JPH0117829B2 - - Google Patents

Info

Publication number
JPH0117829B2
JPH0117829B2 JP58004026A JP402683A JPH0117829B2 JP H0117829 B2 JPH0117829 B2 JP H0117829B2 JP 58004026 A JP58004026 A JP 58004026A JP 402683 A JP402683 A JP 402683A JP H0117829 B2 JPH0117829 B2 JP H0117829B2
Authority
JP
Japan
Prior art keywords
cutting
temperature
workpiece
quenching
aus
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP58004026A
Other languages
Japanese (ja)
Other versions
JPS59129644A (en
Inventor
Yasuo Fujioka
Takami Ozaki
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Toyo Bearing Co Ltd filed Critical NTN Toyo Bearing Co Ltd
Priority to JP402683A priority Critical patent/JPS59129644A/en
Publication of JPS59129644A publication Critical patent/JPS59129644A/en
Publication of JPH0117829B2 publication Critical patent/JPH0117829B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23QDETAILS, COMPONENTS, OR ACCESSORIES FOR MACHINE TOOLS, e.g. ARRANGEMENTS FOR COPYING OR CONTROLLING; MACHINE TOOLS IN GENERAL CHARACTERISED BY THE CONSTRUCTION OF PARTICULAR DETAILS OR COMPONENTS; COMBINATIONS OR ASSOCIATIONS OF METAL-WORKING MACHINES, NOT DIRECTED TO A PARTICULAR RESULT
    • B23Q15/00Automatic control or regulation of feed movement, cutting velocity or position of tool or work
    • B23Q15/007Automatic control or regulation of feed movement, cutting velocity or position of tool or work while the tool acts upon the workpiece
    • B23Q15/18Compensation of tool-deflection due to temperature or force

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Automatic Control Of Machine Tools (AREA)
  • Turning (AREA)

Description

【発明の詳細な説明】 イ 産業上の利用分野 この発明は、鋼機械部品を焼入冷却過程中の過
冷オーステナイト状態で切削加工する所謂オース
カツテイングに於いて、ワーク寸法を所定の寸法
に仕上げる為の寸法制御方法に関するものであ
る。
[Detailed Description of the Invention] A. Field of Industrial Application This invention is used to cut workpieces to predetermined dimensions in so-called aus cutting, in which steel machine parts are cut in a supercooled austenite state during the quenching and cooling process. This relates to a dimensional control method for finishing.

ロ 従来技術 一般に、鋼の焼入熱処理工程中に於いては、第
1図に示す様な寸法変化が起こることが知られて
いる。即ち、最初Aの寸法のものが、焼入加熱に
よる熱膨張によりBまで寸法が膨張し、B点から
急速冷却を行うことによりB→C→DとMs点ま
で熱収縮が起つて寸法が収縮し、そしてMs点か
らさらに室温までの冷却によりマルテンサイトの
変態膨張が起こり、再びD→Eと寸法が膨張し、
最終的にAの寸法のものがEの寸法になつてい
る。
B. Prior Art Generally, it is known that dimensional changes as shown in FIG. 1 occur during the quenching heat treatment process of steel. In other words, an item with dimension A initially expands to B due to thermal expansion due to quenching heating, and by rapid cooling from point B, thermal contraction occurs from B → C → D and the dimension changes to point M s . Then, by further cooling from the M s point to room temperature, transformation expansion of martensite occurs, and the dimensions expand from D to E again.
Finally, the A dimension becomes the E dimension.

そこで、一般の鋼機械部品の切削加工は、予め
焼入熱処理による膨張量(第1図中)を把握
して当該膨張量を見込んだ加工狙い寸法にし、焼
入熱処理によつて所望の仕上げ寸法(研削加工の
取代を見込んだ研削加工の狙い寸法)になるよう
に行われていた。
Therefore, when machining general steel machine parts, the amount of expansion due to quenching heat treatment (in Figure 1) is determined in advance, and the target machining dimensions are set taking into account the amount of expansion, and the desired finished dimensions are obtained by quenching heat treatment. (Target dimensions for grinding considering the machining allowance for grinding).

一方、本出願人が既に特許第1093371号に於い
て新しく開発している切削加工方法、即ち、焼入
冷却過程中の過冷オーステナイト状態で切削加工
を行わせるオースカツテイングに於いても、Ms
点近傍のMs点より高い温度域Cで切削加工を施
す為、間の収縮と間の膨張を考慮に入れて
加工狙い寸法を設定していた。従つて、オースカ
ツテイングに於いては切削時の寸法コントロール
の重要性も然ることながら、切削時に於けるワー
ク温度の管理も非常に重要である。
On the other hand, M s
Since cutting is performed in a temperature range C that is higher than the M s point near the point, the target machining dimensions were set taking into account the contraction and expansion between the points. Therefore, in aus cutting, while it is important to control the dimensions during cutting, it is also very important to control the temperature of the workpiece during cutting.

ところが、オースカツテイングされるワーク
(焼入炉から取り出されたワーク)の温度を厳し
く管理する為には、焼入炉の温度管理を厳しく行
なわなければならない。また、高精度な温度制御
機能をもつた高価な焼入炉設備が必要になる。し
かも、実操業に於いては切削時のワーク温度は、
焼入熱処理条件のバラツキ及び熱処理終了後の施
削加工機までの搬送中の温度低下等の問題があ
り、常に一定温度に管理するのは困難な状況にあ
る。
However, in order to strictly control the temperature of the work to be oascutted (the work taken out from the quenching furnace), the temperature of the quenching furnace must be strictly controlled. In addition, expensive quenching furnace equipment with a highly accurate temperature control function is required. Moreover, in actual operation, the workpiece temperature during cutting is
There are problems such as variations in the quenching heat treatment conditions and a drop in temperature during transportation to the machining machine after the heat treatment, making it difficult to always maintain a constant temperature.

ハ 発明の目的 この発明の目的は、したがつて、焼入冷却過程
の過冷オーステナイト状態で切削加工を行うオー
スカツテイングにおいて、切削時のワーク温度が
変動しても、最終仕上げ寸法(第1図中E点)を
常に一定に制御できるようにすることである。
C. Purpose of the Invention Therefore, the purpose of the present invention is to solve the problem that, in aus cutting in which cutting is performed in the supercooled austenite state during the quenching and cooling process, even if the workpiece temperature changes during cutting, the final finished dimension (first Point E in the figure) can be controlled to be constant at all times.

ニ 発明の構成 この発明は、切削加工(オースカツテイング)
の為に旋盤に装架されるワークの温度を切削開始
前に計測し、オースカツテイングを施す時のワー
ク温度として予め設定されている温度(以下、基
準温度という)に対する温度差を求め、その温度
差をワークの熱処理変態による寸法変化量、特に
収縮量に演算変換し、その寸法変化量に基づいて
工具位置(オースカツテイングされるワークの加
工狙い寸法)のフイードバツク補正を行う様にし
たものである。尚、この発明は、種々の実験結果
により考察したもので、オースカツテイング終了
後からMs点まで冷却される間はほぼ直線的に寸
法収縮が起り、その後室温まで冷却される間にマ
ルテンサイト変態により膨張量が一定していると
いう実験結果に基づくものである。
D. Structure of the invention This invention relates to cutting processing (auscutting).
For this purpose, the temperature of the workpiece mounted on the lathe is measured before cutting starts, and the temperature difference from the temperature preset as the workpiece temperature when performing aus cutting (hereinafter referred to as reference temperature) is determined. The temperature difference is calculated and converted into the amount of dimensional change due to heat treatment transformation of the workpiece, especially the amount of shrinkage, and feedback correction of the tool position (target machining dimension of the workpiece to be cut) is performed based on the amount of dimensional change. It is. This invention was based on the results of various experiments, and it was found that dimensional shrinkage occurred almost linearly during cooling to the M s point after the completion of aus cutting, and that martensite decreased during cooling to room temperature. This is based on experimental results showing that the amount of expansion is constant due to transformation.

ホ 実施例 ワークとして高炭素クロム軸受鋼(SUJ3)を
使用し、中空円筒形状に作製したものを用いる。
これを850℃の焼入温度に1時間均一加熱した後、
200℃の油中で急速冷却を行い、約3分間保持し
て後、油中から取出し素早く旋盤にチヤツキング
し、外径面の切削加工(オースカツテイング)を
実施した。この時、旋盤チヤツクから取外し室温
になるまでの空冷状態において、ワーク温度と寸
法変化の測定を行つたところ第2図に示す様にな
つており、オースカツテイング終了後(220℃)
から約160のMs点まで空冷される間はほぼ直線的
に寸法収縮が起こり、その、室温まで冷却される
間はマルテンサイ変態により定量的に膨張するこ
とが明らかになつた。その結果、第2図よりオー
スカツテイング終了後からMs点まで冷却される
間の単位温度当りの収縮率(1℃当りの寸法変化
率△l/l・℃)→〔過冷却オーステナイトの熱
収縮率〕は約2.2×10-5と求まり、また、Ms点か
ら室温までの膨張率(△l/l)は4.1×10-3
求まるので、オースカツテイング狙い寸法(l)と室
温まで冷却された最終仕上り寸法(L)及びオースカ
ツテイング開始ワーク温度(T)の関係は(1)式の
様に表わされる。
E. Example A workpiece made of high carbon chromium bearing steel (SUJ3) and made into a hollow cylindrical shape is used.
After uniformly heating this to a quenching temperature of 850℃ for 1 hour,
After rapidly cooling in oil at 200°C and holding for about 3 minutes, it was taken out from the oil and quickly chucked on a lathe to perform cutting on the outer diameter surface. At this time, the workpiece was removed from the lathe chuck and cooled in air until it reached room temperature, and the temperature and dimensional changes of the workpiece were measured, as shown in Figure 2. After the cutting was completed (220℃).
It was revealed that dimensional shrinkage occurred almost linearly during air cooling from 100 to about 160 M s point, and that during cooling to room temperature quantitative expansion occurred due to martensitic transformation. As a result, from Fig. 2, the shrinkage rate per unit temperature (dimensional change rate △l/l・℃ per 1°C) from the end of aus cutting to the M s point → [heat of supercooled austenite] The contraction rate] is found to be approximately 2.2×10 -5 , and the expansion rate (△l/l) from the M s point to room temperature is found to be 4.1×10 -3 , so the target dimension for aus cutting (l) and the room temperature The relationship between the final finished dimension (L) that has been cooled down to the temperature at which the aus cutting starts (T) is expressed by equation (1).

L=l+△l=l+l{4.1×10-3−(T−160)
×2.2×10-5} =l{1+4.1×10-3−(T−160)×2.2×10-5
……(1) 以上の結果に基づき、切削時のワーク温度が変
動しても最終仕上り寸法を常に一定に制御できる
方法を考察するに、次の方法が有効であるとの結
論に至つた。即ち、焼入熱処理後のワークをチヤ
ツキング後、ワーク温度を計測し、基準温度に対
する温度差に相当する収縮寸法量を工具補正値と
してNC加工機へフイードバツクする方法で、第
3図はそのフローチヤートである。その際、各工
具に対する温度−寸法変換係数として前述したと
ころで得られた過冷オーステナイトの熱収縮率
2.2×10-5を用いる。
L=l+△l=l+l{4.1×10 -3 −(T-160)
×2.2×10 -5 } =l {1+4.1×10 -3 −(T-160)×2.2×10 -5 }
...(1) Based on the above results, we have come to the conclusion that the following method is effective when considering a method that can always control the final finished dimensions to be constant even when the workpiece temperature fluctuates during cutting. In other words, after checking the workpiece after quenching heat treatment, the workpiece temperature is measured, and the shrinkage dimension amount corresponding to the temperature difference with respect to the reference temperature is fed back to the NC processing machine as a tool correction value. Figure 3 is a flowchart of this method. It is. At that time, the thermal contraction coefficient of the supercooled austenite obtained above was used as the temperature-dimensional conversion coefficient for each tool.
2.2×10 -5 is used.

上述について、更に具体的実験例を示す。 Regarding the above, a more specific experimental example will be shown.

上記制御方式で深溝玉軸受の内輪ワークNo.1
〜No.14につき連続してオースカツテイングの切
削実験を行つた。この実験に於ける切削条件は下
記の通りであり、切削ツールレイアウトは第4図
の通りである。
With the above control method, the inner ring work of deep groove ball bearings is No. 1.
- Continuously conducted cutting experiments for No. 14. The cutting conditions in this experiment were as follows, and the cutting tool layout was as shown in FIG.

切削速度:V=200m/min 送り量:f=0.2mm/rev 切込量:T=1.5mm(鍛造ローリング品を所定寸
法まで1回削り仕上げ) 使用工具:12.7mmφ丸形黒セラミツク工具 すくい角 −6゜ −9゜ −8.5゜ また、切削各部の単位温度当りの補正係数は、
ワークの加工狙い寸法が外径135.5mm、内径99.5
mm、幅47.2mmの場合、第2図に示すオースカツテ
イング終了後の寸法変化曲線に基づき次の様に決
定される。
Cutting speed: V = 200 m/min Feed amount: f = 0.2 mm/rev Depth of cut: T = 1.5 mm (forged rolling product finished by cutting once to specified dimensions) Tool used: 12.7 mmφ round black ceramic tool rake angle −6゜−9゜−8.5゜ Also, the correction coefficient per unit temperature of each cutting part is
The target dimensions for processing the workpiece are outer diameter 135.5mm and inner diameter 99.5mm.
mm, and the width is 47.2 mm, it is determined as follows based on the dimensional change curve after the completion of aus cutting shown in Fig. 2.

外径部:135.5×2.2×10-5≒3.0×10-3 内径部:99.5×2.2×10-5≒2.2×10-3 幅 部:47.2×2.2×10-5≒1.1×10-3 上述の如く、切削各部の単位温度当りの補正係
数が求まると、切削開始時のワーク温度のオース
カツテイング基準温度に対する温度差に相当する
熱処理変態の寸法変化量(収縮寸法量)を工具補
正値としてNC温度補正装置で換算し、これを
NC加工機制御部でフイードバツクすることによ
つて、オースカツテイング開始時のワーク温度の
変動による影響を受けないようにしている。
Outer diameter: 135.5×2.2×10 -5 ≒3.0×10 -3 Inner diameter: 99.5×2.2×10 -5 ≒2.2×10 -3 Width: 47.2×2.2×10 -5 ≒1.1×10 -3 Above Once the correction coefficient per unit temperature of each cutting part is determined, the amount of dimensional change due to heat treatment transformation (shrinkage dimensional amount) corresponding to the temperature difference between the workpiece temperature at the start of cutting and the aus cutting reference temperature is used as the tool correction value. Convert it using the NC temperature correction device and convert it into
Feedback is performed in the NC processing machine control section to avoid being affected by changes in workpiece temperature at the start of aus cutting.

熱処理条件としては電気炉中で850℃×1hr保持
した後、焼入冷却装置にて焼入を行つた。温度補
正の効果を明確にする目的で、また切削補正の効
果を明確にする目的で、切削開始温度が大きく変
化する様にNo.1.2は焼入温度200℃で3.5分間、
No.3.4は温度180℃で4分間、No.5〜No.14は180
℃で3.5分間保持することにより、冷却条件を変
化させた(オースカツテイング開始時のワーク温
度を変化させた)。
The heat treatment conditions were as follows: After being held at 850°C for 1 hour in an electric furnace, quenching was performed using a quenching cooling device. In order to clarify the effect of temperature compensation and the effect of cutting compensation, No. 1.2 was heated at a quenching temperature of 200℃ for 3.5 minutes so that the cutting start temperature changed greatly.
No.3.4 at 180℃ for 4 minutes, No.5 to No.14 at 180℃
The cooling conditions were varied by holding at ℃ for 3.5 minutes (the work temperature at the start of aus cutting was varied).

その結果、第5図に示した様に切削開始温度が
約30℃程度変動した場合でもこの発明による補正
切削の効果で、最終仕上り寸法をほぼ一定寸法に
制御できることが明らかになつた。
As a result, it was revealed that even when the cutting start temperature fluctuates by about 30°C as shown in FIG. 5, the effect of the corrective cutting according to the present invention makes it possible to control the final finished size to a nearly constant size.

ヘ 発明の効果 この発明によれば、切削開始時のワーク温度が
変動しても最終仕上げ寸法を常に一定寸法に制御
することができ、従つて、強靭鋼の精密部品加工
方法として極めて有用である。
F. Effects of the Invention According to the present invention, even if the temperature of the workpiece at the start of cutting fluctuates, the final finished dimensions can always be controlled to a constant dimension, and therefore, it is extremely useful as a method for machining precision parts made of tough steel. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は鋼の熱膨張収縮曲線図、第2図はオー
スカツテイング終了後の寸法変化曲線図、第3図
はこの発明のワークの寸法制御方法のフローチヤ
ート図、第4図は切削ツールレイアウト図、第5
図は切削開始温度と寸法測定結果を示すグラフ図
である。
Fig. 1 is a thermal expansion/contraction curve diagram of steel, Fig. 2 is a dimensional change curve diagram after the completion of aus cutting, Fig. 3 is a flowchart of the workpiece dimension control method of this invention, and Fig. 4 is a cutting tool. Layout diagram, 5th
The figure is a graph showing cutting start temperature and dimensional measurement results.

Claims (1)

【特許請求の範囲】[Claims] 1 焼入冷却過程中の過冷オーステナイト状態で
切削加工を行うオースカツテイングにおいて、切
削加工前のワーク温度を計測し、基準温度に対す
る温度差を熱処理変態による寸法変化量に演算変
換し、工具位置の補正量としてフイードバツク補
正を行うことを特徴とするワークの寸法制御方
法。
1 In aus cutting, in which cutting is performed in the supercooled austenite state during the quenching and cooling process, the workpiece temperature before cutting is measured, the temperature difference with respect to the reference temperature is calculated and converted into the amount of dimensional change due to heat treatment transformation, and the tool position is calculated. A workpiece dimension control method characterized by performing feedback correction as a correction amount.
JP402683A 1983-01-12 1983-01-12 Method of controlling size of work Granted JPS59129644A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP402683A JPS59129644A (en) 1983-01-12 1983-01-12 Method of controlling size of work

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP402683A JPS59129644A (en) 1983-01-12 1983-01-12 Method of controlling size of work

Publications (2)

Publication Number Publication Date
JPS59129644A JPS59129644A (en) 1984-07-26
JPH0117829B2 true JPH0117829B2 (en) 1989-04-03

Family

ID=11573443

Family Applications (1)

Application Number Title Priority Date Filing Date
JP402683A Granted JPS59129644A (en) 1983-01-12 1983-01-12 Method of controlling size of work

Country Status (1)

Country Link
JP (1) JPS59129644A (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2541217B2 (en) * 1987-05-12 1996-10-09 石川島播磨重工業株式会社 Shaft processing method
JP2508092B2 (en) * 1987-05-30 1996-06-19 石川島播磨重工業株式会社 Grinding machine
JP2592082B2 (en) * 1987-12-29 1997-03-19 東芝機械株式会社 Grinding control method in roll grinder
JP5769456B2 (en) * 2011-03-11 2015-08-26 株式会社ジェイテクト Thermal displacement correction apparatus and thermal displacement correction method

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52145247A (en) * 1976-05-28 1977-12-03 Hitachi Seiki Kk Automatic measuring apparatus for compensating thermal expansion in machining
JPS5715641A (en) * 1980-07-01 1982-01-27 Ntn Toyo Bearing Co Ltd Cutting and hardening of steel machine parts

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS52145247A (en) * 1976-05-28 1977-12-03 Hitachi Seiki Kk Automatic measuring apparatus for compensating thermal expansion in machining
JPS5715641A (en) * 1980-07-01 1982-01-27 Ntn Toyo Bearing Co Ltd Cutting and hardening of steel machine parts

Also Published As

Publication number Publication date
JPS59129644A (en) 1984-07-26

Similar Documents

Publication Publication Date Title
Ding et al. Laser-assisted machining of hardened steel parts with surface integrity analysis
US4383784A (en) Method and means of manufacturing a rotary cutting tool
US4077812A (en) Method of working steel machine parts including machining during quench cooling
JP2000063952A (en) Manufacture of hollow shaft
JPH0117829B2 (en)
JPH0236026A (en) Working method for thin wall pipe
KR0170537B1 (en) Method and apparatus for correcting the hardening deformation of annular elements
Verkerk Slotted wheels to avoid cracks in precision grinding
JP2017132000A (en) Manufacturing system and manufacturing method
JPH0133290B2 (en)
JPH0126818B2 (en)
CN108838630A (en) A kind of globoid cam processing technology
Choi et al. NC code generation for laser assisted turn-mill of various type of clovers and square section members
US10730144B2 (en) Localized tempering of carburized steel
US3549410A (en) Process of rebuilding steel structures
JP2000273543A (en) High frequency induction hardening apparatus and hardening control method used for the apparatus
CN105945545B (en) A kind of processing method of ultrathin long rod reamer
Kalyan et al. Effect of laser process parameters on laser assisted machining of Inconel 718: Statistical–regression analyses
JPH06179167A (en) Polishing of roll
FUJIOKA et al. Dimension Control in the Machining of Bearing Steel in Supercooled Austenite
JPH0557562A (en) Gauge zero point compensation method in auto-sizing grinding
JPH0679389A (en) Production and device for plastic working
Yousefi et al. The variations of dimensional accuracy in dry hard turning operation
JP2584364B2 (en) Workpiece processing method with laser hardening
Bich et al. Experimental Researching of Thermal-Assisted Milling with Induction on Surface Roughness of SKD11 Steel