JPH01176207A - Production of oxide superconducting powder - Google Patents

Production of oxide superconducting powder

Info

Publication number
JPH01176207A
JPH01176207A JP62335981A JP33598187A JPH01176207A JP H01176207 A JPH01176207 A JP H01176207A JP 62335981 A JP62335981 A JP 62335981A JP 33598187 A JP33598187 A JP 33598187A JP H01176207 A JPH01176207 A JP H01176207A
Authority
JP
Japan
Prior art keywords
raw material
solution
oxide
atomized
container
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62335981A
Other languages
Japanese (ja)
Inventor
Toshiaki Shibata
柴田 俊昭
Tsutomu Minami
努 南
Yasuo Kosaka
保雄 向阪
Kikuo Okuyama
喜久夫 奥山
Noboru Toge
峠 登
Masahiro Tatsumisuna
昌弘 辰巳砂
Ryoji Sedaka
良司 瀬高
Wataru Komatsu
亘 小松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62335981A priority Critical patent/JPH01176207A/en
Publication of JPH01176207A publication Critical patent/JPH01176207A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Oxygen, Ozone, And Oxides In General (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To readily obtain the title fine and spherical powder having uniform particle diameters by atomizing under specific conditions a raw material solution to become an oxide superconductor and oxidizing under heating. CONSTITUTION:A container 31 holding a raw material solution 2 (e.g. aqueous solution of Y, Ba and Cu nitrates) to become an oxide superconductor is prepared in a constant temperature bath 30 and the raw material solution is sent by a pump 32 to a container 33 in an atomizer 3 equipped with an ultrasonic vibrator in such a way that the amount of the raw material solution 2 in the container 33 is always constant. Then the raw material solution 2 is atomized by the atomizer 3, sent to a particle classifier 5 by an O2-containing gas fed from a flow rate controller 1 and introduced as a classified atomized raw material 6 to a furnace 7. In the operation, the temperature of the raw material solution 2 and that of the atomized raw material 6 are maintained at the same temperature or approximately the same temperature by a constant temperature bath while the solution and the raw material are sent from the raw material container 31 to the furnace 7. Powder of the aimed substance heated and oxidized by the furnace 7 is dehydrated by a water collector 10 cooled by a refrigerant 12, classified, sent to a collector 15, deposited on a collecting plate 16 electrically charged by DC voltage and collected.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は所望の球径で均質性の高い粒度を持つ(粒子径
の均一な)酸化物超電導粉体の製造方法に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for producing oxide superconducting powder having a desired spherical diameter and highly homogeneous particle size (uniform particle size).

(従来技術) アルカリ土金属、島土類元素、銅及び酸素からなる酸化
物系超電導粉体を製造する方法として本件出願人は先に
次のような方法を特許出願した。
(Prior Art) The applicant previously filed a patent application for the following method as a method for producing oxide-based superconducting powder consisting of alkaline earth metals, island earth elements, copper, and oxygen.

これは酸化物系超電導粉体を構成する各々の原料を溶媒
に溶かして溶液としたのち、これらを所望の組成比とな
るように混合して均一な混合溶液とした後、該混合溶液
を第3図の霧化袋g13の周波数0.7〜3 M H7
の超音波振動子にて霧化し、この霧化原料の粒子を粒子
分級器5において所望の粒子径に分級し、これを流量コ
ントローラー1から供給される搬送用ガスにより第3図
Cブロックに搬送する0次にこの霧状原料6を0.2気
圧以上の酸素分圧を有する酸素雰囲気中で加熱炉7によ
り700〜1100℃に加熱して酸化物系超電導粉体9
とし、この酸化物系超電導粉体9を第3図Cブロックの
容器10に導入する。この容器10は冷媒12よって冷
却されており、同容器10内において酸化物系超電導粉
体に残存している溶媒を回収すると同時に分級する。こ
のようにして得られた酸化物系超電導粉体を第3図Cブ
ロックの攪拌羽根19で攪拌しながら1ooo〜600
0vの直流電圧により該粉体に荷電して補集板16に補
集するようにしたものである。この方法によると平均粒
径で0.8gm、標準偏差0.35pmの酸化物系超電
導体粉末が製作できるものであった。
This involves dissolving each of the raw materials constituting the oxide-based superconducting powder in a solvent to form a solution, and then mixing these to a desired composition ratio to make a uniform mixed solution. Frequency of atomization bag g13 in Figure 3: 0.7 to 3 MH7
The particles of this atomized raw material are classified into desired particle diameters by a particle classifier 5, and are transported to block C in FIG. 3 by a transport gas supplied from a flow controller 1. Next, this atomized raw material 6 is heated to 700 to 1100° C. in a heating furnace 7 in an oxygen atmosphere having an oxygen partial pressure of 0.2 atmospheres or more to form an oxide-based superconducting powder 9.
Then, this oxide-based superconducting powder 9 is introduced into the container 10 of block C in FIG. 3. This container 10 is cooled by a refrigerant 12, and the solvent remaining in the oxide-based superconducting powder is recovered and classified at the same time in the container 10. The oxide-based superconducting powder thus obtained was stirred with the stirring blade 19 of block C in FIG.
The powder is charged with a DC voltage of 0V and collected on a collection plate 16. According to this method, oxide-based superconductor powder with an average particle size of 0.8 gm and a standard deviation of 0.35 pm could be produced.

(従来技術の問題点) 前記従来方法では次のような課題が残されている。(Problems with conventional technology) The following problems remain in the conventional method.

(1)超音波素子により原料液体を霧化する工程におい
て、超音波素子と接触している原料液体2の温度が運転
時間の経過とともに上昇し、霧化した原料液体6の粒子
系が大きくなる。
(1) In the process of atomizing the raw material liquid by an ultrasonic element, the temperature of the raw material liquid 2 in contact with the ultrasonic element increases with the passage of operating time, and the particle system of the atomized raw material liquid 6 becomes larger. .

(2)霧化された霧状原料6が分級器5等を通過して加
熱炉7に入るまでの間に温度変化があると(例えば温度
上昇する々)、霧状原料6の濃度が蒸発により濃くなり
、出来上った酸化物系超電導粉体の粒径がばらつく。
(2) If the atomized raw material 6 passes through the classifier 5 etc. and enters the heating furnace 7, if there is a temperature change (for example, the temperature rises), the concentration of the raw material atomized 6 will evaporate. The particle size of the resulting oxide-based superconducting powder varies.

(3)逆に霧状原料6の温度が降下すると凝縮して霧状
原料6があたかも増粒されたようになり、出来上った酸
化物系超電導粉体の粒径がばらつく(4)従来方法によ
れば平均粒径で0.8 pm、標準偏差0.35μ町の
酸化物系超電導粉体が作成できるが、より緻密な酸化物
系超電導成形体を作成するためにはこの粒径では充分で
なく、均一な粒径を持つ粉末が必要となる。
(3) On the other hand, when the temperature of the atomized raw material 6 decreases, it condenses and the atomized raw material 6 becomes as if its particles have been increased, and the particle size of the resulting oxide-based superconducting powder varies. (4) Conventional According to this method, oxide-based superconducting powder with an average particle size of 0.8 pm and a standard deviation of 0.35 μm can be created, but in order to create a denser oxide-based superconducting compact, it is necessary to use this particle size. Powder with uniform particle size is required.

(発明の目的) 本発明はこのような点に鑑みてなされたものであり、そ
の目的は、均一な粒径を持つ酸化物系超電導粉体を製造
できる酸化物系超電導粉体の製造方法を提供することに
ある。
(Object of the Invention) The present invention has been made in view of the above points, and its purpose is to provide a method for producing oxide-based superconducting powder that can produce oxide-based superconducting powder having a uniform particle size. It is about providing.

(問題点を解決するための手段) 本発明の酸化物系超電導粉体の製造方法は、溶媒に溶か
して溶液とした酸化物系超電導体となる原料の溶液を超
音波振動子にて霧化し、これを酸素を含むガス体で加熱
炉に搬送して霧状原料とした後、加熱酸化させて酸化物
系超電導粉体を製造する方法において、原料溶液と霧状
原料の温度を原料容器から加熱炉に導入されるまで同一
もしくはほぼ同一にすることを特徴とするものである。
(Means for Solving the Problems) The method for producing oxide-based superconducting powder of the present invention involves atomizing a solution of a raw material that will become an oxide-based superconductor by dissolving it in a solvent using an ultrasonic vibrator. In the method of producing oxide-based superconducting powder by conveying this to a heating furnace with a gas containing oxygen to make it into atomized raw material, and then heating and oxidizing it, the temperature of the raw material solution and the atomized raw material is controlled from the raw material container. It is characterized by being the same or almost the same until it is introduced into the heating furnace.

次に本発明の実施態様を図面を用いて具体的に説明する
。第1図は本発明の実施に使用した装置の一例を示す説
明図である0本発明は次のA−Cの工程により構成され
る。このA−Cの工程は第1図のA−Cのブロックに対
応する。
Next, embodiments of the present invention will be specifically described using the drawings. FIG. 1 is an explanatory diagram showing an example of an apparatus used in carrying out the present invention. The present invention is constructed by the following steps A to C. This step A-C corresponds to blocks A-C in FIG.

(A)酸化物系超電導粉体となる原料溶液を霧化して粒
子径のそろった霧状原料を作ると共に、原料溶液と霧状
原料の温度を同一もしくはほぼ同一に保持する工程。
(A) A step of atomizing the raw material solution that will become the oxide-based superconducting powder to produce a mist of raw material with a uniform particle size, and maintaining the temperature of the raw material solution and the atomized raw material at the same or almost the same temperature.

CB)前記霧状原料を加熱酸化して酸化物系超電導粉体
とする工程。
CB) A step of heating and oxidizing the atomized raw material to obtain an oxide-based superconducting powder.

(C)a化物系超電導粉体を脱水して補集する工程。(C) A step of dehydrating and collecting the a-ide superconducting powder.

これらのA、B、Cの工程は第1図のように連続化され
ている。以下これらの各工程について詳細に説明する。
These steps A, B, and C are continuous as shown in FIG. Each of these steps will be explained in detail below.

(A)工程 第1図のAブロックにおいて、容器31内の溶液化され
た酸化物系超電導体となる原料の溶液2は恒温槽30で
一定温度に保持されている。また容器31内の原料溶液
2はマイクロチューブポンプ32により一定速度で容器
33に移送される。
(A) Process In block A of FIG. 1, the solution 2 of the raw material that will become the oxide-based superconductor that has been turned into a solution in the container 31 is maintained at a constant temperature in a constant temperature bath 30. Further, the raw material solution 2 in the container 31 is transferred to the container 33 at a constant speed by the microtube pump 32.

容器33中の原料溶液2の贋はマイクロチューブポンプ
32により供給、排出されて常に一定量となっている。
The counterfeit raw material solution 2 in the container 33 is supplied and discharged by the microtube pump 32, so that a constant amount is always maintained.

容器33内の原料溶液2は霧化装置3により霧化される
。霧化された原料溶液2は流量コントローラlから供給
される酸素含有ガス体にて分級器5に導入され、ここで
重量差により粒径分布が關御され粒径数ILm程度の粒
子群からなる霧状原料6とされる。
The raw material solution 2 in the container 33 is atomized by the atomizer 3 . The atomized raw material solution 2 is introduced into a classifier 5 using an oxygen-containing gas supplied from a flow rate controller 1, where the particle size distribution is controlled by the weight difference and consists of a particle group with a particle size of about several ILm. It is referred to as atomized raw material 6.

また第1図のAブロックは図示されていない恒温装置に
より恒温槽として、容器31及び32内の溶液原料2を
同一温度に保持できるようにしである。
Block A in FIG. 1 is configured as a constant temperature bath using a constant temperature device (not shown) so that the solution raw materials 2 in the containers 31 and 32 can be maintained at the same temperature.

(B)工程 第1図のAブロックにおいて得られた霧状原料6は同図
Bブロックに送られ、同ブロック内の加熱炉7内で加熱
酸化されて酸化物系超電導粉体9となる。
(B) Process The atomized raw material 6 obtained in block A in FIG. 1 is sent to block B in the same figure, and is heated and oxidized in a heating furnace 7 in the same block to become oxide-based superconducting powder 9.

(C)工程 第1図のBブロックにおいて得られた酸化物系超電導粉
体9は同図Cブロックに送られ、冷媒12で冷却されて
いる水分補集WIO内で脱水及び分級が行なわれる。脱
水された酸化物系超電導粉体は補集器15に導入され、
そこで1000〜8ooovの直流電圧により荷電され
、補集板16上に堆積させて補集する。
(C) Process The oxide-based superconducting powder 9 obtained in block B in FIG. 1 is sent to block C in the same figure, where it is dehydrated and classified in a water collector WIO cooled by a refrigerant 12. The dehydrated oxide-based superconducting powder is introduced into the collector 15,
There, it is charged with a DC voltage of 1000 to 8 ooov, deposited on the collection plate 16, and collected.

(作用) 本発明の酸化物系超電導粉体の製造方法においては、霧
化装置3中の原料溶液2の量が常に一定となるため超音
波振動子にて霧化される原料溶液霧の粒径変化が抑制さ
れ均一となる。ちなみに霧化装置3中の溶液量が減少す
ると原料溶液霧の粒径が大きくなる。
(Function) In the method for producing oxide-based superconducting powder of the present invention, since the amount of the raw material solution 2 in the atomization device 3 is always constant, particles of the raw material solution mist atomized by the ultrasonic vibrator Changes in diameter are suppressed and uniform. Incidentally, as the amount of solution in the atomizer 3 decreases, the particle size of the raw material solution mist increases.

また第1図のAブロックを恒温としたので加熱炉7に導
入される前まで原料溶液2及び霧状原料6の温度が同一
温度となり、原料溶液2の蒸発凝固がおさえられ、原料
の濃度変化がなく1粒子径の均一な酸化物系Mi電導粉
体が作成できる。ちなみに溶液濃度が濃くなると粒子径
は大きくなり、薄くなると小さくなる。
In addition, since the A block in Fig. 1 is kept at a constant temperature, the temperature of the raw material solution 2 and the atomized raw material 6 are the same until they are introduced into the heating furnace 7, and the evaporation and solidification of the raw material solution 2 is suppressed, resulting in changes in the concentration of the raw material. It is possible to create a uniform oxide-based Mi conductive powder with a particle size of 1 without any particles. Incidentally, as the solution concentration increases, the particle size increases, and as the solution concentration decreases, it decreases.

(実施例1) 次に第1図に示した装置を用いて酸化物系超電導粉体を
製造した場合の本発明の実施例を具体的に説明する。
(Example 1) Next, an example of the present invention in which oxide-based superconducting powder was manufactured using the apparatus shown in FIG. 1 will be specifically described.

出発原料としては、Y、Ba及びCuの硝酸塩即ちY 
(NO3)3  m 6H20,Ba(NO3)z及び
Cu(NO3)・3H20をモル比でY:Ba:Cu=
1:2:3となるように秤量し、脱イオン水に混合溶解
して溶液濃度がY Ba2(u307−xに換算して0
.06mo / /l となるようにした混合溶液を用
いた。又流量コントローラー1から送られる流体搬送用
ガスにはm素ガスを用い流量は177manとした。
As starting materials, nitrates of Y, Ba and Cu, i.e. Y
(NO3)3 m 6H20, Ba(NO3)z and Cu(NO3)・3H20 in molar ratio Y:Ba:Cu=
Weigh it so that the ratio is 1:2:3 and mix and dissolve it in deionized water to make the solution concentration YBa2 (0 in terms of u307-x).
.. A mixed solution having a concentration of 0.06 mo//l was used. Further, m element gas was used as the fluid transport gas sent from the flow rate controller 1, and the flow rate was set to 177 man.

溶液の温度は恒温槽30にて40℃±2℃に制御し、霧
状原料6の温度も40℃±2℃とした。
The temperature of the solution was controlled at 40°C±2°C in a constant temperature bath 30, and the temperature of the atomized raw material 6 was also set at 40°C±2°C.

前記各原料の混合液を周波数1.7MHzの超音波振動
子よりなる霧化装置3により平均粒径約8ルmに微粒子
化し、粒子分級器5により104m以上の大きい液滴は
髪果させて回収し、粒子径10gm未満の液滴のみを1
000℃に加熱された加熱炉7に搬送した。
The mixed liquid of each of the raw materials was atomized to an average particle size of about 8 m by an atomizer 3 consisting of an ultrasonic vibrator with a frequency of 1.7 MHz, and large droplets of 104 m or more were removed by a particle classifier 5. Collect only droplets with a particle size of less than 10 gm.
The sample was transferred to a heating furnace 7 heated to 000°C.

次にこの霧状原料6を加熱炉7で加熱して酸化物系超電
導粉体9とし、これを冷媒12で冷却されている水分補
集器10に導入して脱水及び分級を行なった。水分補集
のための冷媒12には氷水を用いた。しかる後、このよ
うにして脱水された酸化物系超電導粉体を補集器15に
導入し、5000■の直流電圧により荷電して補集板1
6上に堆積させて補集した。尚この際の収率は約60%
であった。
Next, this atomized raw material 6 was heated in a heating furnace 7 to form an oxide-based superconducting powder 9, which was then introduced into a water collector 10 cooled with a refrigerant 12 for dehydration and classification. Ice water was used as the refrigerant 12 for water collection. Thereafter, the oxide-based superconducting powder thus dehydrated is introduced into the collector 15, charged with a DC voltage of 5000 μ, and then transferred to the collector plate 1.
6 and collected. The yield at this time is approximately 60%.
Met.

この実施例により得られた酸化物系a電導粉体の形状を
走査電顕で観察したところ、平均粒径2μmのきれいな
球状の粉体であり、標準偏差は約0.15ALmであり
、非常に均一な粒径の酸化物系超電導粉体が得られた。
When the shape of the oxide-based a conductive powder obtained in this example was observed using a scanning electron microscope, it was found to be a fine spherical powder with an average particle size of 2 μm, and a standard deviation of about 0.15 ALm, which was extremely Oxide-based superconducting powder with uniform particle size was obtained.

又酸化物系超電導粉体のX線回折結果は第2図に示す通
りであって、ペロブスカイト構造を持つYBazCu:
+07−yの鋭いピークが観察され、ペロブスカイト構
造から離れた異相(例えばY2 BaCu 05−X等
)は認められなく、単相(この実施例ではCu O)等
の不純物も僅かしか認められな−bXった。
The X-ray diffraction results of the oxide-based superconducting powder are shown in Figure 2, and YBazCu with a perovskite structure:
A sharp peak of +07-y was observed, and no foreign phase (e.g. Y2 BaCu 05-X, etc.) separate from the perovskite structure was observed, and only a small amount of impurities such as a single phase (CuO in this example) was observed. It was bX.

更に得られた酸化物超電導粉体についてマイスナー効果
及び超電導特性を測定したところ、マイスナー効果が認
められると共に、臨界温度(T c)として90°K、
臨界電流密度(Jc)として600A/cm2の値が得
られ、従来の方法で製造された酸化物系超電導粉体とほ
ぼ同等の超電導特性を有している事がわかった。
Furthermore, when the Meissner effect and superconducting properties of the obtained oxide superconducting powder were measured, the Meissner effect was observed, and the critical temperature (Tc) was 90°K.
A value of 600 A/cm2 was obtained as a critical current density (Jc), and it was found that the powder had superconducting properties almost equivalent to those of oxide-based superconducting powder produced by conventional methods.

(実施例2) 次に本発明を上記の実施例とは異なる実施例により具体
的に説明する。
(Example 2) Next, the present invention will be specifically explained using an example different from the above-mentioned example.

出発原料として、Y、Ba及びCuの硝酸塩即ちY (
NO3)3 @6H20,Ba(NO+)z及びCu(
NOx)* 3H20をモル比でY:Ba:Cu=1:
2:3となるように秤量し、脱イオン水に混合溶解して
、溶液濃度がYBa2CusOy−xに換算して0.0
8mo//ノとなるようにした混合溶液を用いた。又流
体搬送用ガスには酸素ガスを用い、流量は1//m+n
とした。
As starting materials, nitrates of Y, Ba and Cu, namely Y (
NO3)3 @6H20, Ba(NO+)z and Cu(
NOx)* 3H20 in molar ratio Y:Ba:Cu=1:
Weigh it so that the ratio is 2:3, mix and dissolve it in deionized water, and the solution concentration is 0.0 in terms of YBa2CusOy-x.
A mixed solution having a concentration of 8 mo//no was used. Oxygen gas is used as the fluid transport gas, and the flow rate is 1//m+n.
And so.

溶液の温度は恒温槽30にて60℃±2℃に制御し、霧
状原料6の温度も60℃±2℃とした。
The temperature of the solution was controlled at 60°C±2°C in a constant temperature bath 30, and the temperature of the atomized raw material 6 was also 60°C±2°C.

前記各原料の混合液を周波数1.7MHzの超音波振動
子よりなる霧化装置3により微粒子化し、粒子分級器5
により15Bm以上の大きい液滴は凝集させて回収し、
粒子径154m未満の液滴のみを1000℃に加熱され
た加熱炉7に搬送した。
The mixed liquid of each of the raw materials is atomized by an atomization device 3 consisting of an ultrasonic vibrator with a frequency of 1.7 MHz, and then atomized by a particle classifier 5.
Large droplets of 15 Bm or more are aggregated and collected by
Only droplets with a particle diameter of less than 154 m were transported to a heating furnace 7 heated to 1000°C.

次に加熱炉7内で酸化された酸化物系超電導粉体9を、
冷媒12で冷却されている水分補集器10に導入し、こ
こで脱水及び分級を行なった。尚水分補集のための冷媒
12には氷水を用いた。しかる後このようにして脱水さ
れた酸化物系超電導粉体を補集器15に導入し、5oo
ovの直流電圧により荷電して補集板16上に堆積させ
て補集した。尚この際の収率は約60%であった。
Next, the oxide-based superconducting powder 9 oxidized in the heating furnace 7 is
It was introduced into a water collector 10 cooled by a refrigerant 12, where it was dehydrated and classified. Furthermore, ice water was used as the refrigerant 12 for collecting water. Thereafter, the oxide-based superconducting powder thus dehydrated is introduced into the collector 15, and 5oo
It was charged with a DC voltage of 0.5 m and deposited on a collection plate 16 to be collected. The yield at this time was about 60%.

この実施例により得られた酸化物系超電導粉体の形状を
走査電顕で観察したところ平均粒径2.81Lmのきれ
いな球状の粉体であり、標準偏差は約0.154mであ
り、非常に均一な粒径の酸化物系超電導粉体が得られた
When the shape of the oxide-based superconducting powder obtained in this example was observed using a scanning electron microscope, it was found to be a fine spherical powder with an average particle size of 2.81 Lm, and a standard deviation of about 0.154 m. Oxide-based superconducting powder with uniform particle size was obtained.

又その酸化物系超電導粉体のX線回折結果、マイスナー
効果及び超電導特性を測定したところ実施例1の場合と
同様の特性が確認された。
Furthermore, when the oxide-based superconducting powder was subjected to X-ray diffraction, Meissner effect, and superconducting properties were measured, the same properties as in Example 1 were confirmed.

(発明の効果) 本発明の製造方法によれば次のような効果がある。(Effect of the invention) The manufacturing method of the present invention has the following effects.

(1)比較的簡易な工程で、微細で且つ球状の酸化物系
超電導粉体を製造することができ、この粉体を用いるこ
とにより緻密で超電導特性の優れた酸化物超電導成形体
を得ることができる。
(1) Fine and spherical oxide-based superconducting powder can be produced through a relatively simple process, and by using this powder, a dense oxide superconducting molded body with excellent superconducting properties can be obtained. Can be done.

(2)ta化装ff13中の原料溶液2の量が常に一定
となるため、超音波振動子にて霧化される原料溶液霧の
粒径変化が抑制されて均一となり、また加熱炉7に導入
される前まで原料溶液2及び霧状原料6の温度を同一温
度としであるので粒子径の均一な酸化物系超電導粉体が
作成できる。
(2) Since the amount of the raw material solution 2 in the TA converter ff13 is always constant, the particle size change of the raw material solution mist atomized by the ultrasonic vibrator is suppressed and becomes uniform, and it is also introduced into the heating furnace 7. Since the temperature of the raw material solution 2 and the atomized raw material 6 are kept at the same temperature before being mixed, an oxide-based superconducting powder having a uniform particle size can be produced.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に使用する装置の一例を示す説明
図、第2図は実施例にて得られた酸化物系超電導粉体の
X線回折結果の一例を示すチャート図、第3図は従来の
製造方法の実施に使用される装置の説明図である。 1は流量コントローラー 2は原料溶液 3は霧化装置 4は霧化された原料 5は粒子分級器 6は霧状原料 7は加熱炉 8は温度制御用センサー 9は酸化物系超電導粉体 10は水分補集器 11は容器 12は冷媒 13は水 14は酸化物超電導粉体 15は補集器 16は補集板 17は出口 18はモーター 19は攪拌羽根 20は電極 21はアース 30は恒温槽 31は容器 32はマイクロチューブポンプ 33は容器
FIG. 1 is an explanatory diagram showing an example of the apparatus used in carrying out the present invention, FIG. 2 is a chart diagram showing an example of the X-ray diffraction results of the oxide-based superconducting powder obtained in the example, and FIG. The figure is an explanatory diagram of an apparatus used to carry out a conventional manufacturing method. 1 is the flow rate controller 2 is the raw material solution 3 is the atomizer 4 is the atomized raw material 5 is the particle classifier 6 is the atomized raw material 7 is the heating furnace 8 is the temperature control sensor 9 is the oxide-based superconducting powder 10 Moisture collector 11, container 12, refrigerant 13, water 14, oxide superconducting powder 15, collector 16, collector plate 17, outlet 18, motor 19, stirring blade 20, electrode 21, ground 30, constant temperature bath 31 is a container 32 is a micro tube pump 33 is a container

Claims (2)

【特許請求の範囲】[Claims] (1)溶媒に溶かして溶液とした酸化物系超電導体とな
る原料溶液を超音波振動子にて霧化し、これを酸素を含
むガス体で加熱炉に搬送して霧状原料とし、それを加熱
酸化させて酸化物系超電導粉体を製造する方法において
、原料溶液と霧状原料の温度を原料容器から加熱炉に導
入されるまで同一もしくはほぼ同一温度としたことを特
徴とする酸化物系超電導粉体の製造方法。
(1) A raw material solution that will become an oxide superconductor dissolved in a solvent is atomized using an ultrasonic vibrator, and this is conveyed to a heating furnace using a gas containing oxygen to form a mist raw material. A method for producing an oxide-based superconducting powder by heating and oxidizing the powder, characterized in that the temperature of the raw material solution and the atomized raw material are kept at the same or almost the same temperature until they are introduced from the raw material container into the heating furnace. Method for producing superconducting powder.
(2)溶液原料を超音波振動子にて霧化する工程におい
て、超音波発生装置に収納された容器中の原料溶液の量
を常時一定量にすることを特徴とする特許請求の範囲第
1項記載の酸化物系超電導粉体の製造方法。
(2) In the step of atomizing the solution raw material using an ultrasonic vibrator, the amount of the raw material solution in the container housed in the ultrasonic generator is always kept constant. A method for producing an oxide-based superconducting powder as described in 2.
JP62335981A 1987-12-29 1987-12-29 Production of oxide superconducting powder Pending JPH01176207A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62335981A JPH01176207A (en) 1987-12-29 1987-12-29 Production of oxide superconducting powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62335981A JPH01176207A (en) 1987-12-29 1987-12-29 Production of oxide superconducting powder

Publications (1)

Publication Number Publication Date
JPH01176207A true JPH01176207A (en) 1989-07-12

Family

ID=18294461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62335981A Pending JPH01176207A (en) 1987-12-29 1987-12-29 Production of oxide superconducting powder

Country Status (1)

Country Link
JP (1) JPH01176207A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098867A (en) * 2009-11-07 2011-05-19 Univ Of Fukui Method for producing fine particle of metal oxide or metal
JP2019026507A (en) * 2017-07-28 2019-02-21 住友金属鉱山株式会社 Method for producing transition metal composite oxide particles

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011098867A (en) * 2009-11-07 2011-05-19 Univ Of Fukui Method for producing fine particle of metal oxide or metal
JP2019026507A (en) * 2017-07-28 2019-02-21 住友金属鉱山株式会社 Method for producing transition metal composite oxide particles

Similar Documents

Publication Publication Date Title
US7081267B2 (en) Nanostructured powders and related nanotechnology
Bae et al. Synthesis and microstructure of Pd/SiO 2 nanosized particles by reverse micelle and sol–gel processing
Cabanas et al. Spherical iron oxide particles synthesized by an aerosol technique
JPH01176207A (en) Production of oxide superconducting powder
US5395821A (en) Method of producing Pb-stabilized superconductor precursors and method of producing superconductor articles therefrom
US20090298699A1 (en) Process for producing raw material powder for oxide superconductor
Pebler et al. Synthesis of superconducting oxides by aerosol pyrolysis of metal-EDTA solutions
JPH01179724A (en) Production of oxide superconducting powder
JPH01179723A (en) Production of oxide superconducting powder
Lyons et al. Nanophase oxide formation by intraparticle reaction
JPH01176221A (en) Production of oxide superconducting powder
JPH01188415A (en) Production of oxide superconducting powder
JPH0574530B2 (en)
JPH01176222A (en) Production of oxide based superconducting powder
JP2835083B2 (en) Manufacturing method of oxide superconductor
JPH03109207A (en) Production of oxide superconducting powder occluding oxygen or gaseous ozone
Joutsensaari et al. Generation of nanophase fullerene particles via aerosol routes
JPH02137709A (en) Production of oxide superconductor powder
CN103769608A (en) Nano-silver sol separating method
Mančić et al. High TC superconducting powders synthesis from aerosol
Zhang et al. The principle of vapor-phase technics and application in synthesis of M x O y nanomaterials
JPH01226724A (en) Method for synthesizing fine oxide particles as starting material
JPH0193403A (en) Production of ceramic-based superconducting material and apparatus therefor
JPH01197318A (en) Production of oxide superconducting powder
KR20120066817A (en) Nano-sized powder manufacturing apparatus through evaporation, condensation and gathering in oil