JPH01176222A - Production of oxide based superconducting powder - Google Patents

Production of oxide based superconducting powder

Info

Publication number
JPH01176222A
JPH01176222A JP62335982A JP33598287A JPH01176222A JP H01176222 A JPH01176222 A JP H01176222A JP 62335982 A JP62335982 A JP 62335982A JP 33598287 A JP33598287 A JP 33598287A JP H01176222 A JPH01176222 A JP H01176222A
Authority
JP
Japan
Prior art keywords
powder
oxide
raw material
based superconducting
superconducting powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62335982A
Other languages
Japanese (ja)
Inventor
Wataru Komatsu
亘 小松
Ryoji Sedaka
良司 瀬高
Toshiaki Shibata
柴田 俊昭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Electric Co Ltd
Original Assignee
Furukawa Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd filed Critical Furukawa Electric Co Ltd
Priority to JP62335982A priority Critical patent/JPH01176222A/en
Publication of JPH01176222A publication Critical patent/JPH01176222A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To efficiently obtain the title fine and globular powder, by drying powder obtained by atomizing uniformly blended solution of raw material and then heating the atomized raw material and simultaneously collecting the powder by applying direct current voltage to the powder. CONSTITUTION:A solution obtained by dissolving each raw material constituting oxide based superconducting powder consisting of nitric acid salt of Y, Ba, Cu, etc. in a solvent, is blended so as to be desired composition ratio to afford uniform mixed solution 2, which is then atomized with an atomizing apparatus 3 consisting of supersonic vibrator having 0.7-3MHz frequency and the atomized raw material 4 is conveyed to a particle classifier 5 to give an atomizing raw material 6 having mum particle size. Then the raw material 6 is fed into a heating oven 7 controlled to 700-1,100 deg.C by a sensor 8 and heated to provide the oxide based superconducting powder 9. The powder 9 and a solvent are fed into a collecting part 15, where solvent is removed by heating to about 1,100 deg.C and simultaneously the powder is charged by applying direct current voltage having 1,000-20,000V and deposited on a collecting plate 16 to collect the aimed powder.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、微細で、球状の酸化物系超電導粉体の製造方
法に関するものであり、溶媒を除去して酸化物系粉体の
みを効率良く補集できるようにしたものである。。
Detailed Description of the Invention (Field of Industrial Application) The present invention relates to a method for producing fine, spherical oxide-based superconducting powder. It has been made so that it can be compiled well. .

(従来の技術) アルカリ土金属、希土類元素、銅及び酸素からなるYB
a2Cu3O7−x、La 5r2Cu 07−X等の
酸化物系超電導体は、臨界温度(T c )が高く、そ
の応用が期待されている。前記酸化物系超電導体は従来
、出発原料であるアルカリ土金属(Ba)等の炭酸塩、
希土類元素(Y、La等)の酸化物及び銅の酸化物を所
望組成になるようにN量した後粉砕しながら混合し、こ
のようにして得られた混合物を予備焼成することによっ
て複合酸化物とし、これを粉砕、分級後得られた混合粉
体を所望の形状に成形して焼結処理することによって製
造されていた。
(Prior art) YB consisting of alkaline earth metal, rare earth element, copper and oxygen
Oxide-based superconductors such as a2Cu3O7-x and La5r2Cu07-X have a high critical temperature (Tc) and are expected to be used for applications. The oxide-based superconductor has conventionally been made from carbonates of alkaline earth metals (Ba) and the like as starting materials;
A composite oxide is produced by adding N amount of rare earth element (Y, La, etc.) oxide and copper oxide to a desired composition, mixing while grinding, and pre-calcining the mixture thus obtained. It was produced by pulverizing and classifying the powder, forming the resulting mixed powder into a desired shape, and subjecting it to sintering.

(従来技術の問題点) しかし、こようにして得られる酸化物系超電導成形体の
密度を高くして超電導特性を向上させるためには、各粉
体同志の接触面積が大きくて、焼結処理時に粉体相互間
で固相拡散が充分に起こるよう、できるだけ微細で且つ
球状の粉体を用いるのが望ましい。
(Problems with conventional technology) However, in order to increase the density of the oxide-based superconducting molded body obtained in this way and improve its superconducting properties, the contact area between each powder must be large, and the sintering process must be performed. It is desirable to use powders that are as fine and spherical as possible so that solid-phase diffusion can occur sufficiently between the powders.

然しながら、従来の機械的な粉砕方法では、このような
微細な粉体な得るためには、粉砕及び分級を何回も繰り
返す必要があって工程が非常に複雑になると共に、この
様にして得られた粉体の形状は主に突起状の先端を有す
る多角形状であり、球状の粉体な得ることは困難であっ
た。
However, in conventional mechanical grinding methods, in order to obtain such fine powder, it is necessary to repeat grinding and classification many times, which makes the process very complicated, and it is difficult to obtain such fine powder. The shape of the powder obtained was mainly a polygonal shape with a protruding tip, and it was difficult to obtain a spherical powder.

(発明の目的) 本発明は上記の点に鑑み鋭意検討の結果開発されたもの
であり、目的とするところは比較的簡単な工程で、微細
で且つ球状の酸化物系超電導粉体を効率良く製造する方
法を提供することにある。
(Objective of the Invention) The present invention was developed as a result of intensive studies in view of the above points, and its purpose is to efficiently produce fine and spherical oxide-based superconducting powder using a relatively simple process. The purpose is to provide a manufacturing method.

(問題点を解決するための手段) 本発明の酸化物系超電導粉体の製造方法は、アルカリ上
金属、希土類元素、銅及び酸素からなる酸化物系超電導
粉体を製造するにあたり、(A)酸化物系超電導粉体を
構成する各々の原料を溶媒に溶かして溶液とした後、こ
れらを所望の組成比となるように混合し、均一な混合溶
液とした後、該混合溶液を周波数0.7〜3MH2の超
音波振動子にて霧化し、この霧状原料液体の粒子を所望
の粒子系に分級し、これを搬送する工程、(B)前記霧
状原料液体を、0.2気圧以上の酸素分圧を有する酸素
雰囲気中で700〜1100℃に加熱して酸化物系超電
導粉体とする工程、<C>前記B工程で得られる酸化物
系超電導粉体を溶媒と共に200℃〜900℃に加熱保
持した補集部内に導入して溶媒を除去すると共に補集部
内の酸化物系超電導粉体を1000〜aooovの直流
電圧により荷電して補集する工程、を経て製造する事を
特徴とするものである。
(Means for Solving the Problems) The method for producing oxide-based superconducting powder of the present invention includes (A) Each raw material constituting the oxide-based superconducting powder is dissolved in a solvent to form a solution, and then mixed to a desired composition ratio to form a uniform mixed solution.The mixed solution is heated to a frequency of 0. A step of atomizing with an ultrasonic vibrator of 7 to 3 MH2, classifying the particles of the atomized raw material liquid into a desired particle system, and transporting the atomized raw material liquid; A step of heating the oxide-based superconducting powder to 700 to 1100°C in an oxygen atmosphere having an oxygen partial pressure of It is characterized in that it is manufactured through a step of introducing the powder into a collecting section heated and maintained at ℃ to remove the solvent, and collecting the oxide-based superconducting powder in the collecting section by charging it with a DC voltage of 1000~AOOOV. That is.

本発明において酸化物系超電導粉体を構成する各々の原
料を溶媒に溶かして溶液とする方法としては1例えばY
、Ba及びCu等の硝酸塩を水に溶解する方法、これら
のアルコキシド(例えばエトキシド等)をアルコールに
溶解する方法、これらのハロゲン化物(例えば塩化物等
)を用いる方法等が挙げられる。
In the present invention, as a method of dissolving each raw material constituting the oxide-based superconducting powder in a solvent to form a solution, 1, for example, Y
, a method of dissolving nitrates such as Ba and Cu in water, a method of dissolving these alkoxides (for example, ethoxide, etc.) in alcohol, a method of using these halides (for example, chloride, etc.), and the like.

本発明はこれらの溶液を所望の組成比となるように混合
して得られた混合溶液に、超音波振動を加えて霧化する
ことにより、微細でかつ大きさが比較的均一な霧状粒子
を得るものである。この場合、周波数がO,? MB?
未満であると粒子径が大きくなると共に径のバラツキも
大きくなり、又前記周波数が3MHr を超えると前記
混合液体が超音波振動子の振動に追従出来なくなり、霧
化が充分におこなわれないので周波数0.7〜3MHz
の超音波振動子にて霧化する必要がある。
In the present invention, the mixed solution obtained by mixing these solutions to a desired composition ratio is atomized by applying ultrasonic vibration, thereby producing atomized particles that are fine and relatively uniform in size. This is what you get. In this case, the frequency is O,? MB?
If the frequency is less than 3MHr, the particle size will increase and the variation in diameter will also increase.If the frequency exceeds 3MHr, the mixed liquid will not be able to follow the vibrations of the ultrasonic vibrator and atomization will not be performed sufficiently. 0.7~3MHz
It is necessary to atomize using an ultrasonic vibrator.

このようにして得られた霧状原料液体は所望の粒子径に
分級された後、酸素ガス等によって加熱炉に搬入され、
加熱及び酸素の作用によって酸化物系超電導粉体となる
が、前記霧状原料液体査充分に酸化させて超電導状態の
発現に最適な組成とするためには0.2気圧以上の酸素
分圧を有する酸素雰囲気中で加熱することが必要である
After the atomized raw material liquid obtained in this way is classified into the desired particle size, it is transported to a heating furnace using oxygen gas, etc.
Oxide-based superconducting powder is formed by heating and the action of oxygen, but in order to sufficiently oxidize the atomized raw material liquid and create an optimal composition for developing a superconducting state, an oxygen partial pressure of 0.2 atmospheres or more must be applied. It is necessary to heat in an oxygen atmosphere with

又加熱温度は700℃未満の場合は酸化が不充分であり
、1100℃を超えると超電導粉体が一部溶融するので
、700−1100℃の範囲内に加熱することが必要で
ある。
Further, if the heating temperature is less than 700°C, the oxidation will be insufficient, and if it exceeds 1100°C, the superconducting powder will partially melt, so it is necessary to heat it within the range of 700-1100°C.

この加熱分解により得られる酸化物系超電導粉体をその
中の溶媒及び分解した溶媒と共に200℃〜900℃に
加熱保持した補集部内に導入して溶媒を除去すると共に
補集部内の酸化物系超電導粉体を1000〜aooov
の直流電圧により荷電して補集する。この場合、電圧が
100OV未満であると粉体が帯電しなくて補集できず
、8000vを超えると荷電粒子の拡散が悪くなって収
率が低下するので、1000〜aooovの直流電圧に
より該粉体に荷電して補集するのが望ましい、なお、補
集部を加熱せずに室温で補集すると酸化物系超電導粉体
中の溶媒や分解した溶媒がそのまま補集器に補集される
ので、本発明では補集器を200〜900℃に加熱保持
して溶媒を除去し酸化物系超電導粉体のみを補集する。
The oxide-based superconducting powder obtained by this thermal decomposition is introduced together with the solvent therein and the decomposed solvent into a collecting section heated and maintained at 200°C to 900°C to remove the solvent and remove the oxide-based superconducting powder in the collecting section. Superconducting powder 1000 ~ aooov
It is charged and collected using a DC voltage. In this case, if the voltage is less than 100 OV, the powder will not be charged and cannot be collected, and if it exceeds 8000 volts, the diffusion of charged particles will be poor and the yield will be reduced. It is preferable to charge the powder and collect it. If the collection unit is collected at room temperature without heating, the solvent in the oxide-based superconducting powder or the decomposed solvent will be collected as is in the collector. Therefore, in the present invention, the collector is heated and held at 200 to 900°C to remove the solvent and collect only the oxide superconducting powder.

次に本発明の実施態様を第1図、第2図を用いて具体的
に説明する。第1図は本発明の実施に使用した装置の一
例を示す説明図であり、この装置は次のA、B、C(第
1図のA、B、Cに対応する)の工程から構成されてい
る。
Next, embodiments of the present invention will be specifically described using FIGS. 1 and 2. FIG. 1 is an explanatory diagram showing an example of the apparatus used to carry out the present invention, and this apparatus is composed of the following steps A, B, and C (corresponding to A, B, and C in FIG. 1). ing.

(A)酸化物系超電導粉体の液体原料を霧化して粒子径
のそろった霧状原料液体を作成する工程。
(A) A step of atomizing a liquid raw material for oxide-based superconducting powder to create a mist raw material liquid with uniform particle sizes.

(B)前記霧状原料液体を酸化物系超電導粉体とする工
程。
(B) A step of turning the atomized raw material liquid into oxide-based superconducting powder.

(C)前記B工程で得られる酸化物系超電導粉体を溶媒
と共に200℃〜900℃に加熱保持した補集部内に導
入して溶媒を除去すると共に補集部内の酸化物系超電導
粉体を直流電圧により荷電して補集する工程 このA、
B、Cの工程は′M続化されている。    − 以下にA−Cの各工程について詳細に説明する、第1図
のA工程において1は流体搬送用ガスの流量コントロー
ラー、2は溶液化された酸化物系超電導体の原料、3は
前記原料溶液2の霧化rt置、4は霧化された酸化物系
超電導体の原料、5は前記原料4の粒子分級器である。
(C) The oxide-based superconducting powder obtained in step B is introduced together with a solvent into a collecting section heated and maintained at 200°C to 900°C to remove the solvent and remove the oxide-based superconducting powder in the collecting section. Process of charging and collecting with DC voltage This A,
The steps B and C are continuous. - Each step of A to C will be explained in detail below. In step A of FIG. 4 is an atomization RT station for the solution 2; 4 is the atomized raw material for the oxide-based superconductor; 5 is a particle classifier for the raw material 4;

溶液化された酸化物系超電導体の出発原料2は周波数0
.7〜3MH2の超音波振動子よりなる霧化装M3によ
り霧化され、微細でかつ比較的大きさが均一な霧状粒子
となった後、搬送用ガスにより粒子分級器5に搬送され
る。ここで霧化された原料4は、重量差により粒径分布
が更に制御された粒径数pm程度の粒子群からなる霧状
原料6となる。
The starting material 2 of the oxide-based superconductor that has been made into a solution has a frequency of 0.
.. After being atomized by an atomizer M3 comprising a 7 to 3 MH2 ultrasonic vibrator to become fine atomized particles with relatively uniform size, the atomized particles are conveyed to the particle classifier 5 by a conveying gas. The atomized raw material 4 here becomes an atomized raw material 6 consisting of a group of particles with a particle size of about several pm, the particle size distribution of which is further controlled by the weight difference.

第1図のB工程はA工程で分級された霧状原料6を酸化
物系a電導粉体とする工程で、7は加熱炉、8は該加熱
炉7の温度M御用センサー(熱電対等)、9は水蒸気が
混和されている酸化物系超電導粉体である。前記霧状原
料6は、熱電対等のセンサー8により700−1100
℃の範囲内に温度制御された加熱炉7に、流量コントロ
ーラーlにより流量制御された酸素ガスによって搬入さ
れ、加熱及び酸素の作用によって、酸化物系超電導粉体
9となる。尚、酸化物系超電導粉体9の出発原料を溶液
化するための溶媒としては通常は水又はアルコールが用
いられるので、前記酸化物超電導粉体9にはかなりの水
分が含まれている。又前記溶媒としては塩化物等のハロ
ゲン化物を用い・ても差し支えない。
Step B in FIG. 1 is a step in which the atomized raw material 6 classified in step A is turned into oxide-based conductive powder. 7 is a heating furnace, and 8 is a temperature sensor (thermocouple, etc.) for the heating furnace 7. , 9 is an oxide-based superconducting powder mixed with water vapor. The atomized raw material 6 is measured by a sensor 8 such as a thermocouple at a temperature of 700-1100.
Oxygen gas whose flow rate is controlled by a flow rate controller 1 is introduced into a heating furnace 7 whose temperature is controlled within a range of 0.degree. C., and becomes an oxide-based superconducting powder 9 by heating and the action of oxygen. Incidentally, since water or alcohol is usually used as a solvent to dissolve the starting material of the oxide superconducting powder 9, the oxide superconducting powder 9 contains a considerable amount of water. Furthermore, a halide such as a chloride may be used as the solvent.

第1UgJのC工程はB工程で得られた酸化物系超電導
粉体9を溶媒と共に補集部15内に導入し、補集部15
を図示されていない加熱装置により200℃〜900℃
に加熱して溶媒を除去すると共に補集部15内の酸化物
系超電導粉体を1000〜aooovの直流電圧により
荷電して同粉体14を補集板16上に堆積し補集する。
In step C of the first UgJ, the oxide-based superconducting powder 9 obtained in step B is introduced into the collecting section 15 together with a solvent.
200°C to 900°C using a heating device (not shown)
At the same time, the oxide-based superconducting powder in the collection section 15 is charged with a DC voltage of 1000 to 100V to deposit and collect the powder 14 on the collection plate 16.

又搬送ガスの酸素ガスは出口17を通って排出される。The carrier gas oxygen gas is also discharged through the outlet 17.

(作用) 本発明の方法においては、酸化物系超電導粉体9を構成
する各々の原料を溶媒に溶かして溶液とした後、周波f
itL7〜3MHzの超音波振動子にて霧化し、この霧
状原料液体6の粒子を所望の粒子系に分級した後、前記
霧状原料液体6を酸化物系超電導粉体としているので、
微細で粒子が均一な球状の酸化物系電導体粒子を比較的
簡単な工程で連続的に得ることが可能である。
(Function) In the method of the present invention, each raw material constituting the oxide-based superconducting powder 9 is dissolved in a solvent to form a solution, and then the frequency f
After atomizing with an ultrasonic vibrator of 7 to 3 MHz and classifying the particles of this atomized raw material liquid 6 into a desired particle system, the atomized raw material liquid 6 is made into an oxide-based superconducting powder.
It is possible to continuously obtain fine, uniform, and spherical oxide-based conductor particles through a relatively simple process.

また本発明の製造方法では補集@1115を200〜9
00℃に加熱することで酸化物系超電導粉体中の残存溶
媒、分解した溶媒等が除去され、また補集部15内にお
いて酸化物系超電導粉体を直流電圧で荷電させることで
同粉体を補集することが可能となる。
In addition, in the manufacturing method of the present invention, the supplement @ 1115 is 200 to 9
Residual solvent, decomposed solvent, etc. in the oxide-based superconducting powder are removed by heating to 00°C, and the oxide-based superconducting powder is charged with a DC voltage in the collecting section 15 to remove the same powder. It becomes possible to collect.

(実施例1) 次に本発明を実施例により更に具体的に説明する。第1
図に示した装置を用いて、以下に示す方法により酸化物
系超電導粉体を製造した。出発原料としては、Y、Ba
及びCuの硝酸塩即ちY (NO3)3  拳6H20
,Ba(NOs)?及びCu(NO3)2 11382
0をモル比で、Y : Ba:Cu=1:2:3となる
ように採取し、脱イオン水に混合溶解して溶液濃度がY
Ba2Cu3O7−xに換算して0.08 mol/l
となるようにした混合溶液を用いた。又流体搬送用ガス
には酸素ガスを用い、流量は1.5ノ/minとした。
(Example 1) Next, the present invention will be explained in more detail with reference to Examples. 1st
Oxide-based superconducting powder was manufactured by the method shown below using the apparatus shown in the figure. Starting materials include Y, Ba
and Cu nitrate i.e. Y (NO3)3 Fist 6H20
,Ba(NOs)? and Cu(NO3)2 11382
0 was collected in a molar ratio of Y:Ba:Cu=1:2:3, and mixed and dissolved in deionized water until the solution concentration was Y.
0.08 mol/l converted to Ba2Cu3O7-x
A mixed solution was used. Oxygen gas was used as the fluid transport gas, and the flow rate was 1.5 no/min.

前記各原料の混合溶液を周波数1.7MHzの超音波振
動子よりなる霧化装置3により微粒子化し、粒子分級器
5により10路m以上の大きい液滴は凝集させて回収し
、粒子径10μm未満の液滴のみを1000℃に加熱さ
れた加熱炉7に搬送した。 次に加熱炉7内で酸化され
た酸化物系超電導粉体をその中の残存溶媒及び分解した
溶媒と共に加熱温度700℃に加熱保持されている補集
部15へ導入して溶媒を除去し、また補集部15内で直
流電圧5KVで酸化物系超電導粉体に荷電して同粉体を
補集板16に#Maさせて補集した。
The mixed solution of each of the raw materials is atomized by an atomizer 3 made of an ultrasonic vibrator with a frequency of 1.7 MHz, and large droplets of 10 m or more are aggregated and collected by a particle classifier 5, and particles with a particle size of less than 10 μm are collected. Only the droplets were transferred to the heating furnace 7 heated to 1000°C. Next, the oxide-based superconducting powder oxidized in the heating furnace 7 is introduced together with the residual solvent and the decomposed solvent therein into the collecting section 15 heated and maintained at a heating temperature of 700° C. to remove the solvent. Further, the oxide-based superconducting powder was charged with a DC voltage of 5 KV in the collecting section 15, and the powder was collected by the collecting plate 16 at #Ma.

得られた粉体の極状を操作電子顕微鏡で観察したところ
平均粒径0.84mのきれいな球状の粉体であった。ま
た粒径も均一であった。
When the polar shape of the obtained powder was observed using an operating electron microscope, it was found to be a fine spherical powder with an average particle size of 0.84 m. Moreover, the particle size was also uniform.

前記超電導粉体のx11回折結果は第2図に示す通りで
あって、ペロブスカイト構造を持つYBazCu30z
−xの鋭いピークが観察され、ペロブスカイト構造から
離れた異相(例えばY2 BaCu0s−x等)は認め
られなく、単相(本実施例ではCu O)等の不純物も
わずかしか認められなかった。
The x11 diffraction results of the superconducting powder are shown in Figure 2, and YBazCu30z with a perovskite structure.
A sharp peak of −x was observed, no heterophase (for example, Y2 BaCu0s-x, etc.) separate from the perovskite structure was observed, and only a small amount of impurities such as a single phase (CuO in this example) was observed.

更に前記超電導粉体についてマイスナー効果及び超電導
特性を測定したところ、マイスナー効果が認められると
共に臨界温度(Tc)として90’K、臨界電流密度(
JC)として600A/c■2の値が得られ、従来方法
で製造された酸化物系超電導粉体とほぼ同等の超電導特
性を有している事がわかった。
Furthermore, when the Meissner effect and superconducting properties of the superconducting powder were measured, the Meissner effect was observed, the critical temperature (Tc) was 90'K, and the critical current density (
A value of 600 A/c 2 was obtained as JC), and it was found that the powder had superconducting properties almost equivalent to those of the oxide-based superconducting powder produced by the conventional method.

(実施例2) 実施例1の方法において、補集部15の加熱温度を20
0℃に保持して酸化物系超電導粉体を補集した。この超
電導粉体のSEM、X線回折結果及び超電導特性はほぼ
実施例1の場合と同様の結果であった。
(Example 2) In the method of Example 1, the heating temperature of the collecting section 15 was set to 20
The oxide-based superconducting powder was collected while maintaining the temperature at 0°C. The SEM and X-ray diffraction results and superconducting properties of this superconducting powder were almost the same as in Example 1.

(実施例3) 実施例1における方法において、出発原料としてY、B
a及びCuのフルコキシド(例えばエトキシド)をY:
Ba:Cuのモル比で1:2:3となるように秤量し、
これらを完全脱水したエタノールに溶解し、溶液濃度が
YBa2CusO7−xに換算してo、ooesoL/
jとなるようにした混合溶液を用いた。この混合溶液を
実施例1に示した方法で霧化して、酸化物系超電導粉体
を製造したところ、実施例1の場合と同様の特性を有す
る微細な酸化物系超電導粉体が得られた。
(Example 3) In the method of Example 1, Y and B were used as starting materials.
a and Cu flukoxide (e.g. ethoxide) as Y:
Weighed so that the molar ratio of Ba:Cu was 1:2:3,
These are dissolved in completely dehydrated ethanol, and the solution concentration is o, ooesoL/
A mixed solution having the following properties was used. When this mixed solution was atomized by the method shown in Example 1 to produce oxide-based superconducting powder, fine oxide-based superconducting powder having the same characteristics as in Example 1 was obtained. .

(発明の効果) 本発明の製造方法によれば次のような効果がある。(Effect of the invention) The manufacturing method of the present invention has the following effects.

(1)比較的簡単な工程で微細で球状の酸化物超電導粉
体の製造ができ、この粉体を用いて緻密で超電導特性の
優れた超電導成形体を得ることができる。
(1) Fine, spherical oxide superconducting powder can be produced in a relatively simple process, and this powder can be used to obtain a dense superconducting molded body with excellent superconducting properties.

(2)これまで除去されにくかった硝酸根などの溶媒も
除去され、酸化物系超電導粉体を効率良く補集すること
ができる。
(2) Solvents such as nitrate radicals, which have been difficult to remove, are also removed, and oxide-based superconducting powder can be collected efficiently.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施に使用する装置の一例を示す説明
図、第2図は前記酸化物超電導粉体のX線回折結果の一
例を示すチャート図である。 1は流量コントローラー 2は溶液化された酸化物系超電導体の原料3は霧化装置 4は霧化された原料 5は粒子分級器 6は霧状原料 7は加熱炉 8は温度制御用センサー 9は酸化物系超電導粉体 第1図
FIG. 1 is an explanatory diagram showing an example of an apparatus used for carrying out the present invention, and FIG. 2 is a chart diagram showing an example of the results of X-ray diffraction of the oxide superconducting powder. 1 is a flow rate controller 2 is a solution-formed oxide superconductor raw material 3 is an atomizer 4 is an atomized raw material 5 is a particle classifier 6 is a mist raw material 7 is a heating furnace 8 is a temperature control sensor 9 is an oxide-based superconducting powder Figure 1

Claims (1)

【特許請求の範囲】  アルカリ土金属、希土類元素、銅及び酸素からなる酸
化物系超電導粉体を製造するにあたり、(A)酸化物系
超電導粉体を構成する各々の原料を溶媒に溶かして溶液
とした後、これらを所望の組成比となるように混合し、
均一な混合溶液とした後、該混合溶液を周波数0.7〜
3MHzの超音波振動子にて霧化し、この霧状原料液体
の粒子を所望の粒子径に分級し、これを搬送する工程、
(B)前記霧状原料液体を0.2気圧以上の酸素分圧を
有する酸素雰囲気中で700〜1100℃に加熱分解し
て酸化物系超電導粉体とする工程、(C)前記B工程で
得られる酸化物系超電導粉体を溶媒と共に200℃〜9
00℃に加熱保持した補集部内に導入して溶媒を除去す
ると共に補集部内の酸化物系超電導粉体を1000〜8
000Vの直流電圧により荷電して補集する工程、 を経て製造することを特徴とする酸化物系超電導粉体の
製造方法。
[Scope of Claims] In producing an oxide-based superconducting powder consisting of an alkaline earth metal, a rare earth element, copper, and oxygen, (A) each raw material constituting the oxide-based superconducting powder is dissolved in a solvent to form a solution. After that, these are mixed to the desired composition ratio,
After making a uniform mixed solution, the mixed solution is heated to a frequency of 0.7 to
A process of atomizing with a 3 MHz ultrasonic vibrator, classifying particles of this atomized raw material liquid into desired particle sizes, and transporting the same,
(B) a step of thermally decomposing the atomized raw material liquid at 700 to 1100°C in an oxygen atmosphere having an oxygen partial pressure of 0.2 atm or more to obtain an oxide-based superconducting powder; (C) the step of B. The obtained oxide-based superconducting powder was heated at 200°C to 9°C with a solvent.
The oxide-based superconducting powder in the collecting part is introduced into the collecting part heated and maintained at 00°C to remove the solvent, and the oxide-based superconducting powder in the collecting part is
1. A method for producing oxide-based superconducting powder, characterized in that it is produced through a step of charging and collecting with a DC voltage of 000V.
JP62335982A 1987-12-29 1987-12-29 Production of oxide based superconducting powder Pending JPH01176222A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62335982A JPH01176222A (en) 1987-12-29 1987-12-29 Production of oxide based superconducting powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62335982A JPH01176222A (en) 1987-12-29 1987-12-29 Production of oxide based superconducting powder

Publications (1)

Publication Number Publication Date
JPH01176222A true JPH01176222A (en) 1989-07-12

Family

ID=18294473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62335982A Pending JPH01176222A (en) 1987-12-29 1987-12-29 Production of oxide based superconducting powder

Country Status (1)

Country Link
JP (1) JPH01176222A (en)

Similar Documents

Publication Publication Date Title
Gurav et al. Aerosol processing of materials
Messing et al. Ceramic powder synthesis by spray pyrolysis
US5061682A (en) Ceramic precursor mixture and technique for converting the same to ceramic
Suzuki et al. Synthesis of ultrafine single-component oxide particles by the spray-ICP technique
KR101568122B1 (en) Preparation method of yolkshell structured material by spray drying and yolkshell structured materials prepared thereby
KR20200123927A (en) Manufacturing method of garnet oxide type solid electrolyte having cubic structrue
JP2001017857A (en) Spray pyrolytic apparatus
US20090298699A1 (en) Process for producing raw material powder for oxide superconductor
JPH01176222A (en) Production of oxide based superconducting powder
JP3276330B2 (en) Method for producing spherical powder and spherical powder produced by this method
JPH01179724A (en) Production of oxide superconducting powder
JPH0574530B2 (en)
JP2517877B2 (en) Method for producing fine particle composite
JPH01176221A (en) Production of oxide superconducting powder
JP2003313607A (en) Metal powder, its manufacturing process and conductive paste containing the same
JPH01188415A (en) Production of oxide superconducting powder
JPH01188416A (en) Production of oxide superconducting powder
JPH01179723A (en) Production of oxide superconducting powder
CN1036857A (en) The goods that the manufacture method of superconductor and method thus obtain
JPH0193403A (en) Production of ceramic-based superconducting material and apparatus therefor
JPH03109207A (en) Production of oxide superconducting powder occluding oxygen or gaseous ozone
JPH0259405A (en) Spray roaster
JPH026327A (en) Synthesis of oxide based super conductor powder
JPH02196023A (en) Production of oxide-based superconductor
JPH0572332B2 (en)