JPH01176221A - Production of oxide superconducting powder - Google Patents

Production of oxide superconducting powder

Info

Publication number
JPH01176221A
JPH01176221A JP62335980A JP33598087A JPH01176221A JP H01176221 A JPH01176221 A JP H01176221A JP 62335980 A JP62335980 A JP 62335980A JP 33598087 A JP33598087 A JP 33598087A JP H01176221 A JPH01176221 A JP H01176221A
Authority
JP
Japan
Prior art keywords
powder
oxide
raw material
solvent
superconducting powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62335980A
Other languages
Japanese (ja)
Inventor
Wataru Komatsu
亘 小松
Ryoji Sedaka
良司 瀬高
Toshiaki Shibata
柴田 俊昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62335980A priority Critical patent/JPH01176221A/en
Publication of JPH01176221A publication Critical patent/JPH01176221A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To obtain the title fine and spherical powder, by atomizing a raw material mixed solution constituting superconducting powder of oxide, heating in an oxygen atmosphere to give oxide powder and freeze-drying. CONSTITUTION:Each raw material constituting superconducting powder of oxide consisting of nitrates of Y, Ba, Cu, etc., is dissolved in a solvent to give solutions, which are blended in a desired composition to give a uniform solution 2. Then the solution is fed to an atomizer 3, atomized by an ultrasonic vibrator at 0.7-3MHz frequency, particles 4 of the atomized raw material solution are sent to a particle classifier 5 by an oxygen gas fed from a flow rate controller 1 and classified to give an atomized raw material 6 having several mum particle diameter. Then the raw material 6 is sent to a furnace 7 regulated at 700-1,100 deg.C by a sensor 8 and heated to give superconducting powder 9 of oxide base. Then the powder 9 is fed to a freezing and collecting container 10 cooled by a refrigerant, the powder 9 and the solvent are frozen and the solvent is removed by vacuum drying.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、微細で且つ球状の酸化物系超電導粉体の製造
方法に関するものであり、酸化物系粉体を溶媒と共に凍
結させて補集し、それを真空乾燥させて溶媒を除去する
と共に超電導粉体を回収するようにしたものである。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing fine and spherical oxide-based superconducting powder, in which oxide-based powder is frozen with a solvent and collected. The superconducting powder is then vacuum-dried to remove the solvent and collect the superconducting powder.

(従来の技術) アルカリ土金属、希土類元素、銅及び酸素からなるYB
a2Cu3O7−x 、La 5r2Cu307−x等
の酸化物系超電導体は、臨界温度(Tc)が高く、その
応用が期待されている。前記酸化物系超電導体は従来、
出発原料であるアルカリ土金属(Ba)等の炭酸塩、希
土類元素(Y、La等)の酸化物及び銅の酸化物を所望
組成になるように秤量した後粉砕しながら混合し、この
ようにして得られた混合物を予備焼晟することによって
複合酸化物とし、これを粉砕、分級後得られた混合粉体
を所望の形状に成形して焼結処理することによって製造
されていた。
(Prior art) YB consisting of alkaline earth metal, rare earth element, copper and oxygen
Oxide-based superconductors such as a2Cu3O7-x and La5r2Cu307-x have a high critical temperature (Tc) and are expected to be used for applications. Conventionally, the oxide-based superconductor is
The starting materials, which are carbonates of alkaline earth metals (Ba), oxides of rare earth elements (Y, La, etc.), and copper oxides, are weighed to the desired composition and then mixed while pulverizing. The resulting mixture is pre-sintered to obtain a composite oxide, which is then pulverized and classified, and the resulting mixed powder is formed into a desired shape and sintered.

(従来技術の問題点) しかし、こようにして得られる酸化物系超電導成形体の
密度を高くして、超電導特性を向上させるためには各粉
体同志の接触面積が大きくて、焼結処理時に粉体相互間
で固相拡散が充分に起こるよう、できるだけ微細で且つ
球状の粉体を用いるのが望ましい。
(Problems with conventional technology) However, in order to increase the density of the oxide-based superconducting molded body obtained in this way and improve its superconducting properties, the contact area between each powder must be large, and the sintering process It is desirable to use powders that are as fine and spherical as possible so that solid-phase diffusion can occur sufficiently between the powders.

しかしながら従来の機械的な粉砕方法ではこのような微
細な粉体を得るためには、粉砕及び分級を何回も繰り返
す必要があるため工程が非常に複雑になると共に、この
様にして得られた粉体の形状は主に突起状の先端を有す
る多角形状であり、球状の粉体を得ることは困難であっ
た。
However, in order to obtain such a fine powder using conventional mechanical grinding methods, it is necessary to repeat grinding and classification many times, making the process extremely complicated. The shape of the powder is mainly polygonal with a protruding tip, and it is difficult to obtain a spherical powder.

また従来の製造方法では製造効率がが低いという問題も
ある。
Another problem with conventional manufacturing methods is that manufacturing efficiency is low.

(発明の目的) 本発明は上記の点に鑑みて鋭意検討の結果なされたもの
であり、その目的とするところは、比較的簡単な工程で
、微細で且つ球状の酸化物系超電導粉体を得ることがで
き、しかも補集効率の良い製造方法を提供することにあ
る。
(Objective of the Invention) The present invention was made as a result of intensive studies in view of the above points, and its purpose is to produce fine and spherical oxide-based superconducting powder in a relatively simple process. It is an object of the present invention to provide a manufacturing method that can obtain the desired amount of carbon dioxide and has high collection efficiency.

(問題点を解決するための手段) 本発明の酸化物系超電導粉体の製造方法は、アルカリ出
金属、希土類元素、銅及び酸素からなる酸化物系超電導
粉体を製造するにあたり、(A)酸化物系超電導粉体を
構成する各々の原料を溶媒に溶かして溶液とした後、こ
れらを所望の組成比となるように混合して均一な混合溶
液とした後、該混合溶液を周波数0.7〜3MH,の超
音波振動子にて霧化し、この書状原料液体の粒子を所望
の粒子系に分級し、これを搬送する工程、(B)前記霧
状原料液体を0.2気圧以上の酸素分圧を有する酸素雰
囲気中で700〜1100℃に加熱して酸化物系粉体と
する工程、 (C)Bの工程で得られた酸化物系粉体を冷媒によって
冷却された凍結補集容器内に導入し、同粉体及び溶媒を
凍結させて補集する工程。
(Means for Solving the Problems) The method for producing oxide-based superconducting powder of the present invention includes (A) Each raw material constituting the oxide-based superconducting powder is dissolved in a solvent to form a solution, then mixed to a desired composition ratio to form a uniform mixed solution, and then the mixed solution is heated to a frequency of 0. A step of atomizing with an ultrasonic vibrator of 7 to 3 MH, classifying the particles of this letter raw material liquid into a desired particle system, and transporting the same, (B) a step of transporting the atomized raw material liquid at a pressure of 0.2 atmosphere or more A step of heating to 700 to 1100°C in an oxygen atmosphere having an oxygen partial pressure to obtain an oxide-based powder; (C) freezing collection in which the oxide-based powder obtained in step B is cooled with a refrigerant; The process of introducing the powder into a container, freezing and collecting the powder and solvent.

CD)C工程で得られた凍結物を真空乾燥させて溶媒を
除去し超電導粉体を回収する工程、を経て製造する車を
特徴とするものである。
CD) The vehicle is manufactured through a step of vacuum drying the frozen product obtained in step C to remove the solvent and recover superconducting powder.

本発明において、酸化物系超電導粉体を構成する各々の
原料を溶媒に溶かして溶液とする方法としては、例えば
Y、Ba及びCu等の硝酸塩を水に溶解する方法、これ
らのフルコキシド(例えばエトキシド等)をアルコール
に溶解する方法、これらのハロゲン化物(例えば塩化物
等)を用いる方法等が挙げられる。
In the present invention, methods for dissolving each raw material constituting the oxide superconducting powder in a solvent to form a solution include, for example, dissolving nitrates of Y, Ba, Cu, etc. in water, and dissolving these flucoxides (for example, ethoxides) in water. etc.) in alcohol, a method using halides of these (for example, chlorides, etc.), and the like.

本発明はこれらの溶液を所望の組成比となるように混合
して得られた混合溶液に、超音波振動を加えて霧化する
ことにより、微細でかつ大きさが比較的均一な霧状粒子
を得るものである。この場合、周波数がO,7M)12
未満であると粒子径が大きくなると共に径のバラツキも
大きくなり、又前記周波数が3MHzを超えると前記混
合液体が超音波振動子の振動に追従出来なくなり、霧化
が充分におこなわれないので、周波数0.7〜3MHz
の超音波振動子にて霧化する必要がある。
In the present invention, the mixed solution obtained by mixing these solutions to a desired composition ratio is atomized by applying ultrasonic vibration, thereby producing atomized particles that are fine and relatively uniform in size. This is what you get. In this case, the frequency is O,7M)12
If the frequency is less than 3 MHz, the particle size will increase and the variation in diameter will also increase, and if the frequency exceeds 3 MHz, the mixed liquid will not be able to follow the vibrations of the ultrasonic vibrator and atomization will not be performed sufficiently. Frequency 0.7~3MHz
It is necessary to atomize using an ultrasonic vibrator.

このようにして得られた霧状原料液体は所望の粒子径に
分級された後、酸素ガス等によって加熱炉に搬入され、
加熱及び酸素の作用によって酸化物系超電導粉体となる
が、前記霧状原料液体を充分に酸化させて超電導状態の
発現に最適な組成とするためには0.2気圧以上の酸素
分圧を有する酸素雰囲気中で加熱することが必要である
。この場合、加熱温度が700℃未満では酸化が不充分
であり、1100℃を超えると超電導粉体が一部溶融す
るので、700−1100℃の範囲内で加熱することが
必要である。
After the atomized raw material liquid obtained in this way is classified into the desired particle size, it is transported to a heating furnace using oxygen gas, etc.
Oxide-based superconducting powder is formed by heating and the action of oxygen, but in order to sufficiently oxidize the atomized raw material liquid to obtain an optimal composition for developing a superconducting state, an oxygen partial pressure of 0.2 atmospheres or more is required. It is necessary to heat in an oxygen atmosphere with In this case, if the heating temperature is less than 700°C, oxidation will be insufficient, and if it exceeds 1100°C, the superconducting powder will partially melt, so it is necessary to heat within the range of 700-1100°C.

本発明ではこのようにして得られた酸化物系粉体を、冷
媒によって冷却された凍結補集容器内に導入して、同粉
体に残存している溶媒と分解した溶媒とを凍結させて補
集する。その後、得られた凍結物を真空乾燥させること
により溶媒を除去して酸化物超電導粉体を回収する。
In the present invention, the oxide powder obtained in this manner is introduced into a freezing collection container cooled by a refrigerant, and the solvent remaining in the powder and the decomposed solvent are frozen. Supplement. Thereafter, the obtained frozen product is vacuum-dried to remove the solvent and recover the oxide superconducting powder.

次に本発明の実施態様を第1図、第2図を用いて具体的
に説明する。第1図は本発明の実施に使用した装置の一
例を示す説明図であり、この装置は次のA、B、C,D
の工程から構成される装置、このうちA、B、Cの工程
は第1図のA、B、Cに対応する。
Next, embodiments of the present invention will be specifically described using FIGS. 1 and 2. FIG. 1 is an explanatory diagram showing an example of the apparatus used in carrying out the present invention, and this apparatus is equipped with the following A, B, C, D
The apparatus consists of steps A, B, and C of which the steps A, B, and C correspond to A, B, and C in FIG.

(A)酸化物系超電導粉体の液体原料を霧化して粒子径
のそろった霧状原料液体を作成する工程。
(A) A step of atomizing a liquid raw material for oxide-based superconducting powder to create a mist raw material liquid with uniform particle sizes.

(B)前記霧状原料液体を酸化物系粉体とする工程。(B) A step of converting the atomized raw material liquid into oxide-based powder.

(C)Bの工程で得られた酸化物系粉体を冷媒によって
冷却された凍結補集容器内に導入し、同粉体及び溶媒を
凍結させて補集する工程、CD)(:工程で得られた凍
結物を真空乾燥して溶媒を除去し超電導粉体を回収する
工程、これらのうちA、B、Cの工程は連続化されてい
る。
(C) A step in which the oxide powder obtained in step B is introduced into a frozen collection container cooled by a refrigerant, and the powder and solvent are frozen and collected, CD) (: In step The steps of vacuum drying the obtained frozen product to remove the solvent and recovering the superconducting powder, among these steps A, B, and C, are continuous.

以下に前記A、B、C,Dの各工程について詳細に説明
する。
Each of the steps A, B, C, and D will be explained in detail below.

第1図のA工程において1は流体搬送用ガスの流量コン
トローラー、2は溶液化された酸化物系超電導体の原料
、3は前記原料溶液2の霧化装置、4は霧化された酸化
物系超電導体の原料、5は前記原料4の粒子分級器であ
る。
In step A of FIG. 1, 1 is a flow rate controller for a fluid transport gas, 2 is a raw material for the oxide-based superconductor that has been made into a solution, 3 is an atomizer for the raw material solution 2, and 4 is an atomized oxide. 5 is a particle classifier for the raw material 4 of the superconductor.

溶液化された酸化物系超電導体の出発原料2は周波数0
.7〜3MHzの超音波振動子よりなる霧−化装置3に
より霧化され、微細でかつ比較的大きさが均一な霧状粒
子となった後、搬送用ガスにより粒子分級器5に搬送さ
れる。ここで霧化された原料4は、重量差により粒径分
布が更に制御された粒径数gm程度の粒子群からなる霧
状原料6となる。
The starting material 2 of the oxide-based superconductor that has been made into a solution has a frequency of 0.
.. After being atomized by an atomization device 3 consisting of an ultrasonic vibrator of 7 to 3 MHz to become fine atomized particles with a relatively uniform size, the atomized particles are conveyed to a particle classifier 5 by a conveying gas. . The atomized raw material 4 here becomes an atomized raw material 6 consisting of a group of particles with a particle size of about several grams whose particle size distribution is further controlled by the weight difference.

第1図のB工程はA工程で分級された霧状原料6を酸化
物系粉体とする工程であり、7は加熱炉、8は該加熱炉
7の温度制御用センサー(熱電対等)、9は水蒸気が混
和されている酸化物系超電導粉体である。前記霧状原料
6は、熱電対等のセンサー8により700〜1100℃
の範囲内に温度制御された加熱炉7に、流量コントロー
ラー1により流量制御された酸素ガスによって搬入され
、加熱及び酸素の作用によって酸化物系超電導粉体9と
なる。尚、酸化物系超電導粉体9の出発原料を溶液化す
るための溶媒としては通常は水又はアルコールが用いら
れるので、前記酸化物超電導粉体9にはかなりの水分が
含まれている。又前記溶媒としては塩化物等のハロゲン
化物を用いても差し支えない。
Step B in FIG. 1 is a step in which the atomized raw material 6 classified in step A is turned into oxide powder; 7 is a heating furnace; 8 is a temperature control sensor (thermocouple, etc.) for the heating furnace 7; 9 is an oxide-based superconducting powder mixed with water vapor. The atomized raw material 6 is heated to a temperature of 700 to 1100°C by a sensor 8 such as a thermocouple.
Oxygen gas whose flow rate is controlled by a flow rate controller 1 is introduced into a heating furnace 7 whose temperature is controlled within a range of 1, and becomes an oxide-based superconducting powder 9 by heating and the action of oxygen. Incidentally, since water or alcohol is usually used as a solvent to dissolve the starting material of the oxide superconducting powder 9, the oxide superconducting powder 9 contains a considerable amount of water. Furthermore, halides such as chlorides may be used as the solvent.

第1図のC工程において10は凍結補集容器であり、こ
れは冷媒によって冷却されており、その内部に前記Bの
工程で得られた酸化物系粉体を導入して、同粉体とそれ
に残存している溶媒と分解した溶媒とを凍結させて補集
するものである。
In step C of FIG. 1, 10 is a frozen collection container, which is cooled by a refrigerant, into which the oxide powder obtained in step B is introduced and mixed with the same powder. The remaining solvent and decomposed solvent are frozen and collected.

Dの工程は真空乾燥工程であり、これは図示されていな
いが通常の真空乾燥機などを使用して行なう、この工程
はCの工程で凍結させた酸化物系粉体及び溶媒を真空乾
燥して溶媒を除去し超電導粉体を回収するものである。
Step D is a vacuum drying step, which is carried out using a normal vacuum dryer, etc. (not shown). In this step, the oxide powder and solvent frozen in Step C are vacuum dried. The solvent is removed and the superconducting powder is recovered.

(作用) 本発明の方法においては、酸化物系超電導粉体9を構成
する各々の原料を溶媒に溶かして溶液とした後、周波数
0.7〜3MHzの超音波振動子にて霧化し、この霧状
原料液体6の粒子を所望の粒子系に分級した後、前記霧
状原料液体6を酸化物系粉体としているので、微細で粒
子が均一な球状の酸化物系電導体粒子を比較的簡単な工
程で連続的に得ることが可能である。
(Function) In the method of the present invention, each raw material constituting the oxide-based superconducting powder 9 is dissolved in a solvent to form a solution, and then atomized using an ultrasonic vibrator with a frequency of 0.7 to 3 MHz. After the particles of the atomized raw material liquid 6 are classified into a desired particle system, the atomized raw material liquid 6 is made into an oxide-based powder, so fine and uniformly spherical oxide-based conductor particles are relatively separated. It can be obtained continuously through a simple process.

また酸化物超電導粉体を凍結補集容器10内に導入、そ
れを凍結して補集するので同容器10内に導入された酸
化物超電導粉体は確実に補集され、これまで補集困難で
あった0、1終以下の超微粉体の補集も可能となる。
In addition, since the oxide superconducting powder is introduced into the frozen collection container 10 and collected by freezing, the oxide superconducting powder introduced into the container 10 is reliably collected, which has been difficult to collect until now. It is also possible to collect ultrafine powder with a particle size of 0 or 1 or less.

(実施例1) 次に本発明を実施例により更に具体的に説明する。第1
図に示した装置を用いて、以下に示す方法により酸化物
系超電導粉体を製造した。出発原料としては、Y、Ba
及びCuの硝酸塩即ちY (NO3)3−6H20、B
a(NOx)2及びCu(NO3)2  ・3H20を
モル比で、Y : Ba:Cu=1:2:3となるよう
に採取し、脱イオン水に混合溶解して溶液濃度がYBa
2Cu307−++に換算して0.06 lIo//1
となるようにした混合溶液を用いた。又流体搬送用ガス
には酸素ガスを用い、流量は1.5N/+*inとした
。前記各原料の混合溶液を周波数1.7MHzの超音波
振動子よりなる霧化装置3により微粒子化し、粒子分級
器5により10JLm以上の大きい液滴は凝集させて回
収し、粒子径10pm未満の液滴のみを1000℃に加
熱された加熱炉7に搬送した。
(Example 1) Next, the present invention will be explained in more detail with reference to Examples. 1st
Oxide-based superconducting powder was manufactured by the method shown below using the apparatus shown in the figure. Starting materials include Y, Ba
and Cu nitrate i.e. Y (NO3)3-6H20, B
a(NOx)2 and Cu(NO3)2 3H20 were collected in a molar ratio of Y:Ba:Cu=1:2:3, and mixed and dissolved in deionized water until the solution concentration was YBa.
Converted to 2Cu307-++ 0.06 lIo//1
A mixed solution was used. Oxygen gas was used as the fluid transport gas, and the flow rate was 1.5 N/+*in. The mixed solution of each raw material is atomized by an atomization device 3 consisting of an ultrasonic vibrator with a frequency of 1.7 MHz, and large droplets of 10 JLm or more are collected by a particle classifier 5 by agglomeration, and liquid with a particle size of less than 10 pm is collected. Only the drops were transported to a heating furnace 7 heated to 1000°C.

次に加熱炉7内で酸化された超電導粉体を凍結補集容器
lO内に導入して超電導粉体及び溶媒を凍結させて補集
した。なお凍結補集容器10の温度は一60℃に保ち、
同補集容器lOの内壁に沿って超電導粉体が導入される
構造とした。超電導粉体及び溶媒を凍結させて補集した
この凍結補集容器lOを真空引きにより溶媒を除去した
後超電導粉体の回収を行なった。この時の回収率は90
%であった。
Next, the superconducting powder oxidized in the heating furnace 7 was introduced into the freezing collection container IO, and the superconducting powder and solvent were frozen and collected. The temperature of the frozen collection container 10 is maintained at -60°C.
A structure was adopted in which superconducting powder was introduced along the inner wall of the collecting container IO. The superconducting powder and the solvent were frozen and collected in this frozen collection container IO, and the solvent was removed by vacuuming, and then the superconducting powder was collected. The recovery rate at this time was 90
%Met.

この実施例により得られた超電導粉体の形状を走査電子
顕微鏡で観察したところ0.1−1.1ルの分布を持つ
球状の粉体が得られた。標準偏差は約0.35gmであ
り、非常に均一な粒径の酸化物系超電導体粉体が得られ
た。
When the shape of the superconducting powder obtained in this example was observed with a scanning electron microscope, a spherical powder with a distribution of 0.1 to 1.1 l was obtained. The standard deviation was about 0.35 gm, and an oxide-based superconducting powder with a very uniform particle size was obtained.

前記超電導体粉体のX線回折結果は第2図に示す通りで
あって、ペロプスカイト構造を持つYBa2Cux07
−xの鋭いピークが観察され、ペロブスカイト構造から
離れた異相(例えばY2 HaCu O5−に−等)は
認められなく、単相(本実施例ではCu O)等の不純
物もわずかしか認められなかった。
The X-ray diffraction results of the superconducting powder are shown in FIG. 2, and YBa2Cux07 has a perovskite structure.
A sharp peak of -x was observed, no different phases away from the perovskite structure (for example, Y2HaCuO5-, etc.) were observed, and only a small amount of impurities such as a single phase (CuO in this example) was observed. .

更に前記超電導粉体についてマイスナー効果及び超電導
特性を測定したところ、マイスナー効果が認められると
共に臨界温度Tt として90’K、臨界電流密度Jc
として600A/c+*2の値が得られ、従来方法で製
造された酸化物系超電導粉体とほぼ同等の超電導特性を
有している事がわかった。また回収した超電導粉体を分
級し、0.5 終未満の粉体の焼結を行なったところ、
従来より低温で焼結することがわかった。
Furthermore, when the Meissner effect and superconducting properties of the superconducting powder were measured, the Meissner effect was observed, the critical temperature Tt was 90'K, and the critical current density Jc.
A value of 600 A/c+*2 was obtained, and it was found that the powder had superconducting properties almost equivalent to those of oxide-based superconducting powder produced by conventional methods. In addition, when the collected superconducting powder was classified and the powder with a particle diameter of less than 0.5 was sintered,
It was found that sintering can be performed at lower temperatures than conventional methods.

(実施例2) 実施例1の方法において、凍結補集容器10を液体N2
 、温度77@Kに冷却して酸化物系超電導粉体及び溶
媒を凍結させて補集し、それを真空乾燥して溶媒をi去
し酸化物系超電導粉体を回収したところ回収率95%で
あった。超電導特性は実施例1とほぼ同じ値であった。
(Example 2) In the method of Example 1, the frozen collection container 10 is filled with liquid N2.
, the oxide-based superconducting powder and the solvent were frozen and collected by cooling to a temperature of 77@K, and the oxide-based superconducting powder was recovered by vacuum drying to remove the solvent, resulting in a recovery rate of 95%. Met. The superconducting properties were almost the same as in Example 1.

走査電子顕微鏡により酸化物系超電導粉体の系を測定し
たところ0、I JL未渦のものが数%補集できた。
When the oxide-based superconducting powder system was measured using a scanning electron microscope, it was possible to collect several percent of 0 and IJL non-vortexed powders.

(発明の効果) 本発明の方法によれば次のような効果がある。(Effect of the invention) The method of the present invention has the following effects.

(1)比較的簡単な工程で微細で且つ球状の酸化物系超
電導粉体を製造することができ、この粉体を用いて緻密
で超電導特性に優れた超電導成形体を得ることができる
等工業上顕著な効果を奏するものである。
(1) Fine and spherical oxide-based superconducting powder can be produced in a relatively simple process, and this powder can be used to obtain dense superconducting molded bodies with excellent superconducting properties. This has a remarkable effect.

(2) 0.1 、以下の超微粉体をも補集することも
できる。
(2) Ultrafine powders below 0.1 can also be collected.

(3)超電導粉体の補集率が90%以上と高い。(3) The collection rate of superconducting powder is as high as 90% or more.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に使用する装置の一例を示す説明
図、第2図は前記酸化物超電導粉体のX線回折結果の一
例を示すチャート図である。 lは流量コントローラー 2は溶液化された酸化物系超電導体の原料3は霧化装置 4は霧化された原料 5は粒子分級器 6は霧状原料 7は加熱炉 8は温度制御用センサー 9は酸化物系超電導粉体 第1図 YBcLzCus oデーX ル
FIG. 1 is an explanatory diagram showing an example of an apparatus used for carrying out the present invention, and FIG. 2 is a chart diagram showing an example of the results of X-ray diffraction of the oxide superconducting powder. 1 is a flow rate controller 2 is a solution-formed oxide superconductor raw material 3 is an atomizer 4 is an atomized raw material 5 is a particle classifier 6 is a mist raw material 7 is a heating furnace 8 is a temperature control sensor 9 is an oxide-based superconducting powder.

Claims (1)

【特許請求の範囲】  アルカリ土金属、希土類元素、銅及び酸素からなる酸
化物系超電導粉体を製造するにあたり、(A)酸化物系
超電導粉体を構成する各々の原料を溶媒に溶かして溶液
とした後、これらを所望の組成比となるように混合して
均一な混合溶液とした後、該混合溶液を周波数0.7〜
3MHzの超音波振動子にて霧化し、この霧状原料液体
の粒子を所望の粒子径に分級し、これを搬送する工程、
(B)前記霧状原料液体を0.2気圧以上の酸素分圧を
有する酸素雰囲気中で700〜1100℃に加熱して酸
化物系粉体とする工程、 (C)Bの工程で得られた酸化物系粉体を冷媒によって
冷却された凍結補集容器内に導入し、同粉体及び溶媒を
凍結させて補集する工程、 (D)C工程で得られた凍結物を真空乾燥させて溶媒を
除去し超電導粉体を回収する工程、 を経て製造することを特徴とする酸化物系超電導粉体の
製造方法。
[Scope of Claims] In producing an oxide-based superconducting powder consisting of an alkaline earth metal, a rare earth element, copper, and oxygen, (A) each raw material constituting the oxide-based superconducting powder is dissolved in a solvent to form a solution. After that, these are mixed to a desired composition ratio to make a uniform mixed solution, and then the mixed solution is heated at a frequency of 0.7 to
A process of atomizing with a 3 MHz ultrasonic vibrator, classifying particles of this atomized raw material liquid into desired particle sizes, and transporting the same,
(B) a step of heating the atomized raw material liquid to 700 to 1100°C in an oxygen atmosphere having an oxygen partial pressure of 0.2 atmospheres or more to obtain an oxide-based powder; (D) Vacuum drying the frozen material obtained in step C; A method for producing an oxide-based superconducting powder, the method comprising: removing a solvent and recovering the superconducting powder.
JP62335980A 1987-12-29 1987-12-29 Production of oxide superconducting powder Pending JPH01176221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62335980A JPH01176221A (en) 1987-12-29 1987-12-29 Production of oxide superconducting powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62335980A JPH01176221A (en) 1987-12-29 1987-12-29 Production of oxide superconducting powder

Publications (1)

Publication Number Publication Date
JPH01176221A true JPH01176221A (en) 1989-07-12

Family

ID=18294451

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62335980A Pending JPH01176221A (en) 1987-12-29 1987-12-29 Production of oxide superconducting powder

Country Status (1)

Country Link
JP (1) JPH01176221A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110016740A1 (en) * 2008-01-21 2011-01-27 Hans Almer Middelbeek Method for lyophilising particles having a pharmaceutical compound contained therein and a pharmaceutical pack containing such particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110016740A1 (en) * 2008-01-21 2011-01-27 Hans Almer Middelbeek Method for lyophilising particles having a pharmaceutical compound contained therein and a pharmaceutical pack containing such particles
US8516714B2 (en) * 2008-01-21 2013-08-27 Intervet International B.V. Method for lyophilising particles having a pharmaceutical compound contained therein and a pharmaceutical pack containing such particles

Similar Documents

Publication Publication Date Title
US5081102A (en) Preparation of precursor superconductor metal oxide powders by spray calcination from atomized nitrate solution
US5061682A (en) Ceramic precursor mixture and technique for converting the same to ceramic
Sale et al. Citrate gel processing of oxide superconductors
EP0326944B1 (en) Superconductive powder and method of making superconductive powder
JP2009023860A (en) Process for producing raw material powder for oxide superconductor
JPH01176221A (en) Production of oxide superconducting powder
Yavuz et al. Effect of ball milling materials and methods on powder processing of Bi2223 superconductors
US6677278B1 (en) Pb-Bi-Sr-Ca-Cu-oxide powder mix with enhanced reactivity and process for its manufacture
JPH01179724A (en) Production of oxide superconducting powder
JPH01179723A (en) Production of oxide superconducting powder
JP2835083B2 (en) Manufacturing method of oxide superconductor
JPH01188415A (en) Production of oxide superconducting powder
JPH01176222A (en) Production of oxide based superconducting powder
JPH01176207A (en) Production of oxide superconducting powder
JPH0193403A (en) Production of ceramic-based superconducting material and apparatus therefor
JPH03109207A (en) Production of oxide superconducting powder occluding oxygen or gaseous ozone
Sengupta High-temperature superconductors: Synthesis techniques and application requirements
JPH02137709A (en) Production of oxide superconductor powder
JPH01320225A (en) Production of oxide superconductor
JPH03153560A (en) Production of oxide superconductor
Saitoh et al. Metal oxide powder synthesized with amorphous metal chelates
JPH02120227A (en) Production of bi-based oxide superconductor
JPH02196023A (en) Production of oxide-based superconductor
JPH0536368B2 (en)
JPH02196022A (en) Production of oxide-based superconducting powder