en) Variable magnification optical system with anti-vibration function
EP1582901A1 (en) Telephoto-type zoom lens comprising four lens groups
JP4109896B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus using the same
JP4095131B2 (en) Variable magnification optical system having anti-vibration function and imaging apparatus having the same
JPH11174326A (en) Optical system having vibration-proof function
JP3927684B2 (en) Variable magnification optical system with anti-vibration function
JP3352164B2 (en) Wide zoom lens with high zoom ratio
JP2547834B2 (en) Optical system with image deflection function
JP3927730B2 (en) Variable magnification optical system with anti-vibration function
JPH11101941A (en) Rear focus type zoom lens

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees