JPH01176033A - Production of grain-oriented magnetic steel sheet having excellent magnetic characteristic - Google Patents

Production of grain-oriented magnetic steel sheet having excellent magnetic characteristic

Info

Publication number
JPH01176033A
JPH01176033A JP62330268A JP33026887A JPH01176033A JP H01176033 A JPH01176033 A JP H01176033A JP 62330268 A JP62330268 A JP 62330268A JP 33026887 A JP33026887 A JP 33026887A JP H01176033 A JPH01176033 A JP H01176033A
Authority
JP
Japan
Prior art keywords
steel sheet
annealing
grain
steel
strain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62330268A
Other languages
Japanese (ja)
Other versions
JP2599739B2 (en
Inventor
Hiroshi Koho
光法 弘視
Isao Ito
伊藤 庸
Masao Iguchi
征夫 井口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62330268A priority Critical patent/JP2599739B2/en
Publication of JPH01176033A publication Critical patent/JPH01176033A/en
Application granted granted Critical
Publication of JP2599739B2 publication Critical patent/JP2599739B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/12Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties
    • C21D8/1294Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of articles with special electromagnetic properties involving a localized treatment

Abstract

PURPOSE:To provide a magnetic characteristic which is not deteriorated even by stress-relief annealing by incorporating a stage for imparting local strains to a steel sheet and a stage for welding a secondary recrystallization nucleus forming material to the edge of the steel sheet prior to the final finish annealing of the grain-oriented magnetic steel sheet. CONSTITUTION:A silicon-contg. steel slab is hot-rolled, and annealing and cold rolling are applied respectively at least once. Local strains are imparted to the steel sheet, and then the secondary recrystallization nucleus forming material such as the single crystal substance and polycrystal substance having high Goss azimuth collectivity is welded to the edge of the steel sheet. The steel sheet is then finally finish-annealed. As a result, the secondary grain boundary is increased, namely, the secondary grains are refined, and a grain-oriented magnetic steel sheet with a reduced iron loss is obtained.

Description

【発明の詳細な説明】 (産業上の利用分野) この発明は、磁気特性の優れた一方向性電磁鋼板の製造
方法に関し、とくにゴス方位2次再結晶粒の核発生から
その成長過程を効果的に制御することによって2次粒の
細粒化を図り、もって磁気特性の有利な改善を実現しよ
うとするものである。
[Detailed Description of the Invention] (Industrial Application Field) The present invention relates to a method for manufacturing unidirectional electrical steel sheets with excellent magnetic properties, and in particular, the present invention relates to a method for manufacturing unidirectional electrical steel sheets with excellent magnetic properties, and in particular, to effectively control the growth process from the nucleation of Goss-oriented secondary recrystallized grains. The aim is to make the secondary grains finer by controlling the magnetic properties, thereby achieving an advantageous improvement in magnetic properties.

(従来の技術) 周知のように一方向性けい素鋼板は、主として変圧器、
その他の電気機器の鉄心として利用されているものであ
り、このような一方向性けい素鋼板には、圧延方向の磁
気特性が優れていること、すなわち磁気特性(励磁特性
)としてB1。値(磁場の強さ1000 A/mのとき
発生する圧延方向の磁束密度)で代表される磁束密度が
高く、しかも−IT/SI値(磁束密度1.7T、周波
数50 Hzで磁化したときの鉄損)で代表される鉄損
が低いことが要求される。
(Prior art) As is well known, unidirectional silicon steel sheets are mainly used in transformers,
This unidirectional silicon steel sheet is used as the iron core of other electrical equipment, and has excellent magnetic properties in the rolling direction, that is, B1 in terms of magnetic properties (excitation properties). The magnetic flux density represented by the value (magnetic flux density in the rolling direction generated when the magnetic field strength is 1000 A/m) is high, and -IT/SI value (magnetic flux density when magnetized at 1.7 T and frequency 50 Hz) is high. The iron loss represented by iron loss is required to be low.

上述のような一方向性けい素鋼板の磁気特性を向上させ
るには、鋼板中の2次再結晶粒の<001>軸を圧延方
向に高度に揃える必要がある。このためには一般に、M
nS、 MnSeなどの微細析出物に加えて、特公昭5
1−13469号公報に開示されているように少量のs
bを、また特公昭54−32412号公報に開示されて
いるようにAs、 Bi、 PbおよびSnを、さらに
は特公昭57−14737号公報に開示されているよう
に少量のMoなどを複合添加するとともに、好適な1次
再結晶集合組織形成のために熱間圧延、冷間圧延の各処
理条件を適切に組合わせることにより、最近では、板厚
: 0.30tmで磁束密度B10値が1.90Tを超
える高磁束密度でかつ鉄損−1,/、。値が1.05W
/kg以下の一方向性けい素鋼板が製造されるようにな
った。
In order to improve the magnetic properties of the unidirectional silicon steel sheet as described above, it is necessary to align the <001> axes of the secondary recrystallized grains in the steel sheet to a high degree in the rolling direction. For this purpose, M
In addition to fine precipitates such as nS and MnSe,
1-13469, a small amount of s
b, as well as As, Bi, Pb and Sn as disclosed in Japanese Patent Publication No. 54-32412, and a small amount of Mo etc. as disclosed in Japanese Patent Publication No. 57-14737. At the same time, by appropriately combining the processing conditions of hot rolling and cold rolling in order to form a suitable primary recrystallization texture, it has recently been possible to achieve a magnetic flux density B10 value of 1 at a plate thickness of 0.30 tm. High magnetic flux density exceeding .90T and iron loss -1,/. The value is 1.05W
/kg or less unidirectional silicon steel sheets are now being manufactured.

(発明が解決しようとする問題点) しかしながら、実際の工業的規模での製造においては依
然として次のような問題を残していた。
(Problems to be Solved by the Invention) However, the following problems still remain in actual production on an industrial scale.

すなわち、製品の81゜値を改善するために製品の2次
再結晶粒の< 001 >軸を圧延方向に高度に揃える
と、必然的に2次粒が粗大となって81゜値の改善にみ
あう鉄損改善が得られない。そこで特公昭58−596
8号公報においてレーザー等を用いた歪の導入による鉄
損改善法が提案されたが、この方法では、得られた鉄損
改善効果が特に巻き鉄心で必要となる歪取り焼鈍によっ
て消失するという欠点があった。
In other words, if the <001> axes of the secondary recrystallized grains of the product are highly aligned in the rolling direction in order to improve the 81° value of the product, the secondary grains will inevitably become coarser and the 81° value will improve. The corresponding iron loss improvement cannot be obtained. Therefore, the special public official
In Publication No. 8, a method for improving iron loss by introducing strain using a laser or the like was proposed, but this method has the disadvantage that the effect of improving iron loss is lost especially by the strain relief annealing required for wound cores. was there.

一方、かかる歪取り焼鈍でも損失しないように鉄損を改
善すべく、2次粒を微細化すると、B、。
On the other hand, if the secondary grains are made finer in order to improve the iron loss so as not to be lost even in such stress relief annealing, B.

値が劣化し、やはり2次粒微細化にみあう鉄損の改善が
得られないところに問題を残していた。
The problem remained that the iron loss could not be improved commensurate with the refinement of the secondary grains.

この発明は、上記の問題を有利に解決するもので、B1
0値の高い素材を安定して得るとともに、とくにゴス方
位2次再結晶粒の核発生からその成長過程を効果的に制
御することによって好適に制御された微細2次粒とする
ことにより、歪取り焼鈍でも劣化しない優れた磁気特性
を有する一方向性電磁鋼板の有利な製造方法を提案する
ことを目的とする。
This invention advantageously solves the above problems, and B1
In addition to stably obtaining a material with a high zero value, it is possible to effectively control the nucleation and growth process of Goss-oriented secondary recrystallized grains to obtain fine secondary grains that are suitably controlled. The purpose of the present invention is to propose an advantageous manufacturing method for a grain-oriented electrical steel sheet that has excellent magnetic properties that do not deteriorate even during pre-annealing.

(問題点を解決するための手段) 成品の2次再結晶粒の<001>軸を圧延方向に高度に
揃えるためには、2次再結晶前の鋼板は結晶組織、集合
組織、インヒビターなどを適正な状態に整えておく必要
があり、これらを整えるため、素材成分から始まって製
鋼・熱延・冷延・熱処理と複雑で多岐にわたる各処理条
件を厳密に制御する必要があることは前述したとおりで
ある。
(Means for solving the problem) In order to highly align the <001> axes of the secondary recrystallized grains in the finished product in the rolling direction, the steel sheet before secondary recrystallization must have a crystal structure, texture, inhibitors, etc. As mentioned above, it is necessary to maintain the proper conditions, and in order to achieve these conditions, it is necessary to strictly control the complex and wide-ranging processing conditions, starting from the material composition to steel manufacturing, hot rolling, cold rolling, and heat treatment. That's right.

しかしながら実際の工業的規模での製造においては、上
記の総合的な適正条件から外れやすく、わずかでも外れ
たものは<001>軸の圧延方向への配向性が悪くなっ
ていたわけであるが、この問題に対して発明者らは、<
 001 >軸の配向性を決定づける2次再結晶現象に
ついてその基本である2次再結晶核の生成と成長とに着
目して研究を行った。
However, in actual production on an industrial scale, it is easy to deviate from the overall appropriate conditions mentioned above, and if there is even a slight deviation, the orientation of the <001> axis in the rolling direction becomes poor. In response to the problem, the inventors
We conducted research on the secondary recrystallization phenomenon that determines the orientation of the 001 > axis, focusing on the generation and growth of secondary recrystallization nuclei, which is the basis thereof.

その結果、2次再結晶前の鋼板の素材特性すなわち結晶
組織、集合組織、インヒビターなどの素材特性が、製造
工程条件の現実における変動あるいは簡略化により従来
の総合的な適正条件から多少外れたとしても、良好な磁
性が安定して得られることが判明している材料を2次粒
の核として溶接することにより、2次粒が安定しては得
られない材料においても、良好な核から好適方位の2次
粒が安定して得られ、その結果価れた磁気特性が発現す
ることの知見を得た。
As a result, it was found that the material properties of the steel sheet before secondary recrystallization, such as crystal structure, texture, and inhibitors, deviated somewhat from the conventional overall appropriate conditions due to actual variations or simplifications in the manufacturing process conditions. By welding a material that is known to be able to stably obtain good magnetism as the core of the secondary grains, it is possible to weld the material that is known to be able to stably obtain good magnetism as the core of the secondary grains. It was found that oriented secondary grains can be stably obtained, and as a result, excellent magnetic properties are exhibited.

また2次粒の成長速度について検討を重ねた結果、粒界
又は転位置の導入により粒界移動の駆動力が増加し、そ
の結果2次粒の成長速度が大幅に増加することが判明し
た。
Further, as a result of repeated studies on the growth rate of secondary grains, it was found that the introduction of grain boundaries or dislocations increases the driving force for grain boundary movement, and as a result, the growth rate of secondary grains increases significantly.

この発明は上記の知見に立脚するものである。This invention is based on the above knowledge.

すなわちこの発明の要旨構成は次のとおりである。That is, the gist of the present invention is as follows.

(1)含けい素鋼スラブを、熱間圧延し、ついで少なく
とも1回の焼鈍と冷間圧延を施したのち、最終仕上げ焼
鈍を施すことによって一方向性電磁鋼板を製造するに当
り、最終仕上げ、焼鈍前において、 鋼板に局所量を付与する工程と、 鋼板の縁部に、2次再結晶核の形成材料を溶接する工程 とを有することから成る磁気特性の優れた一方向性電磁
鋼板の製造方法。
(1) A silicon-containing steel slab is hot rolled, then annealed and cold rolled at least once, and then final annealed to produce a grain-oriented electrical steel sheet. , a unidirectional electrical steel sheet with excellent magnetic properties, which includes a step of imparting a localized amount to the steel sheet before annealing, and a step of welding a material for forming secondary recrystallization nuclei to the edge of the steel sheet. Production method.

以下、この発明を由来するに至った基本的実験結果に基
づき、この発明を具体的に説明する。
Hereinafter, this invention will be specifically explained based on the basic experimental results that led to this invention.

C: 0.065 wt%(以下単に%で示す)、Si
:3.25%、Mn : 0.075%、S : 0.
002%、Al:0.020%、Mo : 0.012
%およびN : 0.0090%を含有する鋼スラブを
、1350’Cで2時間加熱後、熱間圧延して板幅10
0■で2.3 mm厚とした。ついで1050゛Cで1
分間焼鈍し、ミスト中で水冷した。次に鋼板表面のスケ
ールを除去し、平坦化圧延後、鉱物油とグラファイトを
混合した液体を鋼板全面に塗布したのち、出力600 
Wの炭酸ガスレーザーのビーム径を0.311IIII
φに絞って圧延方向と直角方向に3輪間隔で板厚を貫通
するレーザー照射を行った。
C: 0.065 wt% (hereinafter simply expressed as %), Si
: 3.25%, Mn: 0.075%, S: 0.
002%, Al: 0.020%, Mo: 0.012
% and N: A steel slab containing 0.0090% was heated at 1350'C for 2 hours and then hot rolled to a plate width of 10.
0■, the thickness was 2.3 mm. Then 1 at 1050°C
Annealed for minutes and water cooled in mist. Next, the scale on the surface of the steel plate was removed, and after flattening and rolling, a liquid mixture of mineral oil and graphite was applied to the entire surface of the steel plate, and the output was increased to 600.
The beam diameter of the W carbon dioxide laser is 0.311III
Laser irradiation was carried out to penetrate the plate thickness at three wheel intervals in a direction perpendicular to the rolling direction with a focus on φ.

この時、鋼板の板幅方向半分に、遮蔽板を設置し、圧延
方向と直角方向でレーザービームを半分遮蔽した。
At this time, a shielding plate was installed in half of the steel plate in the width direction to block half of the laser beam in a direction perpendicular to the rolling direction.

一方C: 0.053%、 Si : 3.00%、 
Mn : 0.080%。
On the other hand, C: 0.053%, Si: 3.00%,
Mn: 0.080%.

S : 0.020%、 Af : 0.026%およ
びN : 0.0070%を含有する鋼スラブを、13
50″Cで2時間加熱後、熱間圧延して2.3鵬厚とし
たのち、1050°Cで1分間焼鈍し、ミスト中で水冷
して得た鋼板を、上記鋼板の遮蔽板を設置した側の鋼板
端部に遮蔽板を除去して溶接し、塗布液を除去した後、
冷間圧延を施して板厚0.30mmの冷延板に仕上げた
。次に湿水素中で820°C15分間の脱炭焼鈍を施し
たのち、焼鈍分離剤を塗布してから、圧延方向にR= 
 500値の曲率の湾曲を付与して、1200°Cで1
5時間の仕上げ焼鈍を施した。
A steel slab containing S: 0.020%, Af: 0.026% and N: 0.0070% was
After heating at 50"C for 2 hours, hot rolling to a thickness of 2.3cm, annealing at 1050°C for 1 minute, and cooling with water in mist. A shielding plate of the above steel plate was installed. After removing the shielding plate and welding to the edge of the steel plate on the side where it was applied, and removing the coating liquid,
A cold-rolled plate with a thickness of 0.30 mm was finished by cold rolling. Next, decarburization annealing was performed at 820°C for 15 minutes in wet hydrogen, and after applying an annealing separator, R =
1 at 1200°C with a curvature of 500 values.
Finish annealing was performed for 5 hours.

さらにその後りん酸塩を主体とした絶縁コーティングを
施したのち、800°Cで3時間の歪取り焼鈍を実施し
た。
Furthermore, after applying an insulating coating mainly composed of phosphate, strain relief annealing was performed at 800°C for 3 hours.

この時の磁気特性結果は、レーザービームを遮蔽した領
域に対応するものが、B1゜〜1.951 (T)、讐
、7八。〜1.12 w/kgであったのに対し、レー
ザービームを照射した領域に対応するものは、Bl(1
”1.950 (T) 、W+tzso=1.03 w
/kgと大幅に改善されていた。
The magnetic property results at this time were B1°~1.951 (T), 78, corresponding to the area where the laser beam was shielded. ~1.12 w/kg, whereas the area corresponding to the area irradiated with the laser beam was Bl(1
”1.950 (T), W+tzso=1.03 w
/kg, which was a significant improvement.

この理由は、レーザービーム照射領域の溶解。The reason for this is the melting of the laser beam irradiation area.

浸炭および急冷効果によって、圧延による歪の導入が増
進される結果、1次粒の組織やインヒビター状態が変化
し、レーザービームを照射した領域と非照射領域とで2
次再結晶粒の成長速度に差ができるため、これらの境界
領域に新たに2次粒界が形成され、その結果レーザービ
ーム遮へい領域に比べて2次粒が微細化されたためであ
ると考えられる。
Due to the carburizing and quenching effects, the introduction of strain due to rolling is enhanced, resulting in changes in the structure of the primary grains and the state of the inhibitor, resulting in two differences between the laser beam irradiated area and the non-irradiated area.
This is thought to be due to the difference in the growth rate of secondary recrystallized grains, which led to the formation of new secondary grain boundaries in these boundary areas, and as a result, the secondary grains became finer than in the laser beam shielding area. .

粗大2次粒の微細化方法に関しては、2次粒成長阻止領
域の形成による方法が特開昭50−137819号公報
に提案されているが、この方法は単に2次再結晶粒の成
長を阻止する領域を導入するものにすぎず、鋼板内の局
所領域に2次粒の成長速度差を生じさせ、この速度差の
生じる境界領域に粒界を導入することによって2次粒の
微細化を図るこの発明とは根本的に異なるものである。
Regarding the method of refining coarse secondary grains, a method by forming a secondary grain growth inhibiting region is proposed in JP-A-50-137819, but this method simply inhibits the growth of secondary recrystallized grains. It merely introduces a region where secondary grains grow in a localized region within the steel sheet, and by introducing a grain boundary in the boundary region where this speed difference occurs, the secondary grains are made finer. This invention is fundamentally different from this invention.

このようにこの発明は、2次粒界による鉄損の改善であ
るので、特公昭58−5968号公報に開示されたレー
ザー照射による鉄損改善のように歪取り焼鈍によってそ
の改善効果が消滅することなどなく、従ってとくに巻き
鉄心材料として優れた効果を発揮する。
As described above, since this invention improves iron loss by secondary grain boundaries, the improvement effect disappears by strain relief annealing, like the iron loss improvement by laser irradiation disclosed in Japanese Patent Publication No. 58-5968. Therefore, it is particularly effective as a wound core material.

まずこの発明の出発素材については、従来公知の一方向
性電磁鋼板の成分たとえば、C: 0.002〜1.0
%、 St : 0.1〜7.0%およびMn : 0
.002〜0.15%を含有する他、インヒビター形成
成分として、S : 0.005〜0.05%、 Se
 : 0.005〜0.05%。
First, regarding the starting material of this invention, the components of conventionally known unidirectional electrical steel sheets, for example, C: 0.002 to 1.0
%, St: 0.1-7.0% and Mn: 0
.. In addition to containing 0.002 to 0.15%, S: 0.005 to 0.05%, Se as inhibitor forming components.
: 0.005-0.05%.

Te : 0.003〜0.03%、 Sb : 0.
005〜0.05%、Bi:0.005〜0.05%、
 Sn : 0.01〜0.5%、 Cu : 0.0
1〜0.3%、 Mo : 0.005〜0.05%、
  B : 0.0003〜0.0040%、 N :
 0.001〜0.01%、 Al : 0.005〜
0.05%、 Ti : 0.001〜0.05%、 
V : 0.001〜0.05%およびNb : 0.
001〜0.05%のうちから選んだ少なくとも一種を
含有する素材いずれもが有利に適合する。
Te: 0.003-0.03%, Sb: 0.
005-0.05%, Bi: 0.005-0.05%,
Sn: 0.01-0.5%, Cu: 0.0
1-0.3%, Mo: 0.005-0.05%,
B: 0.0003-0.0040%, N:
0.001~0.01%, Al: 0.005~
0.05%, Ti: 0.001-0.05%,
V: 0.001-0.05% and Nb: 0.
Any material containing at least one selected from 0.001 to 0.05% is advantageously suitable.

これらの素材は従来公知の製鋼法、たとえば転炉、電気
炉で製鋼され、さらに造塊−分塊法、連続鋳造法、また
はロール急冷法などによってスラブ、シートバーあるい
は直接薄鋼板としたのち、必要に応じて熱間圧延、温間
又は冷間圧延によって含けい素鋼板とする。ついで必要
に応じて均一化焼鈍、さらには中間焼鈍を含む1回以上
の圧延により最終板厚に仕上げる。これら均一化焼鈍お
よび中間焼鈍は圧延後の結晶組織を均質化する再結晶処
理を目的としていて、通常は800〜1200°Cで3
0秒〜10分間保持して行う。また仕上げ厚は0.50
mm以下とするが、2次再結晶が不安定となる0、23
m+s以下の薄仕上げ厚においてこの発明は特に有効で
ある。
These materials are manufactured by conventional steel manufacturing methods such as converter furnaces and electric furnaces, and then made into slabs, sheet bars, or directly into thin steel sheets by the ingot-blooming method, continuous casting method, roll quenching method, etc. A silicon-containing steel plate is produced by hot rolling, warm rolling, or cold rolling as necessary. Then, if necessary, uniform annealing and further rolling including intermediate annealing are performed one or more times to achieve the final plate thickness. These homogenizing annealing and intermediate annealing are aimed at recrystallization treatment to homogenize the crystal structure after rolling, and are usually performed at 800 to 1200°C for 3
Hold for 0 seconds to 10 minutes. Also, the finishing thickness is 0.50
mm or less, but the secondary recrystallization becomes unstable at 0,23
This invention is particularly effective for thin finished thicknesses of m+s or less.

次に湿水素中で700〜900°C11〜15分間程度
の焼鈍を施して鋼中Cを除去するとともに、次の焼鈍時
にゴス方位の2次再結晶粒を発達させるのに有利な1次
再結晶集合組織を形成させる。
Next, C is removed from the steel by annealing in wet hydrogen at 700-900°C for 11-15 minutes. Form a crystal texture.

しかるのち800〜1000°C,1〜50時間程度の
2次再結晶焼鈍ついで850〜1250°C,5〜50
時間程時間線化焼鈍からなる最終仕上げ焼鈍を施すわけ
であるが、この発明では、上記の最終仕上げ焼鈍前にお
いて、 鋼板に局所歪を付与する工程と、 鋼板の縁部に、2次再結晶核の形成材料を溶接する工程 とを組み込むのである。
After that, secondary recrystallization annealing is performed at 800-1000°C for 1-50 hours, and then 850-1250°C for 5-50 hours.
A final finish annealing consisting of linear annealing is performed for about an hour, but in this invention, before the above final finish annealing, a step of imparting local strain to the steel plate and a secondary recrystallization are applied to the edges of the steel plate. This method incorporates a step of welding the material forming the nucleus.

ここに局所歪の付与手段として考えられる第1は、冷間
圧延途中で鋼板を局所的に加熱して部分的に歪を解放す
ることにより、蓄積歪を少なくして2次再結晶前の1次
粒径を部分的に大きく、即ち粒界の歪量を少くする方法
である。また考えられる手段の第2は、上述の工程とは
逆に前述の基本実験の場合のように、焼鈍(最終仕上げ
焼鈍を除く)前のいずれかの段階において鋼板を局所的
に浸炭することにより部分的に歪を導入し、蓄積歪を多
くして結果的に2次再結晶前の1次粒径を部分的に小さ
く、即ち粒界歪を多くする方法である。さらに考えられ
る手段の第3は、上述第2の手段とは逆に脱炭焼鈍前の
いずれかの段階において鋼板を局所的に脱炭することに
より部分的に歪を解放し、蓄積歪を少くして結果的に2
次再結晶前の1次粒径を部分的に大きく、即ち粒界歪を
少くする方法である。またさらに考えられる工程の第4
は、2次再結晶前の鋼板に機械的手法などにより直接量
を導入する方法である。
The first possible means of imparting local strain here is to locally heat the steel plate during cold rolling to partially release the strain, thereby reducing the accumulated strain and increasing the level of strain before secondary recrystallization. This is a method of partially enlarging the secondary grain size, that is, reducing the amount of strain at grain boundaries. The second possible means is to carburize the steel plate locally at some stage before annealing (excluding final finish annealing), as in the case of the basic experiment described above, contrary to the above-mentioned process. This is a method of partially introducing strain and increasing accumulated strain, thereby partially reducing the primary grain size before secondary recrystallization, that is, increasing grain boundary strain. A third possible method is to partially release the strain by locally decarburizing the steel plate at some stage before decarburization annealing, contrary to the second method described above, to reduce the accumulated strain. and as a result 2
This is a method of partially increasing the primary grain size before the next recrystallization, that is, reducing grain boundary strain. Furthermore, the fourth possible process
This is a method in which a quantity is directly introduced into the steel sheet before secondary recrystallization by a mechanical method or the like.

以上、第1.第2.第3および第4の手段において、歪
解放、浸炭、脱炭、歪導入の方法ならびに時期、量、形
態については特に規定しないが、いずれの工程において
も、2次再結晶時に2次粒の潜伏期間にはあまり影響を
与えないが成長速度には大きな変化を与える範囲内にお
いて適宜変えることが好ましい。
Above is the first part. Second. In the third and fourth means, the method, timing, amount, and form of strain release, carburizing, decarburization, and strain introduction are not particularly specified, but in any process, secondary grains are latent during secondary recrystallization. It is preferable to change it appropriately within a range that does not significantly affect the period but significantly changes the growth rate.

また2次再結晶核の形成材料の溶接については、溶接時
期は上述したとおり最終仕上げ焼鈍前までのいずれの段
階においても実施可能である。また溶接方法は従来公知
のガス、通電、レーザー、プラズマおよび電子ビームな
どいかなる方法も可能であり、溶接のし方についても突
き合わせおよび重ね合わせなどいずれもが適合する。
Further, welding of the material forming secondary recrystallized nuclei can be performed at any stage up to the final annealing as described above. Further, any conventional welding method such as gas, current, laser, plasma, or electron beam can be used, and any of the welding methods, such as butt and overlapping, are suitable.

また溶接する2次再結晶核形成材料としては、ゴス方位
集度の高い単結晶体および多結晶体のいずれもが適合す
る。このうち多結晶体の好適材料としては、 ■ C: 0.025〜0.050%、Si:0.1〜
4.0%。
Further, as the secondary recrystallization nucleation material to be welded, both single crystals and polycrystals with a high Goss orientation concentration are suitable. Among these, preferred polycrystalline materials include: (1) C: 0.025-0.050%, Si: 0.1-0.050%;
4.0%.

Mn : 0.05〜0.07%、  S : 0.0
15〜0.025%。
Mn: 0.05-0.07%, S: 0.0
15-0.025%.

■ C: 0.025〜0.060%、Si:0.1〜
4.0%。
■ C: 0.025~0.060%, Si: 0.1~
4.0%.

Mn : 0.05〜0.07%、 Se : 0.0
15〜0.040%。
Mn: 0.05-0.07%, Se: 0.0
15-0.040%.

Sb ? 0.020〜0.060%、 Mo : 0
.010〜0.025%。
Sb? 0.020-0.060%, Mo: 0
.. 010-0.025%.

■ C: 0.050〜0.090%、Si:2.5〜
4.0%。
■ C: 0.050~0.090%, Si: 2.5~
4.0%.

Mn : 0.05〜0.10%、  S : 0.0
15〜0.025%又はSe : 0.015〜0.0
40%、 An :o、ots 〜0.040%、  
N : 0.050〜0.100%。
Mn: 0.05-0.10%, S: 0.0
15-0.025% or Se: 0.015-0.0
40%, An: o, ots ~0.040%,
N: 0.050-0.100%.

をそれぞれ含有し、残部はFeおよび不可避的不純物よ
りなるけい素鋼スラブを、1250°C以上の温度に加
熱後、800°C以上の温度で熱間圧延を施して得た熱
延板等があり、さらにその形状は板状、線状などなんで
もよい。
A hot-rolled sheet, etc., obtained by heating a silicon steel slab containing Fe and unavoidable impurities to a temperature of 1250°C or higher and then hot rolling it at a temperature of 800°C or higher. Moreover, the shape may be any shape such as a plate or a line.

また溶接される材料としては、N化物又はS。Also, the material to be welded is Nide or S.

Se、 TeのMn化合物の微細分散相を少くとも1種
比較的多量に含有させることにより正常粒成長をできる
だけ抑えるとともに1次粒のゴス成分ができるだけ少く
なるように強圧下圧延あるいは圧延前に脱Cしたものな
どが適合し、とくに2次再結晶時に、2次粒は成長する
が発生はしないものである方が、この発明を一層効果的
に適用し得る。
By containing a relatively large amount of at least one type of finely dispersed phase of Mn compounds such as Se and Te, normal grain growth is suppressed as much as possible, and the Goss component of the primary grains is reduced as much as possible by being de-rolled before hard reduction or rolling. The present invention can be applied more effectively if a material with C or the like is suitable, and in particular, a material that grows but does not generate secondary grains during secondary recrystallization.

なお2次再結晶焼鈍時に、2次再結晶粒と1次再結晶粒
との境界における温度勾配が1°(/ cm以上の温度
傾斜焼鈍を施すことにより、さらに最終仕上げ焼鈍後の
鋼板表面を鏡面状態としたのちCVD法やPVD法など
のドライブレーティングによって金属の窒化物、炭化物
および酸化物のうち少くとも一種より主として成る極薄
被膜を鋼板表面に強固に被成することにより、−段と磁
性が向上する。
During secondary recrystallization annealing, by performing temperature gradient annealing where the temperature gradient at the boundary between secondary recrystallized grains and primary recrystallized grains is 1° (/cm or more), the steel plate surface after final annealing can be After making the steel sheet into a mirror-like state, by dry brating such as CVD or PVD, an ultra-thin film consisting mainly of at least one of metal nitrides, carbides, and oxides is firmly formed on the surface of the steel sheet. Magnetism improves.

(実施例) 実施例I C: 0.075%、 Si : 3.30%、 Mn
 : 0.075%、S: 0.025%、 AI!、
: 0.030%およびN : 0.0085%を含有
し、残部はFeおよび不可避的不純物よりなるけい素鋼
スラブに、熱間圧延を施して板厚1.8−の熱延板とし
、次に1120°Cで2分間焼鈍後、ミスト中でゑ、冷
したものをA素材とした。またC:0.100%、 S
i : 3.45%、 Mn : 0.20%、  S
 : 0.003%、 Affi : 0.025%お
よびN : 0.0090%を含有し、残部はFeおよ
び不可避的不純物よりなるけい素鋼スラブを、熱間圧延
して2.3 mの熱延板としたのち、冷間圧延により板
厚1.8 rmに圧延した。次にプラズマアークにより
圧延方向の直角方向に3a+m間隔で板厚を貫通するプ
ラズマ照射を行って1次再結晶させたものをB素材とし
た。
(Example) Example I C: 0.075%, Si: 3.30%, Mn
: 0.075%, S: 0.025%, AI! ,
A silicon steel slab containing N: 0.030% and N: 0.0085%, with the remainder consisting of Fe and unavoidable impurities, was hot rolled into a hot rolled plate with a thickness of 1.8 mm. Material A was annealed at 1120°C for 2 minutes and then cooled in a mist. Also C: 0.100%, S
i: 3.45%, Mn: 0.20%, S
A silicon steel slab containing: 0.003%, Affi: 0.025%, and N: 0.0090%, with the remainder consisting of Fe and unavoidable impurities, was hot-rolled to a thickness of 2.3 m. After forming a plate, it was cold rolled to a plate thickness of 1.8 rm. Next, a B material was obtained by performing primary recrystallization by performing plasma irradiation using a plasma arc to penetrate the plate thickness at intervals of 3a+m in a direction perpendicular to the rolling direction.

B素材の端部にA、 B各々の素材の圧延方向、圧延面
を一致させて、A素材を突合せ、接合部にグラファイト
粉と鉱物油の混合物を塗布したのち、レーザー溶接して
C素材とした。ついでB、C素材に冷延を施して板厚0
.23anの冷延板に仕上げた。
Match the rolling direction and rolling surface of each of the A and B materials to the end of the B material, butt the A material, apply a mixture of graphite powder and mineral oil to the joint, and then laser weld it to the C material. did. Next, the B and C materials are cold rolled to a thickness of 0.
.. Finished as a 23an cold rolled sheet.

次に湿水素中で840°C110分間の脱炭を施し、M
gO焼鈍分離剤を塗布、乾燥させた後、圧延方向にR=
500mの曲率の湾曲を付与して15°C/hの速度で
昇温し、1200°Cl2O時間の純化焼鈍を行った。
Next, decarburization was performed in wet hydrogen at 840°C for 110 minutes, and M
After coating and drying the gO annealing separator, R =
A curvature of 500 m was applied, the temperature was raised at a rate of 15°C/h, and purification annealing was performed at 1200°CCl2O hours.

さらにりん酸塩を主体とした絶縁コーティングを施した
のち、800″Cで3時間の歪取り焼鈍を実施した。
Furthermore, after applying an insulating coating mainly composed of phosphate, strain relief annealing was performed at 800''C for 3 hours.

この時の磁気特性は、B素材がB1゜=1.520(T
)であったのに対し、C素材はB、。=1.945(T
)。
At this time, the magnetic properties of the B material are B1°=1.520(T
), whereas the C material was B. =1.945(T
).

L7/s。=0.81 (w/kg)と大幅に改善され
ていた。
L7/s. = 0.81 (w/kg), which was a significant improvement.

なおA素材はB、。=1.948 (T)、 W+tz
s。=0.90(讐/kg)であった。
In addition, A material is B. =1.948 (T), W+tz
s. = 0.90 (enemy/kg).

実施例2 実施例1のB素材の熱延板を酸洗して表面の酸化スケー
ルを除去した。次に鉱物油とグラファイトを混合した液
体を鋼板表面に塗布し、圧延方向に5In1間隔で圧延
方向と直角方向に板厚を貫通する条件で直径が1鵬のレ
ーザービームを照射を施したものをD素材とした。
Example 2 A hot-rolled sheet of material B of Example 1 was pickled to remove oxide scale on the surface. Next, a liquid mixture of mineral oil and graphite was applied to the surface of the steel plate, and a laser beam with a diameter of 1 inch was irradiated to penetrate the plate thickness in a direction perpendicular to the rolling direction at intervals of 5 inches in the rolling direction. D material was used.

ついでD素材の端部に、実施例1のA素材を、A、 D
各々の圧延方向、圧延面を一致させて突き合せ、接合部
にグラファイト粉と鉱物油の混合物を塗布したのち、レ
ーザー溶接してE素材とした。
Next, apply the A material of Example 1 to the end of the D material.
After aligning the rolling direction and rolling surface of each material and butting them together, a mixture of graphite powder and mineral oil was applied to the joint, and then laser welding was performed to obtain E material.

このE素材に冷間圧延を施して板厚0.23mmの冷延
板に仕上げた。その後実施例1と同様の処理を施した。
This E material was cold-rolled to produce a cold-rolled plate with a thickness of 0.23 mm. Thereafter, the same treatment as in Example 1 was performed.

この時のE素材の磁気特性は、 B+o =1.950 (T)、 l’l+yzso 
−0,80(w/kg)であり、大幅な磁性の改善が達
成された。
The magnetic properties of the E material at this time are: B+o = 1.950 (T), l'l+yzso
-0.80 (w/kg), and a significant improvement in magnetism was achieved.

実施例3 実施例1のB素材の熱延板を酸洗により表面スケールを
除去した後、鋼板面に厚さ2μmの銅めっきを施した。
Example 3 After surface scale was removed from the hot rolled sheet of material B in Example 1 by pickling, the surface of the steel sheet was plated with copper to a thickness of 2 μm.

次に圧延方向に5[11111間隔で圧延方向と直角方
向に銅めっき層のみが蒸発する条件で直径が2閣のレー
ザービームを照射し、840°Cで10分間湿水素中で
脱炭後、残余の銅めっきを除去したものをF素材とした
。このF素材の端部に実施例1のA素材をA、  Fそ
れぞれの素材の圧延方向、圧延面を一致させて突き合せ
、接合部にグラファイト粉と鉱物油の混合物を塗布した
後、レーザー溶接しC素材とした。C素材に冷延を施し
て板厚0.23mmの冷延板に仕上げた。次に湿水素中
で840″C110分間の脱炭を施し、MgO焼鈍分離
剤を塗布、乾燥後、圧延方向にR=500nnmの曲率
で湾曲を付与して15°C/hの速度で昇温し、120
0”Cで20時間の純化焼鈍を行った。さらにりん酸塩
を主体とした絶縁コーティングを施したのち、800°
Cで3時間の歪取り焼鈍を実施した。この時のG素材の
磁気特性は、 Boo ”’1.933 (T)、  Wtt/s。=
0.86 (w/kg)であり大幅な磁性の改善が達成
できた。
Next, a laser beam with a diameter of 2 mm was irradiated at intervals of 5 [11111] in the direction perpendicular to the rolling direction under conditions that only the copper plating layer was evaporated, and after decarburization in wet hydrogen at 840 ° C for 10 minutes, Material F was obtained by removing the remaining copper plating. The A material of Example 1 is butted against the end of this F material with the rolling direction and rolling surface of each of the materials A and F matching, and after applying a mixture of graphite powder and mineral oil to the joint, laser welding is performed. It was made of C material. C material was cold-rolled to produce a cold-rolled plate with a thickness of 0.23 mm. Next, decarburize in wet hydrogen at 840"C for 10 minutes, coat with MgO annealing separator, and after drying, apply a curvature of R = 500nm in the rolling direction and raise the temperature at a rate of 15°C/h. 120
Purification annealing was performed at 0"C for 20 hours. After applying an insulating coating mainly composed of phosphate, annealing was performed at 800°C.
Strain relief annealing was performed at C for 3 hours. The magnetic properties of the G material at this time are Boo'''1.933 (T), Wtt/s.=
0.86 (w/kg), and a significant improvement in magnetism was achieved.

実施例4 CO,045%、 St 3.25%、 Mn O,0
65%、 Mo 0.012%、 Se O,019%
およびSb 0.025%を含有し、残部はFeおよび
不可避的不純物よりなるけい素鋼スラブを、2.3鵬厚
に熱間圧延して得た熱延板をH素材とし、実施例10A
素材熱延板の端部にA、 Hそれぞれの素材の圧延方向
を一致させてH素材を突き合せ、接合部にグラファイト
粉と鉱物油の混合物を塗布した後、レーザー溶接した。
Example 4 CO, 045%, St 3.25%, Mn O, 0
65%, Mo 0.012%, SeO, 019%
A hot-rolled plate obtained by hot rolling a silicon steel slab containing 0.025% of Sb and 0.025% of Sb, and the balance consisting of Fe and unavoidable impurities to a thickness of 2.3 mm was used as the H material, and Example 10A
Materials A and H were butted against the ends of the hot-rolled sheets with the rolling directions of each material being the same, and a mixture of graphite powder and mineral oil was applied to the joint, followed by laser welding.

この溶接材に900 ’Cで3分間の均一化焼鈍を施し
、ついで第1回目の冷間圧延を施して0.601mの中
間板厚としてから、950″Cで3分間の中間焼鈍を施
した後、第2回目の冷延を施してvi厚0.23mmの
冷延板に仕上げた。次に湿水素中で850°C25分間
の脱炭を施したのち、突起付ロールで、圧延方向に6m
m間隔で幅3ma+の圧延方向に交差するような帯状の
歪を1%、A素材の圧延方向に対して半分のみに導入し
た。
This welded material was subjected to homogenization annealing at 900'C for 3 minutes, then subjected to a first cold rolling to give an intermediate plate thickness of 0.601 m, and then subjected to intermediate annealing at 950'C for 3 minutes. After that, a second cold rolling was performed to obtain a cold rolled sheet with a vi thickness of 0.23 mm.Next, it was decarburized in wet hydrogen at 850°C for 25 minutes, and then rolled in the rolling direction using a roll with protrusions. 6m
Strain strips of 1% and having a width of 3 ma+ and intersecting the rolling direction at m intervals were introduced into only half of the A material in the rolling direction.

次にMgO焼鈍分離剤を塗布、乾燥後、圧延方向にR−
5001の曲率の湾曲を付与して、850°Cで30時
間の2次再結晶焼鈍を施した後、20°C/hの速度で
昇温し、1200℃で20時間の純化焼鈍を行った。
Next, apply MgO annealing separator, and after drying, R-
After giving a curve with a curvature of 5001 and performing secondary recrystallization annealing at 850°C for 30 hours, the temperature was raised at a rate of 20°C/h and purification annealing was performed at 1200°C for 20 hours. .

さらにりん酸塩を主体とした絶縁コーティングを施した
のち、800″Cで3時間の歪取り焼鈍を実施した。こ
の時のA素材の磁気特性は歪を導入しない領域に対応す
るものが、BIG =1.925 (T) 。
Furthermore, after applying an insulating coating mainly composed of phosphate, strain relief annealing was performed at 800"C for 3 hours.The magnetic properties of material A at this time corresponded to the region where no strain was introduced, and =1.925 (T).

Lt/5o=0.88 (w/kg)であったのに対し
、歪を導入した領域に対応するものはB1゜=1.92
5 (T)。
Lt/5o = 0.88 (w/kg), whereas B1° = 1.92 for the region where strain was introduced.
5 (T).

Wl?/S。−0,84(w/kg)であり、大幅な磁
性の改善が達成されていた。
Wl? /S. -0.84 (w/kg), and a significant improvement in magnetism was achieved.

(発明の効果) かくしてこの発明によれば、2次再結晶前の鋼板に、歪
導入量の多い領域と少ない領域とを区画形成することに
よって2次再結晶粒の成長速度に人為的な差を与えるこ
とにより、2次粒界の増加すなわち2次粒の細分化ひい
ては磁気特性とくに歪取り焼鈍でも劣化しない鉄損の低
減化を実現することができ、さらには省エネルギーにも
大きく貢献するものである。
(Effects of the Invention) Thus, according to the present invention, artificial differences in the growth rate of secondary recrystallized grains can be eliminated by partitioning the steel sheet before secondary recrystallization into areas where the amount of introduced strain is high and areas where the amount of strain is low. By providing this, it is possible to increase the number of secondary grain boundaries, that is, to subdivide the secondary grains, and in turn, to reduce the magnetic properties, especially the iron loss, which does not deteriorate even during strain relief annealing, and furthermore, it greatly contributes to energy conservation. be.

特許出願人  川崎製鉄株式会社Patent applicant: Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】 1、含けい素鋼スラブを、熱間圧延し、ついで少なくと
も1回の焼鈍と冷間圧延を施したのち、最終仕上げ焼鈍
を施すことによって一方向性電磁鋼板を製造するに当り
、最終仕上げ焼鈍前において、 鋼板に局所歪を付与する工程と、 鋼板の縁部に、2次再結晶核の形成材料を溶接する工程 とを有することを特徴とする磁気特性の優れた一方向性
電磁鋼板の製造方法。 2、局所歪の付与が、冷間圧延の途中で鋼板を部分的に
加熱するものである特許請求の範囲第1項記載の方法。 3、局所歪の付与が、焼鈍前のいずれかの工程で鋼板に
部分的に浸炭するものである特許請求の範囲第1項記載
の方法。 4、局所歪の付与が、焼鈍前のいずれかの工程で鋼板を
部分的に脱炭するものである特許請求の範囲第1項記載
の方法。 5、局所歪の付与が、最終仕上げ焼鈍直前に機械的手法
により鋼板に直接歪を導入するものである特許請求の範
囲第1項記載の方法。
[Claims] 1. A unidirectional electrical steel sheet is produced by hot rolling a silicon-containing steel slab, then annealing and cold rolling at least once, and then final finish annealing. For this purpose, a method for manufacturing a steel sheet with excellent magnetic properties, which includes a step of applying local strain to the steel sheet before final annealing, and a step of welding a material for forming secondary recrystallized nuclei to the edge of the steel sheet. A method for producing unidirectional electrical steel sheets. 2. The method according to claim 1, wherein the imparting of local strain involves partially heating the steel plate during cold rolling. 3. The method according to claim 1, wherein the local strain is applied by partially carburizing the steel plate in any step before annealing. 4. The method according to claim 1, wherein the application of local strain involves partially decarburizing the steel plate in any step before annealing. 5. The method according to claim 1, wherein the imparting of local strain involves directly introducing strain into the steel plate by a mechanical method immediately before final finish annealing.
JP62330268A 1987-12-28 1987-12-28 Method for producing unidirectional electromagnetic steel sheet with excellent magnetic properties Expired - Lifetime JP2599739B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62330268A JP2599739B2 (en) 1987-12-28 1987-12-28 Method for producing unidirectional electromagnetic steel sheet with excellent magnetic properties

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62330268A JP2599739B2 (en) 1987-12-28 1987-12-28 Method for producing unidirectional electromagnetic steel sheet with excellent magnetic properties

Publications (2)

Publication Number Publication Date
JPH01176033A true JPH01176033A (en) 1989-07-12
JP2599739B2 JP2599739B2 (en) 1997-04-16

Family

ID=18230745

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62330268A Expired - Lifetime JP2599739B2 (en) 1987-12-28 1987-12-28 Method for producing unidirectional electromagnetic steel sheet with excellent magnetic properties

Country Status (1)

Country Link
JP (1) JP2599739B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8220697B2 (en) * 2005-01-18 2012-07-17 Siemens Energy, Inc. Weldability of alloys with directionally-solidified grain structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8220697B2 (en) * 2005-01-18 2012-07-17 Siemens Energy, Inc. Weldability of alloys with directionally-solidified grain structure

Also Published As

Publication number Publication date
JP2599739B2 (en) 1997-04-16

Similar Documents

Publication Publication Date Title
JPS6250529B2 (en)
EP0307905B1 (en) Method for producing grainoriented electrical steel sheet with very high magnetic flux density
JP2000017334A (en) Production of grain-oriented and nonoriented silicon steel sheet having low core loss and high magnetic flux density and continuous annealing equipment
JPH1143746A (en) Grain-oriented silicon steel sheet extremely low in core loss and its production
JP2000045052A (en) Low core loss and grain-oriented silicon steel sheet excellent in shape in edge part in width direction of coil and its production
JP2003171718A (en) Manufacturing method of magnetic steel sheet of excellent mean magnetic characteristic in rolled surface
US5346559A (en) Process for manufacturing double oriented electrical steel sheet having high magnetic flux density
JPS58100627A (en) Manufacture of directional electrical sheet
JP2599739B2 (en) Method for producing unidirectional electromagnetic steel sheet with excellent magnetic properties
JPS63130747A (en) Grain oriented silicon steel sheet having excellent magnetic characteristic and its production
JPH01176034A (en) Production of grain-oriented magnetic steel sheet having excellent magnetic characteristic
JPS6089521A (en) Production of grain oriented silicon steel sheet having excellent magnetic characteristic
JP3474741B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JPS63277717A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic characteristic
JPH02259016A (en) Production of grain-oriented silicon steel sheet free from surface blister defect
JPS58107417A (en) Method of making unidirectional silicon steel sheet excellent in iron loss
JP3326083B2 (en) Manufacturing method of grain-oriented electrical steel sheet with superior low-field iron loss characteristics compared to high-field iron loss characteristics
JPH01176035A (en) Production of grain-oriented magnetic steel sheet having excellent magnetic characteristic
JPS62284017A (en) Production of grain-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH0379722A (en) Manufacture of grain oriented silicon steel sheet having excellent magnetic characteristics
JPH02263923A (en) Production of grain-oriented silicon steel sheet excellent in magnetic property
JPS63149318A (en) Production of uni-oriented magnetic steel plate having excellent magnetic characteristic
JPS6256205B2 (en)
JP2653948B2 (en) Preparation of Standard Grain Oriented Silicon Steel without Hot Strip Annealing
JPS63277710A (en) Manufacture of grain-oriented silicon steel sheet excellent in magnetic properties