JPH0536368B2 - - Google Patents

Info

Publication number
JPH0536368B2
JPH0536368B2 JP62225550A JP22555087A JPH0536368B2 JP H0536368 B2 JPH0536368 B2 JP H0536368B2 JP 62225550 A JP62225550 A JP 62225550A JP 22555087 A JP22555087 A JP 22555087A JP H0536368 B2 JPH0536368 B2 JP H0536368B2
Authority
JP
Japan
Prior art keywords
powder
calcined powder
calcined
temperature
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62225550A
Other languages
Japanese (ja)
Other versions
JPS6469518A (en
Inventor
Keisuke Kageyama
Fumiaki Kikui
Yasushi Oonishi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Sumitomo Special Metals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Special Metals Co Ltd filed Critical Sumitomo Special Metals Co Ltd
Priority to JP62225550A priority Critical patent/JPS6469518A/en
Publication of JPS6469518A publication Critical patent/JPS6469518A/en
Publication of JPH0536368B2 publication Critical patent/JPH0536368B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Description

【発明の詳細な説明】 利用産業分野 この発明はマイスナー効果を呈するBaO−
Y2O3−CuO系、あるいはBaO−La2O3−CuO系
超電導セラミツクス用仮焼粉の粉砕方法に係り、
乾式粉砕時における雰囲気中の水分、CO2を吸収
するのを防止し、均質且つ微細な仮焼粉を得るこ
とができる超電導セラミツクス用仮焼粉の粉砕方
法に関する。
[Detailed Description of the Invention] Industrial field of application This invention provides BaO- exhibiting the Meissner effect.
Regarding the method of pulverizing calcined powder for Y 2 O 3 −CuO type or BaO−La 2 O 3 −CuO type superconducting ceramics,
The present invention relates to a method for pulverizing calcined powder for superconducting ceramics, which prevents the absorption of moisture and CO 2 in the atmosphere during dry pulverization and can obtain homogeneous and fine calcined powder.

従来技術 従来、超電導材料としてはNb−Ti、Nb−Sn、
Nb3Sn等の合金系、あるいは金属間化合物材料が
知られている。
Conventional technology Conventionally, superconducting materials include Nb-Ti, Nb-Sn,
Alloy materials such as Nb 3 Sn or intermetallic compound materials are known.

前記超電導材料は、電気抵抗が零になる臨界温
度(Tc)がせいぜい30Kでマイスナー効果を示
すものであつた。
The superconducting material exhibits the Meissner effect when the critical temperature (Tc) at which the electrical resistance becomes zero is at most 30K.

しかし、最近、磁界温度(Tc)が90K付近で
マイスナー効果を示す、高温超電導材料として、
BaO−Y2O3−CuO系あるいはBaO−La2O3
CuO系超電導セラミツクスが提案され、多くの研
究調査が行われるようになつた。
However, recently, high-temperature superconducting materials that exhibit the Meissner effect when the magnetic field temperature (Tc) is around 90K have been developed.
BaO−Y 2 O 3 −CuO system or BaO−La 2 O 3
CuO-based superconducting ceramics have been proposed, and many research studies have begun.

前記BaO−Y2O3−CuO系超電導セラミツクス、
例えば、YBa2Cu3O7-Xセラミツクス(x=0〜
0.25)は550℃〜600℃付近で相移転が行われ、こ
の場合、高温相の正方晶組織では超電導相を示さ
ず、低温安定相の斜方晶組織が超電導相を示すこ
とが知られている。
The BaO-Y 2 O 3 -CuO-based superconducting ceramics,
For example, YBa 2 Cu 3 O 7-X ceramics (x=0~
0.25), a phase transition occurs around 550°C to 600°C, and in this case, it is known that the tetragonal structure of the high temperature phase does not show a superconducting phase, but the orthorhombic structure of the low temperature stable phase shows a superconducting phase. There is.

かかる超電導セラミツクスを製造するには、所
要組成になる如く、配合混合した原料粉末を仮焼
して得られた斜方晶の低温安定相からなる仮焼粉
あるいは斜方晶の低温安定相と正方晶の高温相の
混合組成からなる仮焼粉を、湿式粉砕あるいは乾
式粉砕して、所要の粒度を有する微粉末とした
後、前記微粉末を特定条件の加圧焼結により、斜
方晶の低温安定相からなる焼結体を得ることがで
きる。
In order to manufacture such superconducting ceramics, it is necessary to calcined raw material powders that have been blended and mixed so as to have the required composition, or a calcined powder consisting of an orthorhombic low-temperature stable phase obtained by calcining, or a calcined powder consisting of an orthorhombic low-temperature stable phase and a tetragonal. After wet-pulverizing or dry-pulverizing the calcined powder consisting of a mixed composition of the high-temperature phase of the crystal to a fine powder having the required particle size, the fine powder is subjected to pressure sintering under specific conditions to form an orthorhombic crystal. A sintered body consisting of a low-temperature stable phase can be obtained.

しかし、前記湿式粉砕法では、原料仮焼粉中の
BaOが水と反応してBaを溶出し、仮焼粉の組成
にずれを生じて、焼結体の超電導特性の劣化を招
来し、また、湿式粉砕後の微粉末の乾燥時に、溶
出BaはBaOまたはBaCO3となり、乾燥微粉末表
面に付着するため、均一組成の微粉末が得られな
い問題があつた。
However, in the wet grinding method, the raw material calcined powder contains
BaO reacts with water and elutes Ba, causing a deviation in the composition of the calcined powder and causing deterioration of the superconducting properties of the sintered body.Also, when the fine powder is dried after wet grinding, the eluted Ba is Since BaO or BaCO 3 is formed and adheres to the surface of the dry fine powder, there was a problem that fine powder with a uniform composition could not be obtained.

そのため、ラリカイ機あるいはボールミル等に
よる乾式粉砕法が用いられるが、前記乾式粉砕法
では所要の微粉砕化に長時間を要して粉砕効率が
悪く、また、乾式粉砕時の雰囲気中に水分が存在
すると、仮焼粉中のBaOが水分と反応して、Ba
成分が溶出し、組成変動を生ずる恐れがあつた。
For this reason, a dry grinding method using a rarikai machine or a ball mill, etc. is used, but the dry grinding method requires a long time to achieve the required fine grinding, resulting in poor grinding efficiency, and the presence of moisture in the atmosphere during dry grinding. Then, BaO in the calcined powder reacts with moisture to form Ba
There was a risk that components would be eluted and composition fluctuations would occur.

発明の目的 この発明は、BaO−Y2O3−CuO系またはBaO
−La2O3−CuO系超電導セラミツクス用仮焼粉の
粉砕方法を目的とし、特に、従来の乾式粉砕法の
欠点を除去し、均一組成でかつ所要粒径の微粉末
を効率良く得て、超電導特性のすぐれた超電導セ
ラミツクス焼結体を得ることができる粉砕方法を
目的としている。
Purpose of the invention The present invention is directed to the BaO−Y 2 O 3 −CuO system or the BaO
The purpose of the present invention is to provide a method for pulverizing calcined powder for -La 2 O 3 -CuO-based superconducting ceramics, in particular, by eliminating the drawbacks of the conventional dry pulverization method and efficiently obtaining fine powder with a uniform composition and desired particle size. The purpose of this study is to provide a pulverization method that can yield superconducting ceramic sintered bodies with excellent superconducting properties.

発明の構成 この発明は、 斜方晶組織を有するMBa2Cu3O7-X組成(但し、
M=Y、La)の仮焼粉末を、 CO2量0.001%以下、露点−70℃以下のO2 20vol%以上含有の超音速酸化性ガス気流と共
に粉砕室内に噴射して、 平均粒径2μm以下の微粉末に微粉砕すること
を特徴とする超電導セラミツクス用仮焼粉の粉砕
方法である。
Structure of the Invention The present invention provides an MBa 2 Cu 3 O 7-X composition having an orthorhombic structure (however,
The calcined powder of M=Y, La) is injected into a grinding chamber with a supersonic oxidizing gas stream containing 20 vol% or more of O 2 with a CO 2 content of 0.001% or less and a dew point of -70°C or less to produce an average particle size of 2 μm. This is a method of pulverizing calcined powder for superconducting ceramics, which is characterized by pulverizing into the following fine powder.

発明の好ましい実施態様 以下この発明を詳述する。MBa2Cu3O7-X組成
(但し、M=Y、La)の超電導セラミツクス用仮
焼粉の1例として、BaO−Y2O3−CuO系超電導
セラミツクス用仮焼粉の場合を説明する。
Preferred Embodiments of the Invention The present invention will be described in detail below. As an example of a calcined powder for superconducting ceramics having an MBa 2 Cu 3 O 7-X composition (M=Y, La), we will explain the case of a BaO-Y 2 O 3 -CuO based calcined powder for superconducting ceramics. .

仮焼粉は、出発原料として、BaCO3またはBa
(NO3)、Y2O3、CuOを所要量混合した後、大気
中で600℃〜900℃、1時間以上の仮焼を行なうこ
とにより得られる斜方晶の低温安定相と正方晶の
高温安定相の混合組織からなる仮焼粉、あるいは
出発原料であるBaCO3、Y2O3、CuOを所要量混
合後、下記の各仮焼方法によつて得た、斜方晶組
織よりなる低温安定相を有する仮焼粉を用いる。
The calcined powder uses BaCO3 or Ba as the starting material.
(NO 3 ), Y 2 O 3 , and CuO are mixed in the required amounts, and then calcined in the air at 600°C to 900°C for 1 hour or more. Calcined powder consisting of a mixed structure of high-temperature stable phases, or consisting of an orthorhombic structure obtained by the following calcining methods after mixing the required amounts of starting materials BaCO 3 , Y 2 O 3 , and CuO A calcined powder having a low-temperature stable phase is used.

すなわち、仮焼時、配合原料粉末と供給O2
の接触が密になる如く、かつ配合原料中の
BaCO3が分解後、発生CO2ガスと再反応して
BaCO3の生成を防止するため、以下の仮焼方法
を適用する。
In other words, during calcination, the blended raw material powder is in close contact with the supplied O2 , and the blended raw material is
After BaCO 3 decomposes, it re-reacts with the generated CO 2 gas.
In order to prevent the formation of BaCO 3 , the following calcination method is applied.

配合原料粉末を斜傾型回転炉の上方より投入
して、落下中の前記粉末を850℃〜1000℃の温
度条件にて、大気圧以上の100vol%O2雰囲気
と十分接触させて、仮焼粉末を前記低温安定相
にする方法 配合原料粉末を収容した容器の下方より、大
気圧以上の100vol%O2雰囲気を吹込んで、前
記雰囲気により前記粉末を撹拌させつつ、850
℃〜1000℃にて仮焼する方法 配合原料粉末を真空中で700℃まで昇温後、
100vol%O2雰囲気中で750〜900℃に1時間以
上保持後、前記O2雰囲気中にて炉冷して、仮
焼粉末を前記低温安定相にする方法 この発明は、かかる4方法により得られる斜方
晶の低温安定相と正方晶の高温相の混合組成から
なる仮焼粉末、あるいは斜方晶からなる低温安定
相の仮焼粉末を、気流粉砕機の粉砕室内に、 CO2量0.001%以下、露点−70℃以下、O2 20vol%以上含有の超音速酸化性ガス気流と共に
噴射して、平均粒径2μm以下の微粉末に微粉砕
することを特徴とするものである。
The blended raw material powder is introduced from above into a tilted rotary furnace, and the falling powder is brought into sufficient contact with a 100 vol% O 2 atmosphere at atmospheric pressure or higher at a temperature of 850°C to 1000°C, and then calcined. Method for converting the powder into the low-temperature stable phase: Blow in an atmosphere of 100 vol% O 2 at atmospheric pressure or higher from the bottom of the container containing the blended raw material powder, and stir the powder with the atmosphere for 850 vol.
Method of calcining at ℃~1000℃ After heating the blended raw material powder to 700℃ in vacuum,
A method for converting the calcined powder into the low-temperature stable phase by holding the temperature at 750 to 900°C for 1 hour or more in a 100 vol% O 2 atmosphere and then cooling it in a furnace in the O 2 atmosphere. A calcined powder consisting of a mixed composition of a low-temperature stable phase of orthorhombic crystals and a high-temperature phase of tetragonal crystals, or a calcined powder of a low-temperature stable phase consisting of orthorhombic crystals, is placed in the grinding chamber of an air flow mill under a CO 2 amount of 0.001. % or less, the dew point is -70° C. or less, and the supersonic oxidizing gas stream containing O 2 is 20 vol.

この発明において、超音速酸化性ガス気流の
CO2量を限定した理由は、粉砕雰囲気中のCO2
スは仮焼粉中のBaOと反応してBaCO3になる恐
れがあるためで、超音速酸化性ガス気流中のCO2
量を0.001%以下に限定する。
In this invention, supersonic oxidizing gas flow
The reason for limiting the amount of CO 2 is that CO 2 gas in the grinding atmosphere may react with BaO in the calcined powder to become BaCO 3 .
Limit the amount to 0.001% or less.

また、前記気流中に水分が存在すると、前述の
如く、仮焼粉中のBaOと反応してBaを溶出する
恐れがあるため、前記気流中の露点は−70℃以下
にする必要がある。
Further, if moisture is present in the air stream, as described above, there is a possibility that it will react with BaO in the calcined powder and elute Ba, so the dew point in the air stream needs to be -70°C or lower.

この発明において、超音速酸化性ガス気流雰囲
気をO220vol%以上とすることにより、粉砕時の
発熱、衝撃により前記仮焼粉が還元されることを
防止すると共に、所要微粉末粒度への粉砕効率の
向上に有効である。
In this invention, by setting the supersonic oxidizing gas flow atmosphere to 20 vol% or more of O 2 , the calcined powder is prevented from being reduced due to heat generation and impact during pulverization, and the pulverization to the required fine powder particle size is prevented. Effective in improving efficiency.

この発明において、仮焼粉の平均粒度は、すぐ
れた超電導性を有する仮焼粉を得るためには小さ
い方が好ましく、10μm以下、さらに望ましくは
5μm以下がよい。
In this invention, the average particle size of the calcined powder is preferably small in order to obtain calcined powder with excellent superconductivity, and is more preferably 10 μm or less.
5μm or less is preferable.

また、得られた微粉砕粉の平均粒系を2μm以
下、好ましくは1μm以下にすることは、すぐれ
た超電導性を有する焼結体を得る上において有効
である。
Further, it is effective to make the average grain size of the obtained finely pulverized powder 2 μm or less, preferably 1 μm or less, in obtaining a sintered body having excellent superconductivity.

図面に基づく発明の開示 第1図は気流粉砕機の縦断説明図である。Disclosure of invention based on drawings FIG. 1 is a longitudinal cross-sectional view of the pneumatic crusher.

まず、出発原料を所要量配合混合し、仮焼して
斜方晶の低温安定相と正方晶の高温相の混合組成
からなる仮焼粉、または斜方晶の低温安定相から
なる仮焼粉を得る。
First, the required amounts of starting materials are mixed and calcined to produce a calcined powder consisting of a mixed composition of an orthorhombic low-temperature stable phase and a tetragonal high-temperature phase, or a calcined powder consisting of an orthorhombic low-temperature stable phase. get.

次に、得られた平均粒度10μm以下の粗粉砕粉
1は、気流粉砕機の原料ホツパ2に装入される。
Next, the obtained coarsely pulverized powder 1 having an average particle size of 10 μm or less is charged into a raw material hopper 2 of a pneumatic pulverizer.

また、原料ホツパ2の切出し口には、O2供給
管3が配設され、不活性ガス供給本管4より分岐
したガス導入管5の途中に接続嵌入されている。
Further, an O 2 supply pipe 3 is disposed at the cutting opening of the raw material hopper 2 , and is connected and fitted in the middle of a gas introduction pipe 5 branched from the inert gas supply main pipe 4 .

前記粗粉砕粉1は、ガス導入管5内を流れる
CO20.001%以下、露点−75℃以下のO220vol%以
上のO2含有の超音速酸化性ガスにより、粉砕室
6内に、その内部の循環流に対して接線方向に噴
射される。
The coarsely pulverized powder 1 flows through the gas introduction pipe 5.
A supersonic oxidizing gas containing 0.001% or less CO 2 and 20 vol% or more O 2 with a dew point of -75° C. or less is injected into the grinding chamber 6 in a direction tangential to the circulating flow inside the chamber.

この際、原料粉末と超音速酸化性ガスとの衝
突、粉末同志の衝突あるいは粉末と粉砕室壁との
衝突、摩擦により微粉砕化される。
At this time, the raw material powder is pulverized by collision with the supersonic oxidizing gas, collision between the powders, collision between the powder and the wall of the pulverization chamber, and friction.

極微粉は、粉砕室6中央に接続されるサイクロ
ン7内へ降下し、浮遊旋回し、さらに、サイクロ
ン中央に配置された垂直方向の排出管8を通つ
て、酸化性ガスとともに外部へ排出され、さらに
分級される。
The ultrafine powder descends into a cyclone 7 connected to the center of the grinding chamber 6, floats and swirls, and is further discharged to the outside together with oxidizing gas through a vertical discharge pipe 8 disposed in the center of the cyclone. further classified.

一方、極微粉とともに降下した微粉末は、サイ
クロン7底部に堆積し、酸化性ガスの送給を中止
した状態で、底部の切出ホツパ9を開き、製品と
して取り出し、平均粒度2μm以下の微粉状原料
粉末を得る。
On the other hand, the fine powder that fell together with the ultrafine powder is deposited at the bottom of the cyclone 7, and while the supply of oxidizing gas is stopped, the cut-out hopper 9 at the bottom is opened and taken out as a product, and the fine powder with an average particle size of 2 μm or less is removed. Obtain raw material powder.

この発明により得られた微粉砕粉は、下記の如
く、その組成に応じて、所要の加圧焼結を特定雰
囲気にて行うことにより、斜方晶の低温安定相か
らなる焼結体を得ることができる。
The finely pulverized powder obtained by this invention is subjected to the required pressure sintering in a specific atmosphere depending on its composition, as described below, to obtain a sintered body consisting of an orthorhombic low-temperature stable phase. be able to.

a 粒度3μm以下の低温安定相からなる原料粉
末を、O220vol%以上含有の雰囲気中で、圧力
200Kg/cm2〜2000Kg/cm2で550℃〜600℃に加圧
焼結する。
a Raw material powder consisting of a low-temperature stable phase with a particle size of 3 μm or less is heated under pressure in an atmosphere containing 20 vol% or more of O 2
Sinter under pressure at 550°C to 600°C at 200Kg/cm 2 to 2000Kg/cm 2 .

b 斜方晶組織と正方晶組織との混合組織からな
る粒度3μm以下の原料粉末を、1気圧〜10気
圧の100vol%O2雰囲気中で600℃〜900℃に加
熱して、正方晶組織に変化させた後、100vol%
O2雰囲気中で、斜方晶の安定生成領域温度、
かつ200Kg/cm2〜2000Kg/cm2の圧力にて加圧焼
結する。
b A raw material powder with a particle size of 3 μm or less consisting of a mixed structure of an orthorhombic structure and a tetragonal structure is heated to 600°C to 900°C in a 100 vol% O 2 atmosphere of 1 atm to 10 atm to form a tetragonal structure. After changing, 100vol%
In an O2 atmosphere, the stable formation region temperature of orthorhombic crystals,
And pressure sintering is carried out at a pressure of 200Kg/cm 2 to 2000Kg/cm 2 .

c 斜方晶組織と正方晶組織との混合組織からな
る粒度1μm以下の原料粉末を、1気圧〜10気
圧のO220vol%以上の雰囲気中で、 600℃〜1050℃の温度、 300Kg/cm2〜2000Kg/cm2の圧力にて加圧焼結
した後、徐冷する。
c Raw material powder with a particle size of 1 μm or less consisting of a mixed structure of orthorhombic and tetragonal structures is heated at 300 Kg/cm at a temperature of 600°C to 1050°C in an atmosphere of 20 vol% or more of O 2 at 1 atm to 10 atm. After pressure sintering at a pressure of 2 to 2000 kg/cm 2 , it is slowly cooled.

発明の効果 この発明により、従来の乾式粉砕法において生
じていた仮焼粉のBaの溶出は防止でき、組織的
に均一かつ微細な粉砕粉が得られるとともに、
Tcの温度幅が狭く安定した超電導性を示す超電
導セラミツクスが得られる。
Effects of the Invention According to the present invention, the elution of Ba from calcined powder that occurs in the conventional dry pulverization method can be prevented, and a pulverized powder that is structurally uniform and fine can be obtained.
Superconducting ceramics exhibiting stable superconductivity with a narrow Tc temperature range can be obtained.

実施例 実施例 1 純度99.9%以上の粒度2μm以下のBaCO3
Y2O3、CuO粉末を、組成比2:1:3のモル比
に配合して、アルコールを収容したポールミル中
で、6時間混合してた後、乾燥させた。
Examples Example 1 BaCO 3 with a purity of 99.9% or more and a particle size of 2 μm or less,
Y 2 O 3 and CuO powder were blended in a molar ratio of 2:1:3, mixed for 6 hours in a Pall mill containing alcohol, and then dried.

さらに、径100mm×長さ4m、傾斜角25°の傾斜
型回転炉を用い、炉の上方より下方へ、前記配合
原料粉末を落下させつつ、100%O2雰囲気中で、
前記回転炉を回転させながら、900℃、10時間の
仮焼を行つた。
Furthermore, using a tilted rotary furnace with a diameter of 100 mm x length of 4 m and an inclination angle of 25°, the blended raw material powder was dropped from the top of the furnace to the bottom in a 100% O 2 atmosphere.
Calcining was performed at 900° C. for 10 hours while rotating the rotary furnace.

その後、600℃まで冷却速度200℃/Hrにて冷
却し、さらに、500℃に10時間保持した後、室温
まで炉冷して、仮焼粉を得た。
Thereafter, it was cooled to 600° C. at a cooling rate of 200° C./Hr, further maintained at 500° C. for 10 hours, and then cooled in a furnace to room temperature to obtain a calcined powder.

前記仮焼粉をX線回折法にて結晶構造を調査し
た結果、斜方晶からなる低温安定相組織であつ
た。
The crystal structure of the calcined powder was investigated by X-ray diffraction, and it was found to have a low-temperature stable phase structure consisting of orthorhombic crystals.

得られた仮焼粉を第1図の気流粉砕機にて、
CO2量0.0008%、露点−70℃の超音速空気で粉砕
したところ、前記粉砕機の粉砕室内には微粉末の
滞留はなく、平均粒度1.5μmまで微粉砕された。
The obtained calcined powder is used in the air flow mill shown in Fig. 1.
When the material was pulverized using supersonic air with an amount of CO 2 of 0.0008% and a dew point of -70° C., no fine powder remained in the pulverizing chamber of the pulverizer, and the material was pulverized to an average particle size of 1.5 μm.

得られた微粉末の組成は、Ba:Y:Cuの組成
比は2:1:3にて、均一な組成で、ほぼ100%
が超電導相からなる微粉末であつた。
The composition of the obtained fine powder was a Ba:Y:Cu composition ratio of 2:1:3, with a uniform composition of almost 100%.
was a fine powder consisting of a superconducting phase.

微粉砕粉を、寸法径20mmφ、高さ10mm寸法、材
質SiCからなるダイスに装入し、100%O2雰囲気
中で、590℃まで100℃/Hrの条件にて加熱後、
590℃で圧力500Kg/cm2にて10時間保持して、加圧
焼結を行つた。
The finely pulverized powder was charged into a die made of SiC with a diameter of 20 mmφ and a height of 10 mm, and heated at 100°C/Hr to 590°C in a 100% O 2 atmosphere.
Pressure sintering was carried out by holding at 590° C. and a pressure of 500 Kg/cm 2 for 10 hours.

その後、炉冷して、寸法径15mmφ、高さ6mmの
焼結体を得た。
Thereafter, it was cooled in a furnace to obtain a sintered body with a diameter of 15 mm and a height of 6 mm.

得られた焼結体をX線回折及び顕微鏡にて組
織、結晶構造を調査した結果、焼結体は斜方晶の
低温安定相組織を示すことは明らかであり、Tc
は87°Kでマイスナー効果を示す超電導セラミツ
クスが得られた。
As a result of investigating the structure and crystal structure of the obtained sintered body using X-ray diffraction and a microscope, it was clear that the sintered body showed an orthorhombic low-temperature stable phase structure, and Tc
Superconducting ceramics exhibiting the Meissner effect at 87°K were obtained.

比較例 1 比較のため、実施例1と同一の仮焼粉を、大気
中でボールミルを使用して乾式粉砕を行つた結
果、得られた粒径2μm以下の微粉末中に微細な
BaO粉が残存しており、得られた微粉砕粉の組
成分析の結果、Ba:Y:Cuの組成比は1.7:
1.0:3.0とBaは減少して、組成ずれが生じている
ことが明らかである。
Comparative Example 1 For comparison, the same calcined powder as in Example 1 was dry-milled in the air using a ball mill, and fine particles were found in the resulting fine powder with a particle size of 2 μm or less.
BaO powder remains, and as a result of composition analysis of the resulting finely pulverized powder, the composition ratio of Ba:Y:Cu is 1.7:
It is clear that Ba decreases from 1.0 to 3.0 and a compositional deviation has occurred.

また、得られた微粉末を実施例1と同一条件に
て加圧焼結を行い、炉冷して得られた焼結体の組
織は、斜方晶の低温安定相を示していたが、Tc
は90Kであるが、Tcの温度は5Kもあり、マイス
ナー効果も小さいことが分つた。
In addition, the obtained fine powder was subjected to pressure sintering under the same conditions as in Example 1, and the structure of the sintered body obtained by furnace cooling showed an orthorhombic low-temperature stable phase. Tc
is 90K, but the temperature of Tc is 5K, and it was found that the Meissner effect is also small.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は気流粉砕機の縦断説明図である。 1……粗粉砕粉、2……原料ホツパ、3……
O2供給管、4……ガス供給本管、5……ガス導
入管、6……粉砕室、7……サイクロン、8……
排出管、9……切出ホツパ。
FIG. 1 is a longitudinal cross-sectional view of the pneumatic crusher. 1...Coarsely ground powder, 2...Raw material hopper, 3...
O2 supply pipe, 4... Gas supply main pipe, 5... Gas introduction pipe, 6... Grinding chamber, 7... Cyclone, 8...
Discharge pipe, 9...cutting hopper.

Claims (1)

【特許請求の範囲】[Claims] 1 斜方晶組織を有するMBa2Cu3O7-X組成(但
し、M=Y、La)の仮焼粉末を、CO2量0.001%
以下、露点−70℃以下のO220vol%以上含有の超
音速酸化性ガス気流と共に粉砕室内に噴射して、
平均粒径2μm以下の微粉末に微粉砕することを
特徴とする超電導セラミツクス用仮焼粉の粉砕方
法。
1 Calcined powder with MBa 2 Cu 3 O 7-X composition (M = Y, La) having an orthorhombic structure was mixed with 0.001% CO 2 amount.
Below, a supersonic oxidizing gas stream containing 20 vol% or more of O 2 with a dew point of -70°C or lower is injected into the grinding chamber.
A method for pulverizing calcined powder for superconducting ceramics, characterized by pulverizing it into fine powder with an average particle size of 2 μm or less.
JP62225550A 1987-09-09 1987-09-09 Grinding of calcined powder for superconducting ceramics Granted JPS6469518A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62225550A JPS6469518A (en) 1987-09-09 1987-09-09 Grinding of calcined powder for superconducting ceramics

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62225550A JPS6469518A (en) 1987-09-09 1987-09-09 Grinding of calcined powder for superconducting ceramics

Publications (2)

Publication Number Publication Date
JPS6469518A JPS6469518A (en) 1989-03-15
JPH0536368B2 true JPH0536368B2 (en) 1993-05-28

Family

ID=16831051

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62225550A Granted JPS6469518A (en) 1987-09-09 1987-09-09 Grinding of calcined powder for superconducting ceramics

Country Status (1)

Country Link
JP (1) JPS6469518A (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19742304C1 (en) * 1997-09-25 1999-04-29 Hoechst Ag Process for the production of Bi (Pb) SrCaCuO-containing powders as a precursor for high-temperature superconductors and their use
JP4982975B2 (en) * 2005-06-24 2012-07-25 住友電気工業株式会社 Agglomerated raw material powder and method for producing the same, superconducting wire and method for producing the same, and superconducting equipment
GT200600381A (en) 2005-08-25 2007-03-28 ORGANIC COMPOUNDS

Also Published As

Publication number Publication date
JPS6469518A (en) 1989-03-15

Similar Documents

Publication Publication Date Title
Joo et al. Role of silver addition on mechanical and superconducting properties of high-Tc superconductors
Hermann et al. Melt‐processible rare earth‐Ba‐Cu‐O superconductors based on molten Ba‐Cu oxides
US5086034A (en) Calcination and solid state reaction of ceramic-forming components to provide single-phase superconducting materials having fine particle size
Lo et al. Preparation and properties of spray dried precursor powder for melt-processed bulk YBCO ceramics
JPH0536368B2 (en)
Rao et al. Growth Kinetics of High‐Tc and Low‐Tc Phases in Bi2‐xPbxCa2Sr2Cu3Oy Superconducting Compounds
US4952555A (en) Superconducting material Ba1-x (Y1-w γw)CuOz (γ=Ti, Zr, Hf, Si, Ge, Sn, Pb, or Mn) and a process for preparing the same
US5486501A (en) Nonequilibrium precursors for superconductor materials and process for making shaped superconductor articles therefrom
JPH0764628B2 (en) Yttrium-barium-copper oxide powder and method for producing yttrium-barium-copper oxide superconducting sintered body
JP3630889B2 (en) Calcinated powder for oxide superconductor with high critical current density
JPH01100056A (en) Manufacture of high temperature superconductive material
Holesinger et al. A two-powder process for Bi-2223 precursors
JP2555706B2 (en) Manufacturing method of Bi-based superconducting oxide powder containing lead and sintered body thereof
JP3461654B2 (en) Manufacturing method of oxide superconductor
JP2817222B2 (en) Bi-based superconducting oxide powder and method for producing sintered body using the powder
JPH0580428B2 (en)
JP3444930B2 (en) Manufacturing method of oxide superconductor
JPH08699B2 (en) Synthesis of oxide fine particles by spray drying
Lo et al. Chemically prepared precursor powder for the fabrication of melt processed YBCO
JPH0574548B2 (en)
JPH01107856A (en) Separation and recovery of superconductive material
JPH0574547B2 (en)
JPH01107858A (en) Device for separating and recovering superconductive material
JPH0574549B2 (en)
Itoh et al. Preparation of a fine powder of a Bi-based high-Tc ceramic superconductor by wet ball-milling: effect of fluids on grinding performance