JPH01178383A - Joining body and its manufacture - Google Patents

Joining body and its manufacture

Info

Publication number
JPH01178383A
JPH01178383A JP115288A JP115288A JPH01178383A JP H01178383 A JPH01178383 A JP H01178383A JP 115288 A JP115288 A JP 115288A JP 115288 A JP115288 A JP 115288A JP H01178383 A JPH01178383 A JP H01178383A
Authority
JP
Japan
Prior art keywords
joined body
body elements
thin film
film layer
joining
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP115288A
Other languages
Japanese (ja)
Other versions
JP2523742B2 (en
Inventor
Toshiaki Fuse
俊明 布施
Sumiichi Shibuya
渋谷 純市
Keizo Honda
啓三 本多
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP63001152A priority Critical patent/JP2523742B2/en
Publication of JPH01178383A publication Critical patent/JPH01178383A/en
Application granted granted Critical
Publication of JP2523742B2 publication Critical patent/JP2523742B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)
  • Laminated Bodies (AREA)

Abstract

PURPOSE:To simultaneously form the joining body of high reliability and the cooling hole of excellent air-tightness by forming a liquid phase at the low temp. than the m.p. of the joining body element between the joining body elements forming the small groove for a cooling hole on the end face and executing diffused joining by interposing the thin film layer solid soluble with the joining body element. CONSTITUTION:The joining body elements 4a, 4b formed by a copper sheet are abutted via a thin film layer 10. Plural small grooves 6 for cooling hole are formed on the end face of the joining body element 4a and the joining body element 4b becomes the cover of the small groove 6. The thin film layer 10 is formed by a titanium foil 11, fixing the joining body elements 4a, 4b interposing the titanium foil 11 on the base 13 of the inside of a vacuum furnace 12 and placing a pressurizing weight 14. The vacuum furnace 12 inside is then subjected to pressure reducing and heated by a heater 15. According 10 the progress of the heating a liquid phase is formed with the mutual diffusion being progressed on a joining face 7, joining is executed via the liquid phase and a cooling hole 8 is formed at the inner part of and integrated joining body 5.

Description

【発明の詳細な説明】 〔発明の目的〕 (産業上の利用分野) 本発明は、ビーム加熱器の電極板等の材料として使用さ
れる、冷却孔を備えた接合体とその製造方法に係り、特
に変形量が極めて少な(、高い信頼性を有する接合体お
よび気密性に優れた冷却孔を同時に形成し得る接合体の
製造方法に関する。
[Detailed Description of the Invention] [Object of the Invention] (Industrial Application Field) The present invention relates to a bonded body with cooling holes, which is used as a material for an electrode plate of a beam heater, and a method for manufacturing the same. In particular, the present invention relates to a method for producing a bonded body with extremely small amount of deformation (in which a highly reliable bonded body and a cooling hole with excellent airtightness can be simultaneously formed).

(従来の技術) 一般にビーム加速用電極板に使用される材料としては、
電気的特性および冷却能力等を確保するために、導電性
および熱伝導性に優れた銅板が採用されている。
(Prior art) Materials generally used for beam acceleration electrode plates include:
In order to ensure electrical properties, cooling capacity, etc., a copper plate with excellent electrical and thermal conductivity is used.

一般にビーム加速用電極板は使用時に高温度に加熱され
るため、冷7JI操作が必要とされる。従来のビーム加
速用電極板1は第3図(a)に示すように銅板で形成さ
れた電極板本体1aにろう材2によって銅製の冷却管3
aが固着される。また冷却管の冷M1面積を増大化し、
冷却能力を向上させる目的で、第3図(b)に示すよう
に断面が角形状の冷却管3bを電極板本体1aにろう付
して構成する場合もある。
Generally, the beam acceleration electrode plate is heated to a high temperature during use, so cold 7JI operation is required. As shown in FIG. 3(a), a conventional beam acceleration electrode plate 1 has an electrode plate main body 1a formed of a copper plate and a cooling pipe 3 made of copper using a brazing material 2.
a is fixed. In addition, the cold M1 area of the cooling pipe has been increased,
For the purpose of improving the cooling capacity, a cooling pipe 3b having a rectangular cross section may be brazed to the electrode plate main body 1a as shown in FIG. 3(b).

使用時には冷却管3a、3b内に冷却用流体が流れ、ビ
ーム加速用電極板1は所定−浪に冷却される。
During use, a cooling fluid flows in the cooling pipes 3a and 3b, and the beam acceleration electrode plate 1 is cooled to a predetermined temperature.

しかしながら、第3図(a)、(b)に示すようなろう
材2を使用したビーム加速用電極板1を高真空中で使用
すると、ろう材2に含有される高い蒸気圧を有する成分
が経時的に蒸発し、ビーム加速性能を大きく阻害する。
However, when the beam acceleration electrode plate 1 using the brazing filler metal 2 as shown in FIGS. 3(a) and 3(b) is used in a high vacuum, components with high vapor pressure contained in the brazing filler metal 2 It evaporates over time and greatly impedes beam acceleration performance.

そのため、使用前に長時間に亘りてベーキング操作を実
施し蒸気圧を生じる揮発成分を予め除去する操作がなさ
れているが、除去が完全ではない。そのためビーム加速
装置の性能維持に限界がある。
Therefore, before use, a baking operation is performed for a long time to remove volatile components that generate vapor pressure, but the removal is not complete. Therefore, there is a limit to maintaining the performance of the beam accelerator.

上記の問題点を解決するために、第3図(C)。In order to solve the above problem, FIG. 3(C).

(d)に示すようにろう材2を使用せずに複数の接合体
要素4を相互に突き合せ、その接合端面7において溶接
を行なったり、または拡散接合することによって一体化
して接合体5を形成し、この接合体5をビーム加速用電
極板1の材料として使用する方法も開発されている。
As shown in (d), a plurality of joined body elements 4 are butted against each other without using the brazing material 2, and the joint end faces 7 are welded or diffusion bonded to form a joined body 5. A method has also been developed in which the bonded body 5 is used as a material for the beam acceleration electrode plate 1.

すなわち第3図(C)は特開昭62−034426号公
報に開示された接合体5の構造を示す断面図であり、冷
却孔用の細溝6を端面に形成した複数の接合体要素4を
、双方の細溝6の開放端が一致するように突き合せ、突
き合せた接合端面7を例えば電子ビーム溶接ビード9に
よって接合し、一体化した接合体5を得る。接合体5内
部には対向した細i16.6によって冷却孔8が形成さ
れる。
That is, FIG. 3(C) is a sectional view showing the structure of the joined body 5 disclosed in JP-A-62-034426, in which a plurality of joined body elements 4 each having narrow grooves 6 for cooling holes formed on the end face thereof. are abutted so that the open ends of both narrow grooves 6 coincide, and the abutted joining end surfaces 7 are joined by, for example, an electron beam welding bead 9 to obtain an integrated joined body 5. Cooling holes 8 are formed inside the joined body 5 by opposed narrow holes 16.6.

また第3図(d )は、プラズマ・核融合学会第4回年
会予稿集、29頁C6rNB If電極板新しい製作法
」において開示されている接合体の構j J3よびその
製作法を示している。
In addition, Figure 3(d) shows the structure of the bonded body JJ3 and its manufacturing method disclosed in Proceedings of the 4th Annual Meeting of the Japan Society for Plasma and Nuclear Fusion Science, page 29, ``C6rNB If Electrode Plate New Manufacturing Method''. There is.

寸なわち第3図(d)に示す接合体5は2枚の平板状の
接合体要素4.a、4bとから成り、下部の接合体要素
4aには冷却孔用の細溝6が加工形成されている。接合
体要素4bは、接合体要素4aの刊満6を被覆するよう
に組合される。次に接合体要素4a、4bは真空中にお
いて加熱加圧される。このとき接合端面7において、固
相拡散が起こり、接合体要素4a、4bは接合され、一
体の接合体5が1qられると同時に接合体5内部に細+
i46により冷却孔8が形成される。
In other words, the joined body 5 shown in FIG. 3(d) consists of two flat joined body elements 4. a and 4b, and narrow grooves 6 for cooling holes are formed in the lower joint element 4a. The conjugate element 4b is assembled so as to cover the full length 6 of the conjugate element 4a. Next, the joined body elements 4a, 4b are heated and pressurized in a vacuum. At this time, solid-phase diffusion occurs at the joint end surface 7, the joined body elements 4a and 4b are joined, and the integrated joined body 5 is 1q, and at the same time, fine particles are added inside the joined body 5.
Cooling holes 8 are formed by i46.

この第3図(d)に示す接合体5は第3図(C)に示す
接合体5と比較して接合端面の面積が広いため、筬械的
な強度が優れている。
The bonded body 5 shown in FIG. 3(d) has a larger area of the bonded end surface compared to the bonded body 5 shown in FIG. 3(C), and therefore has superior mechanical strength.

(発明が解決しようとする課題) しかしながら、第3図(C)に示す接合体においては、
接合作業時に電子ビーム溶接の目ずれが生じ易く精度の
高い接合作業が困難であり、また溶接歪による変形が生
じ易く、寸法精度が低下する問題点がある。
(Problem to be solved by the invention) However, in the joined body shown in FIG. 3(C),
There are problems in that electron beam welding tends to be misaligned during bonding work, making it difficult to perform highly accurate bonding work, and deformation due to welding distortion tends to occur, resulting in reduced dimensional accuracy.

また、第3図(d)に示す接合体においては、各冷却孔
を気密に接合し、冷却流体の洩れを防止するためには、
相当強度の加圧操作を必要とする。
In addition, in the joined body shown in FIG. 3(d), in order to join each cooling hole airtightly and prevent leakage of cooling fluid,
Requires considerable pressure operation.

しかし強度の加圧力を作用させると、冷却孔用に形成し
た細溝が変形したり、圧潰されることにより除用効率が
低下する上に、接合体全体に大ぎな変形を生じる欠点が
ある。逆に変形を引起さない加圧力で接合した場合には
接合部の気密性が十分に得られないという問題点がある
However, when a strong pressing force is applied, the thin grooves formed for cooling holes are deformed or crushed, resulting in a decrease in removal efficiency, and there is a drawback that the entire joined body is significantly deformed. On the other hand, if the bonding is performed using a pressing force that does not cause deformation, there is a problem in that sufficient airtightness of the bonded portion cannot be obtained.

本発明は上記の問題点を解決するためになされたもので
あり、接合体の変形量が極めて少なく、高い信頼性を有
する接合体であり、また気密性に優れた冷却孔を同時に
形成し得る接合体とその製造方法を提供することを目的
とする。
The present invention has been made in order to solve the above-mentioned problems, and it is a joined body that has extremely little deformation, has high reliability, and can simultaneously form cooling holes with excellent airtightness. The purpose of the present invention is to provide a joined body and a method for manufacturing the same.

〔発明の構成〕[Structure of the invention]

(課題を解決するための手段) 本願第1番目の発明に係る接合体は、端面に冷却孔用の
細溝を形成した複数の接合体要素から成り、接合体要素
の融点より低温で液相を生成し接合体要素と固溶する薄
膜層を上記接合体要素間に設け、上記薄膜層を介して接
合体要素相互を一体に拡散接合して一体化した接合体要
素内部に冷却1孔を形成したことを特徴とする。
(Means for Solving the Problems) The joined body according to the first invention of the present application is composed of a plurality of joined body elements each having narrow grooves for cooling holes formed in the end face, and has a liquid state at a temperature lower than the melting point of the joined body elements. A thin film layer that generates a solid solution with the joined body elements is provided between the joined body elements, and the joined body elements are diffusion bonded together through the thin film layer to form a cooling hole inside the integrated joined body elements. It is characterized by the fact that it has been formed.

また本願第2番目の発明に係る接合体の製造方法は、少
なくとも一方の接合端面に冷却孔用の細溝を形成した複
数の接合体要素間に、接合体要素の融点より低温度で液
相を生成して接合体要素と固溶する薄膜層を形成した模
に、真空条件下で加熱加圧することにより、接合端面に
相互拡散を生起Vしめ、突き合せた接合体要素を接合し
、一体化した接合体を形成すると同時に、接合体内部に
冷却孔を形成することを特徴とする。
Further, the method for manufacturing a bonded body according to the second invention of the present application is such that a liquid phase is formed at a temperature lower than the melting point of the bonded body elements between a plurality of bonded body elements in which thin grooves for cooling holes are formed in at least one of the bonded end surfaces. By applying heat and pressure under vacuum conditions, interdiffusion occurs on the bonded end surfaces, and the abutted bonded body elements are joined and integrated. The method is characterized in that cooling holes are formed inside the joined body at the same time as forming the joined body.

(作用) 上記構成の接合体およびその製造方法によれば、接合体
要素の融点より低温で液相を生成し接合体要素と固溶す
る薄膜層を接合体要素間に設けているため、加熱操作時
にS膜層が溶解して液相を生成し、この液相を介して接
合体要素の原子とil fiffJfflの原子とが相
互に拡散し、共晶組成物が迅速に形成される。
(Function) According to the joined body having the above structure and its manufacturing method, since a thin film layer is provided between the joined body elements, which generates a liquid phase at a temperature lower than the melting point of the joined body elements and forms a solid solution with the joined body elements, heating During operation, the S film layer dissolves to produce a liquid phase through which the atoms of the conjugate element and the atoms of il fiffJffl interdiffuse and rapidly form a eutectic composition.

この液相における相互の拡散速度は、従来の固相におけ
る拡散速度と比較して大きいため、単位時間における相
互の拡散措は大きく、接合端面近傍での各原子の温石勾
配は小さくなり、接合部の特性は母材の特性から連続的
に変化したものとなる。したがって、従来のろう付接合
の場合に発生する母材相互の不連続面が形成されないた
め、機械的強度が優れた接合体を得ることができる。
Since the mutual diffusion rate in this liquid phase is higher than that in the conventional solid phase, the mutual diffusion rate per unit time is large, and the hot stone gradient of each atom near the joint end face is small, causing the joint to The properties of the material change continuously from those of the base material. Therefore, discontinuous surfaces between the base materials that occur in conventional brazing joints are not formed, so that a joined body with excellent mechanical strength can be obtained.

また、接合端面に液相が生じるために、小さい加圧力を
作用させるだけで山桜合体要素の接合面全面において密
着性に優れた良好な接合面を得ることができる。また、
冷却孔用に形成した細溝が加圧力によって変形して冷却
効率を低下せしめたり、変形により製品としての寸法精
度が低下することが少ない。
Furthermore, since a liquid phase is generated at the joint end surfaces, a good joint surface with excellent adhesion can be obtained over the entire joint surface of the mountain cherry combination element by simply applying a small pressure force. Also,
The narrow grooves formed for the cooling holes are less likely to be deformed by pressing force, reducing cooling efficiency, and the dimensional accuracy of the product is less likely to be reduced due to deformation.

また接合操作と同時に冷却孔が形成されるため、部材外
面に冷却管を固着させる従来方法と比較して製造工程が
簡略化される。また冷却孔が接合体内部に形成され、そ
の冷却表面積が大きく確保されるため、冷却効果が増大
する利点がある。
Furthermore, since the cooling holes are formed at the same time as the joining operation, the manufacturing process is simplified compared to the conventional method of fixing cooling pipes to the outer surface of the member. Furthermore, since cooling holes are formed inside the joined body and a large cooling surface area is ensured, there is an advantage that the cooling effect is increased.

(実施例) 次に本発明の一実施例について添付図面を参照して説明
する。第1図は本発明に係る接合体のtM yjiおよ
びその製造り法を実施するための装置の一実施例を示す
断面図である。
(Example) Next, an example of the present invention will be described with reference to the accompanying drawings. FIG. 1 is a cross-sectional view showing an embodiment of a tM yji of a joined body and an apparatus for carrying out the manufacturing method thereof according to the present invention.

鋼機で形成された2枚の接合体要素4a、4bがjv膜
層10を介して突き合される。接合体要素4aの端面に
は複数の冷却孔用の細溝6が形成される。接合体要素4
bは、細溝6を閉止する蓋となる。
Two joined body elements 4a and 4b made of steel are butted together with a JV membrane layer 10 interposed therebetween. A plurality of narrow grooves 6 for cooling holes are formed in the end face of the joined body element 4a. Zygote element 4
b serves as a lid that closes the narrow groove 6.

薄膜層10は、数μmのJワさを有するチタン箔11を
接合端面7に挿入して形成される。チタン浦11を介装
した接合体要素4a、4bは真空炉12内の試料台13
上に固定される。接合体要素4a、4b上には例えばス
テンレス鋼で形成された加圧錘14が載置される。加圧
錘14による加圧強度は10〜100g/ctiに設定
される。
The thin film layer 10 is formed by inserting a titanium foil 11 having a J width of several μm into the joint end surface 7. The joined body elements 4a and 4b with the titanium pores 11 interposed therebetween are mounted on the sample stage 13 in the vacuum furnace 12.
fixed on top. A pressure weight 14 made of stainless steel, for example, is placed on the joined body elements 4a, 4b. The pressure intensity by the pressure weight 14 is set to 10 to 100 g/cti.

接合体要素4a、4bを上記ように固定した状態で真空
炉12内部を減圧し、10−4〜1O−5Torr程度
の真空度に保持しつつ、さらに炉内両側に配設した加熱
器15によって加熱する。
With the joined body elements 4a and 4b fixed as described above, the inside of the vacuum furnace 12 is depressurized and maintained at a degree of vacuum of about 10-4 to 10-5 Torr. Heat.

加熱操作の進行に伴って、接合端面7において、接合体
要素4a、4bの銅原子(Cu)と、薄膜層10のチタ
ン原子(T i )との間で相n拡散が進行する。接合
体要素4a、4bの温度が900℃程度に上昇すると、
図示しないT + −CLl 2元状態図に示されてい
るよう(、銅とチタンとの共晶反応が起こる。
As the heating operation progresses, phase n diffusion progresses between the copper atoms (Cu) of the bonded body elements 4a, 4b and the titanium atoms (T i ) of the thin film layer 10 at the bonding end surface 7. When the temperature of the joined body elements 4a, 4b rises to about 900°C,
As shown in the T + -CLl binary phase diagram (not shown), a eutectic reaction between copper and titanium occurs.

そして共晶組成がT 1−63wt%Cu〜Ti−70
wt%Qu程度に至るまでに相互拡散が進行した領域に
おいて液相が生成する。上記温度で保持すると、さらに
経時的に相互拡散が進み、液相が生成する組成の領域が
移動する。
And the eutectic composition is T1-63wt%Cu~Ti-70
A liquid phase is generated in a region where mutual diffusion has progressed to about wt% Qu. When held at the above temperature, interdiffusion further progresses over time, and the compositional region where a liquid phase is produced moves.

このように介装したチタン箔11のJlさに対応して1
〜60分間、温度を保持すると、接合端面7における相
互拡散および液相を介して接合が行なわれ、接合端面7
は密着し、接合前に存在していたギャップやボイドが消
失する。
1 corresponding to the Jl of the titanium foil 11 interposed in this way.
When the temperature is maintained for ~60 minutes, bonding is performed through mutual diffusion and liquid phase at the bonding end surface 7.
will adhere closely, and any gaps or voids that existed before joining will disappear.

所定の加熱時間経過後、真空度を保持した状態で室温ま
で冷却して接合作業が完了する。接合作業の完了と同時
に細溝6の開放端が対向する接合体要素4bによって密
閏され、一体化した接合体5内部に冷却孔8が形成され
る。
After a predetermined heating time has elapsed, the bonding work is completed by cooling to room temperature while maintaining the degree of vacuum. At the same time as the joining operation is completed, the open ends of the narrow grooves 6 are tightly intersected by the opposing joined body elements 4b, and cooling holes 8 are formed inside the integrated joined body 5.

本実施例によれば液相を介して接合を行なうため固相接
合と比較して接合部の密着性が優れ、極めて小さな加圧
力によって接合部のギャップやボイドを消失されること
が可能となる。
According to this embodiment, since the bonding is performed through the liquid phase, the adhesion of the bonded portion is superior to that of solid phase bonding, and gaps and voids in the bonded portion can be eliminated with an extremely small pressurizing force. .

また接合体の変形を小さく抑制することができる。した
がって接合体内部に形成した冷却孔が変形したり、圧潰
されたりして冷却効率を低下せしめたり、製品としての
寸法精度が低下することが防止できる。
Further, deformation of the joined body can be suppressed to a small level. Therefore, it is possible to prevent the cooling holes formed inside the joined body from being deformed or crushed, thereby reducing the cooling efficiency and reducing the dimensional accuracy of the product.

また液相を介した接合操作となるため、銅およびチタン
金属原子相互間の拡散速度が同相接合の場合と比較して
、増大化し短時間で接合することが可能となる。そのた
め銅板の結晶粒粗大化および粒界割れを効果的に防止で
きる。
Furthermore, since the bonding operation is performed through a liquid phase, the diffusion rate between copper and titanium metal atoms increases compared to the case of in-phase bonding, and bonding can be accomplished in a short time. Therefore, grain coarsening and intergranular cracking of the copper plate can be effectively prevented.

さらに薄膜層10として接合部に挿入されるチタンは、
接合体要素を構成する銅よりも低い蒸気圧を有している
ため、ギャップまたはボイドの影響が少ない良好な接合
部を得ることができる。特に鋼材より蒸気圧の高い金属
元素を含有する銀ろう材等を使用した接合方式と比較し
て、格段の接合強度を得ることができる。
Furthermore, the titanium inserted into the joint as a thin film layer 10 is
Since it has a lower vapor pressure than the copper constituting the joined body element, it is possible to obtain a good joint with less influence of gaps or voids. In particular, compared to a joining method using a silver brazing filler metal containing a metal element with a higher vapor pressure than steel, it is possible to obtain significantly higher joining strength.

また金属原子相互の拡散速度が大きいため、接合部にお
ける濃度勾配は接合母材部分から連続的に滑らかに変化
しているため、不連続な濃度勾配を有するろう付の接合
部と比較して、機械的強度が高い接合部を得ることがで
きる。
In addition, because the diffusion rate of metal atoms is high, the concentration gradient at the joint changes continuously and smoothly from the joining base material, compared to a brazed joint that has a discontinuous concentration gradient. A joint with high mechanical strength can be obtained.

さらに接合操作と同時に細溝6の開放端が閉止され、冷
却孔8が形成されるため、部材外面に冷却管を固着する
従来方法と比較して、接合体の製造工程が大幅に簡略化
される。また冷却孔8は接合体5内部に形成され、その
冷却表面積が大きく確保されるため、冷却効果が大幅に
増加する効果がある。
Furthermore, since the open end of the narrow groove 6 is closed at the same time as the joining operation and the cooling hole 8 is formed, the manufacturing process of the joined body is greatly simplified compared to the conventional method of fixing the cooling pipe to the outer surface of the member. Ru. Further, the cooling holes 8 are formed inside the joined body 5, and a large cooling surface area is ensured, so that the cooling effect is greatly increased.

次に他の実施例について説明する。Next, other embodiments will be described.

本実施例では、接合体要素としして鋼または銅合金を使
用する一方、i*Faは、シリコン(S;)またはジル
コニウム(Zr)で形成する。シリコンを使用する場合
は、接合温度を810〜850℃に設定し、ジルコニウ
ムを用いる場合は、900〜920℃程度に設定する。
In this example, steel or copper alloy is used as the joint element, while i*Fa is formed of silicon (S;) or zirconium (Zr). When using silicon, the bonding temperature is set at 810-850°C, and when using zirconium, it is set at about 900-920°C.

いずれの部材も上記接合温度において接合体要素を構成
する銅と共晶反応を生起するため、接合部に液相を生じ
、その液相を介しての金属元素の相互拡散によって双方
の接合体要素が一体に接合される。
At the above bonding temperature, both components undergo a eutectic reaction with the copper constituting the bonded body elements, so a liquid phase is generated at the bonded portion, and the mutual diffusion of metal elements through the liquid phase causes both bonded body elements to are joined together.

本実施例においても液相を介する接合であるため、加圧
力が小さく接合体の変形量が少なく、また接合強度が優
れた接合体を得ることができる。
In this example as well, since bonding is performed via a liquid phase, it is possible to obtain a bonded body with a small pressurizing force, a small amount of deformation of the bonded body, and excellent bonding strength.

さらに他の実施例として接合体要素を高融点材料である
モリブデン(MO)またはモリブデン合金で形成する一
方、i[層を金(Au>箔で形成した場合においても、
モリブデンと金との共晶反応により液相が形成され、前
記実施例と同様な効果が実証されている。
In yet another embodiment, the assembly element is made of molybdenum (MO) or a molybdenum alloy, which is a high melting point material, while the i layer is made of gold (Au>foil).
A liquid phase is formed by the eutectic reaction between molybdenum and gold, and the same effect as in the previous example has been demonstrated.

さらに接合体要素を銅または銅合金で形成する一方、1
11層として10wt%のスズ(Sn)を含有した銅合
金箔を使用すると、接合部における銅とスズとの濃度勾
配の変化がより緩慢になり、機械的強度が優れた接合体
を得ることができる。
Further, while the joining body element is formed of copper or a copper alloy, 1
When a copper alloy foil containing 10 wt% of tin (Sn) is used as the 11th layer, the change in the concentration gradient of copper and tin at the joint becomes more gradual, making it possible to obtain a joined body with excellent mechanical strength. can.

第2図は本発明方法によって円筒形の接合体を形成する
状態を示す斜視図である。
FIG. 2 is a perspective view showing the state in which a cylindrical joined body is formed by the method of the present invention.

銅製パイプ状に形成した一対の接合体要素4a。A pair of joined body elements 4a formed in the shape of copper pipes.

4bを軸方向に突き合せて一体の接合体5を形成するも
のである。接合体要素4a、4bの少なくとも一方の接
合端面7には薄膜層10としてチタン層16が形成され
ている。
4b are butted against each other in the axial direction to form an integrated joined body 5. A titanium layer 16 is formed as a thin film layer 10 on the joining end surface 7 of at least one of the joined body elements 4a, 4b.

このチタン層76は、例えば、頁空または不活性ガス雰
囲気中でチタンをイオン化し、同時に封じ込んだ電極間
に通電して接合体要素端面にメツキ処理を行なうイオン
プレーティング法によって形成される。
This titanium layer 76 is formed, for example, by an ion plating method in which titanium is ionized in an empty space or in an inert gas atmosphere, and at the same time, electricity is applied between enclosed electrodes to plate the end faces of the assembly elements.

上記のようにチタン層16を介して組み合せた接合体要
素4 a、 4 b&: 100 g/cIi程度(7
)加圧力を作用させた状態で、5 X 10 ’Tor
r稈度の真空炉内で900℃に加熱し、10分間保持し
た後に冷却して一体化した接合体5を得る。
The bonded body elements 4a, 4b&: about 100 g/cIi (7
) 5 x 10'Tor with applied pressure
It is heated to 900° C. in a vacuum furnace of r culm degree, held for 10 minutes, and then cooled to obtain an integrated joined body 5.

この接合操作においてもチタン層16に液相が形成され
、小さな加圧力のみで接合体要素4a。
In this bonding operation, a liquid phase is also formed in the titanium layer 16, and the bonded body element 4a is bonded with only a small pressing force.

4bが密着するため、接合体5の変形が少ない。4b are in close contact with each other, so there is little deformation of the joined body 5.

また従来のように大きな加圧力を発生させる加圧装置は
必要としない。さらにイオンプレーティング法によれば
極めて薄い薄膜層10を形成することが可能となるため
、接合部から発生する蒸気の影響を大幅に低減すること
ができる。
Further, unlike the conventional method, a pressurizing device that generates a large pressurizing force is not required. Furthermore, since the ion plating method makes it possible to form an extremely thin thin film layer 10, the influence of vapor generated from the joint can be significantly reduced.

以上の実施例においては、薄膜層10の形成方法としで
、金属箔を接合f4面に挿入して形成する方法または、
イオンプレーティング法を使用しているが、その他の薄
膜形成法によってもよい。
In the above embodiments, the thin film layer 10 is formed by inserting a metal foil into the bonding f4 surface, or
Although the ion plating method is used, other thin film forming methods may be used.

すなわち、低圧ガス雰囲気で電極間に電圧を加えてガス
を電離してイオン化し、このガスイオンを金属材に衝突
させ、金属材表面から飛び出した金属原子を対向する基
材内部に侵入させ、基材原子と入れ替わることによって
金属薄膜を形成するスパッタリング法や、気体状態の原
子を低温の接合体要素端面に直接凝縮させる真空蒸着法
などの物理化学的な気相成長法を採用することもできる
That is, a voltage is applied between the electrodes in a low-pressure gas atmosphere to ionize the gas, and the gas ions collide with the metal material, causing the metal atoms ejected from the surface of the metal material to enter the interior of the opposing base material. It is also possible to employ physicochemical vapor phase growth methods such as sputtering, which forms a thin metal film by replacing atoms of the material, and vacuum evaporation, which directly condenses gaseous atoms onto the end faces of the low-temperature bonded elements.

上記のスパッタリング法、真空蒸着法等によれば金属箔
よりさらに薄い金属薄S層を形成することが可能となり
、特に蒸気圧の高い金属材を薄膜層として使用せざるを
得ない場合において、薄膜層からの蒸気発生量を大幅に
低減することが可能となり、使用前のベーキング時間を
大幅に短縮することができる効果を有する。
According to the above-mentioned sputtering method, vacuum evaporation method, etc., it is possible to form a thin metal S layer that is even thinner than metal foil. It becomes possible to significantly reduce the amount of steam generated from the layer, and has the effect of significantly shortening the baking time before use.

〔発明の効果〕〔Effect of the invention〕

以上説明の通り本発明によれば、接合体要素の融点より
低温で液相を生成し接合体要素と固溶する薄膜層を接合
体要素問に設けているため、加熱操作時に薄g!層が溶
解して液相を生成し、この液相を介して接合体要素の原
子とNg!層の原子とが相互に拡散し、共晶組成物が迅
速に形成される。
As explained above, according to the present invention, since a thin film layer is provided between the bonded body elements and forms a liquid phase at a temperature lower than the melting point of the bonded body elements and forms a solid solution with the bonded body elements, thin g! The layer dissolves to produce a liquid phase, and through this liquid phase, atoms of the conjugate element and Ng! The atoms of the layer interdiffuse and a eutectic composition is rapidly formed.

この液相における金属原子相互の拡散速度は、従来の同
相における拡散速度と比較して大きいため、単位時間に
おける相互の拡散酔は大幅に増加する。
Since the rate of mutual diffusion of metal atoms in this liquid phase is higher than that in the conventional same phase, the mutual diffusion sickness per unit time increases significantly.

そのため、接合端面近傍での各原子の濃度勾配は小さく
なり、接合部の特性は母材の特性から連続的に変化した
ものとなる。したがって、従来のろう付接合の場合に発
生する母材相互の不連続面が形成されないため、機械的
強度が優れた接合体を得ることができる。
Therefore, the concentration gradient of each atom near the joint end face becomes small, and the characteristics of the joint part continuously change from the characteristics of the base material. Therefore, discontinuous surfaces between the base materials that occur in conventional brazing joints are not formed, so that a joined body with excellent mechanical strength can be obtained.

また、接合端面に液相が生じるために、小さい加圧力を
作用させるだけでギャップやボイドが消失し、内接合体
要素の接合面全面において密着性に浸れた良好な接合面
を得ることができる。
In addition, since a liquid phase is generated at the joint end face, gaps and voids can be eliminated by simply applying a small pressure, and a good joint surface with good adhesion can be obtained over the entire joint surface of the inner joint body element. .

また、冷却孔用に形成した細溝が加圧力によって変形ケ
ることにより冷却効率を低下せしめたり、製品としての
寸法精度が低下することが少ない。
In addition, the thin grooves formed for the cooling holes are less likely to be deformed by pressing force, thereby reducing the cooling efficiency and reducing the dimensional accuracy of the product.

干た接合操作と同時に冷却孔が形成されるため、部材外
面に冷却管を固着ざVる従来の方法と比較して製造工程
が簡略化される。また冷ム】孔が接合体内部に形成され
、その冷却表面積が大きく確保されるため、冷却効果が
増大するなどの優れた効果を発揮する。
Since the cooling holes are formed at the same time as the dry bonding operation, the manufacturing process is simplified compared to the conventional method of fixing cooling pipes to the outer surface of the member. In addition, cooling holes are formed inside the bonded body and a large cooling surface area is ensured, resulting in excellent effects such as increased cooling effect.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る接合体の構造およびその製造方法
を実施するための装置の一実施例を示す断面図、第2図
は本発明方法によって円筒形の接合体を製造する状態を
示す斜視図、第3図(a)は円形の冷却管を設けた従来
の電極板の構造を示す断面図、第3図(b)は角形の冷
却管を設けた従来の電極板の構〕コを示す断面図、第3
図(C)は電子ビーム溶接によって接合体要素を接合し
て形成した従来の接合体の構造を示す断面図、第3図(
d)は拡散接合によって形成した従来の接合体の構造を
示す断面図である。 1・・・ビーム加速用電極板、1a・・・電極板本体、
2・・・ろう材、3.3a、3b・・・冷却管、4.4
a。 4b・・・接合体要素、5・・・接合体、6・・・側溝
、7・・・接合端面、8・・・冷ツク孔、9・・・電子
ビーム溶接ビード、10・・・′;rjJ膜居、11・
・・チタン箔、12・・・真空炉、13・・・試り#台
、14・・・加圧錘、15・・・加熱器、16・・・チ
タン層。 嵜 I  副 第 25A (イ) Cd) 準 3 因
FIG. 1 is a cross-sectional view showing an embodiment of the structure of a joined body according to the present invention and an apparatus for carrying out the manufacturing method thereof, and FIG. 2 shows a state in which a cylindrical joined body is manufactured by the method of the present invention. A perspective view, FIG. 3(a) is a sectional view showing the structure of a conventional electrode plate provided with circular cooling pipes, and FIG. 3(b) is a cross-sectional view showing the structure of a conventional electrode plate provided with square cooling pipes. 3rd cross-sectional view showing
Figure (C) is a sectional view showing the structure of a conventional joined body formed by joining joined body elements by electron beam welding, and Figure 3 (
d) is a sectional view showing the structure of a conventional bonded body formed by diffusion bonding. 1... Electrode plate for beam acceleration, 1a... Electrode plate body,
2... Brazing metal, 3.3a, 3b... Cooling pipe, 4.4
a. 4b... Joined body element, 5... Joined body, 6... Side groove, 7... Joining end surface, 8... Cold hole, 9... Electron beam welding bead, 10...' ;rjJMeiroi, 11・
... Titanium foil, 12 ... Vacuum furnace, 13 ... Trial #stand, 14 ... Pressure weight, 15 ... Heater, 16 ... Titanium layer. Saki I Sub No. 25A (A) Cd) Quasi-3 Cause

Claims (5)

【特許請求の範囲】[Claims] 1.端面に冷却孔用の細溝を形成した複数の接合体要素
から成り、接合体要素の融点より低温で液相を生成し接
合体要素と固溶する薄膜層を上記接合体要素間に設け、
上記薄膜層を介して接合体要素相互を一体に拡散接合し
て一体化した接合体要素内部に冷却孔を形成したことを
特徴とする接合体。
1. Consisting of a plurality of joined body elements with narrow grooves for cooling holes formed on the end faces, a thin film layer that generates a liquid phase at a temperature lower than the melting point of the joined body elements and forms a solid solution with the joined body elements is provided between the joined body elements,
A bonded body characterized in that cooling holes are formed inside the bonded body elements that are integrated by diffusion bonding the bonded body elements together through the thin film layer.
2.接合体要素は銅または銅合金で形成される一方、薄
膜層は、チタン(Ti)、シリコン(Si)およびジル
コニウム(Zr)のいずれか1種の材料で形成された請
求項1記載の接合体。
2. The assembly of claim 1, wherein the assembly element is made of copper or a copper alloy, while the thin film layer is made of one of titanium (Ti), silicon (Si) and zirconium (Zr). .
3.接合体要素は、モリブデンまたはモリブデン合金で
形成される一方、薄膜層は金(Au)で形成された請求
項1記載の接合体。
3. The assembly of claim 1, wherein the assembly element is made of molybdenum or a molybdenum alloy, while the thin film layer is made of gold (Au).
4.少なくとも一方の接合端面に冷却孔用の細溝を形成
した複数の接合体要素間に、接合体要素の融点より低温
度で液相を生成して接合体要素と固溶する薄膜層を形成
した後に、真空条件下で加熱加圧することにより、接合
端面に相互拡散を生起せしめ、突き合せた接合体要素を
接合し、一体化した接合体を形成すると同時に、接合体
内部に冷却孔を形成することを特徴とする接合体の製造
方法。
4. A thin film layer that generates a liquid phase at a temperature lower than the melting point of the joined body elements and forms a solid solution with the joined body elements is formed between a plurality of joined body elements in which narrow grooves for cooling holes are formed on at least one joint end surface. Later, by heating and pressurizing under vacuum conditions, mutual diffusion is caused on the joint end surfaces, and the butted joint body elements are joined to form an integrated joint, and at the same time, cooling holes are formed inside the joint. A method for manufacturing a joined body, characterized by:
5.薄膜層は、イオンプレーティング法、スパッタリン
グ法、真空蒸着法等の物理化学的気相成長法によつて形
成する請求項4記載の接合体の製造方法。
5. 5. The method for manufacturing a bonded body according to claim 4, wherein the thin film layer is formed by a physicochemical vapor phase growth method such as an ion plating method, a sputtering method, or a vacuum evaporation method.
JP63001152A 1988-01-08 1988-01-08 Electrode plate and manufacturing method thereof Expired - Fee Related JP2523742B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63001152A JP2523742B2 (en) 1988-01-08 1988-01-08 Electrode plate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63001152A JP2523742B2 (en) 1988-01-08 1988-01-08 Electrode plate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JPH01178383A true JPH01178383A (en) 1989-07-14
JP2523742B2 JP2523742B2 (en) 1996-08-14

Family

ID=11493460

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63001152A Expired - Fee Related JP2523742B2 (en) 1988-01-08 1988-01-08 Electrode plate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP2523742B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110883418A (en) * 2019-11-28 2020-03-17 苏州创阔金属制品有限公司 Spiral-flow type atomizing nozzle machining process
CN113478062A (en) * 2021-09-08 2021-10-08 北京机电研究所有限公司 Reaction diffusion connection method for titanium-zirconium-molybdenum alloy high-temperature-resistant joint

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151956A (en) * 1982-03-03 1983-09-09 Hitachi Ltd Resistance-welded joint of material with high conductivity and its manufacture
JPS59110485A (en) * 1982-12-15 1984-06-26 Sumitomo Metal Mining Co Ltd Production of molybdenum composite plate

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58151956A (en) * 1982-03-03 1983-09-09 Hitachi Ltd Resistance-welded joint of material with high conductivity and its manufacture
JPS59110485A (en) * 1982-12-15 1984-06-26 Sumitomo Metal Mining Co Ltd Production of molybdenum composite plate

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110883418A (en) * 2019-11-28 2020-03-17 苏州创阔金属制品有限公司 Spiral-flow type atomizing nozzle machining process
CN113478062A (en) * 2021-09-08 2021-10-08 北京机电研究所有限公司 Reaction diffusion connection method for titanium-zirconium-molybdenum alloy high-temperature-resistant joint

Also Published As

Publication number Publication date
JP2523742B2 (en) 1996-08-14

Similar Documents

Publication Publication Date Title
US4869421A (en) Method of jointing titanium aluminide structures
US4452389A (en) Method for welding with the help of ion implantation
US4245768A (en) Method of cold welding using ion beam technology
US3365787A (en) Method of making metal honeycomb sandwich structure
JP3554835B2 (en) Backing plate manufacturing method
JPH01178383A (en) Joining body and its manufacture
JPS59225893A (en) Joining method of ti or ti alloy to al or al alloy
JP2703975B2 (en) Accelerator electrode plate and method of manufacturing the same
JPS58120578A (en) Selective brazing method for inorganic base material
JPH08253373A (en) Production of vacuum airtight vessel sealant, vacuum airtight vessel, and ceramic-metal junction body
JP3802257B2 (en) Manufacturing method of ion source electrode plate
JP2002305005A (en) Gas separator and its manufacturing method
JP3733708B2 (en) Method for joining silicon wafers using aluminum
JPH01308884A (en) Material-bonding process and bonded product
US20080061114A1 (en) Method for the fabrication of low temperature vacuum sealed bonds using diffusion welding
JP2005050600A (en) Electrode plate for ion source and its manufacturing method
JP2550667B2 (en) Hermetically sealed lid manufacturing method
JPH0910962A (en) Method for joining aluminum material and stainless steel material
JP3281318B2 (en) Pressure contact type semiconductor device and method of manufacturing the same
JPH069907B2 (en) Method for producing composite material composed of graphite and metal
JPH10321152A (en) Ion acceleration electrode plate and its manufacture
JPH07164165A (en) Joining method of metal
JP2001281398A (en) Ion source electrode
JPH0719082Y2 (en) Ion source electrode
JPH0662342B2 (en) Method for joining silicon nitride ceramics and metal

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees