JPH01175793A - Manufacture of superconductor thick film - Google Patents

Manufacture of superconductor thick film

Info

Publication number
JPH01175793A
JPH01175793A JP62336033A JP33603387A JPH01175793A JP H01175793 A JPH01175793 A JP H01175793A JP 62336033 A JP62336033 A JP 62336033A JP 33603387 A JP33603387 A JP 33603387A JP H01175793 A JPH01175793 A JP H01175793A
Authority
JP
Japan
Prior art keywords
paste
superconductor
substrate
thick film
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62336033A
Other languages
Japanese (ja)
Other versions
JPH053158B2 (en
Inventor
Junji Tabuchi
順次 田渕
Yukinobu Nakabayashi
中林 幸信
Atsushi Ochi
篤 越智
Kazuaki Uchiumi
和明 内海
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP62336033A priority Critical patent/JPH01175793A/en
Publication of JPH01175793A publication Critical patent/JPH01175793A/en
Publication of JPH053158B2 publication Critical patent/JPH053158B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Printed Wiring (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)
  • Parts Printed On Printed Circuit Boards (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductor Devices And Manufacturing Methods Thereof (AREA)

Abstract

PURPOSE:To prevent superconduction transformation temperature of a superconductor from being lowered by causing the superconductor to react with a substrate simultaneously with sintering by screen-printing on the partially stabilized zirconia substrate a paste yielded by blending a rare earth-barium-copper oxide with an organic vehicle, and calcining the substrate in an acidic environment at a particular temperature for a particular time interval. CONSTITUTION:A paste, which is yielded by blending a superconductor comprising a rare earth-barium-copper oxide with an organic vehicle, is screen-printed into a desired geometrical shape on a zirconia substrate, which is partially stabilized, and calcined in an acidic atmosphere at a temperature of 950 deg.C or more or 1000 deg.C or less for 10 minutes. For example, Y2O3, BaCO3, and CuO are weighed into a molar ratio of 1:2:3 and wet-mixed using a ball mill, and calcined in air at about 900 deg.C and again ground using a ball mill. Resulting powder is blended in an organic solvent with an organic binder into a paste. The paste is screen-printed on the zirconia substrate, which is stabilized by yttria. Further, the binder is removed from the paste in an acidic or neutral atmosphere, and the paste is sintered in an acidic atmosphere at 980 deg.C.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は、超伝導体酸化物を利用するセラミック厚膜印
刷体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION (Industrial Field of Application) The present invention relates to a method of manufacturing a ceramic thick film printed body using a superconducting oxide.

(従来の技術) 従来より超伝導材料としてPb、 Nb、 Nb3Ge
等の単体金属、合金、金属間化合物が知られていた。こ
れらの材料は主に薄膜化、綿材化を行い加工することに
よってその超伝導性を応用したデバイスが作成されてき
た。これらの材料の超伝導転移温度はすべて23.2に
以下であったため液体ヘリウムによる冷却が必要であっ
た。このため、超伝導体を応用したデバイスは限られた
ものしか適用されていなかった。近年、La−Ba−C
u−0系のうち(La1−xBax)2CuO4で0.
075≦X≦0.1の組成のものがTcが30Kに、Y
−Ba−Cu−0系のうちYBa2Cu30yの組成の
もののTcが90に前後をもつと相次いで報告されてい
る。さらにこのYBa2Cu30yのYの位置を他の希
土類元素のうちランタン、ネオジミウム、サマリウム、
ユーロピウム、ガドリニウム、ジスプロシウム、ホロミ
ウム、エルビウム、ツリウム、イッテルビラム、ツリウ
ムに置き換えても、またこれらの元素が2種類以上混合
されていても、はぼ同じ90に程度のTcをもつことも
報告されている。Y−Ba−Cu−0系を始めとするこ
れらの超伝導体のTcは液体窒素の沸点(77K)より
も高くなったことにより、実用材料としての期待が大き
くなってきている。
(Conventional technology) Conventionally, Pb, Nb, Nb3Ge have been used as superconducting materials.
Elemental metals, alloys, and intermetallic compounds were known. Devices that take advantage of their superconductivity have been created by processing these materials, mainly by forming them into thin films or cotton materials. Since the superconducting transition temperatures of these materials were all below 23.2, cooling with liquid helium was necessary. For this reason, only a limited number of devices have been applied using superconductors. In recent years, La-Ba-C
Among u-0 series, (La1-xBax)2CuO4 has 0.
The composition with 075≦X≦0.1 has Tc of 30K and Y
Among the -Ba-Cu-0 systems, it has been reported one after another that the composition of YBa2Cu30y has a Tc of around 90. Furthermore, the position of Y in YBa2Cu30y is changed to lanthanum, neodymium, samarium, among other rare earth elements.
It has also been reported that even if it is replaced with europium, gadolinium, dysprosium, holmium, erbium, thulium, ytterbium, or thulium, or even if two or more of these elements are mixed, the Tc remains approximately the same at about 90. . Since the Tc of these superconductors including the Y-Ba-Cu-0 system has become higher than the boiling point (77K) of liquid nitrogen, there are increasing expectations for their use as practical materials.

この液体窒素の沸点以上で超伝導を示す酸化物の発見に
よって冷却装置が小型で簡便なもので済むようになるた
め、従来は用いられなかった低価格の超伝導を利用した
デバイスが作成される可能性がでてきた。そのため大型
で高価な設備が必要とされる薄膜や線材よりも安価な設
備で作成可能な印刷技術を利用した厚膜が安価な超伝導
デバイスへ応用されることが期待される。
The discovery of this oxide that exhibits superconductivity above the boiling point of liquid nitrogen will allow the cooling device to be small and simple, allowing the creation of low-cost devices using superconductivity that have not been used in the past. The possibility has emerged. Therefore, it is expected that thick films using printing technology, which can be produced with cheaper equipment than thin films and wires that require large and expensive equipment, will be applied to inexpensive superconducting devices.

しかしながら、この酸化物を厚膜印刷で配線パターンや
5QUID等のデバイスを作成する試みはほとんど報告
されていない。現在、スクリーン印刷法によって超伝導
体厚膜を作成した例が数件報告されているが、用いる基
板と超伝導体酸化物との間に反応が起こってしまうため
安定した超伝導体厚膜は得られるに至っていない。
However, there have been few reports of attempts to create wiring patterns or devices such as 5QUIDs by thick film printing of this oxide. Currently, several cases have been reported in which thick superconductor films have been created using the screen printing method, but since a reaction occurs between the substrate used and the superconductor oxide, stable superconductor thick films cannot be achieved. It has not yet been achieved.

(発明が解決しようとする問題点) 本発明はスクリーン印刷法により形成された超伝導体厚
膜を焼結するために熱処理を行うと、焼結と同時に基板
と反応が起こり、超伝導体の超伝導転移温度が低下する
問題を解決する超伝導厚膜の製造方法を提供することに
ある。
(Problems to be Solved by the Invention) The present invention provides that when heat treatment is performed to sinter a superconductor thick film formed by a screen printing method, a reaction occurs with the substrate at the same time as sintering, and the superconductor thick film is heated. An object of the present invention is to provide a method for manufacturing a superconducting thick film that solves the problem of lowering the superconducting transition temperature.

(問題点を解決するための手段) 本発明は希土類−バリウム−銅系の酸化物を有機ビヒク
ルとともに混練することによりペーストを作成し、これ
を部分安定化ジルコニア基板上にスクリーン印刷法によ
り超伝導体厚膜を形成し、酸化性雰囲気中で950℃か
ら1000℃の温度にて焼成時間が10分以下であるこ
とを特徴とする超伝導体厚膜の製造方法である。
(Means for Solving the Problems) The present invention involves creating a paste by kneading rare earth-barium-copper-based oxides with an organic vehicle, and printing the paste onto a partially stabilized zirconia substrate using a screen printing method to make it superconducting. The present invention is a method for producing a superconductor thick film, characterized in that the superconductor thick film is formed and the firing time is 10 minutes or less at a temperature of 950° C. to 1000° C. in an oxidizing atmosphere.

以下、本発明を実施例によりさらに詳細に説明する。Hereinafter, the present invention will be explained in more detail with reference to Examples.

(実施例) 本発明において、超伝導体ペーストは以下により作成し
た。出発原料として純度99.9%以上の酸化イツトリ
ウム(Y2O2)、炭酸バリウム(BaCOa)、酸化
第二銅(Cub)を使用し、配合比がモル比で1:2:
3となるように秤量した。これらをボールミルを用いて
湿式混合した後、空気中880℃から920℃の温度で
仮焼し、再びホールミルにて再粉砕を行った粉を有機バ
インダーとともに有機溶媒で混練しペースト化した。ペ
ーストの作成においてはバインダーとしてエチルセルロ
ース系のバインダーと有機溶媒としてテルピネオールを
それぞれ適量加え、混練しペースト化した。得られたペ
ーストをスクリーンを用いてイツトリア安定化ジルコニ
ア基板上に印刷を行った。次に基板上の印刷体を酸化性
もしくは中性雰囲気で脱バインダーを行い、さらに酸化
性雰囲気で9506C,980°G、 1000℃にて
焼成した。焼成する温度から室温までの降温速度を1時
間当り100℃以下となるようにコントロールした。こ
れは、イツトリウム−バリウム−銅系の酸化物が超伝導
を示すためには、酸素欠陥を少なくしてやる必要がある
ため、降温を遅くし導体の酸化物に酸素を入れるためで
ある。ここで焼成時間をθ分、5分。
(Example) In the present invention, a superconductor paste was created as follows. Yttrium oxide (Y2O2), barium carbonate (BaCOa), and cupric oxide (Cub) with a purity of 99.9% or more are used as starting materials, and the molar ratio is 1:2:
It was weighed so that it was 3. These were wet mixed using a ball mill, then calcined in air at a temperature of 880°C to 920°C, and re-pulverized using a hole mill.The powder was kneaded with an organic binder and an organic solvent to form a paste. In preparing the paste, appropriate amounts of an ethylcellulose-based binder and terpineol as an organic solvent were added and kneaded to form a paste. The resulting paste was printed onto an yttria-stabilized zirconia substrate using a screen. Next, the printed material on the substrate was debindered in an oxidizing or neutral atmosphere, and further fired at 9506C, 980°G, and 1000°C in an oxidizing atmosphere. The temperature reduction rate from the firing temperature to room temperature was controlled to be 100° C. or less per hour. This is because in order for the yttrium-barium-copper oxide to exhibit superconductivity, it is necessary to reduce oxygen defects, so the temperature drop is slowed down and oxygen is introduced into the conductor oxide. Here, the baking time is θ minutes, 5 minutes.

10分、15分、30分、60分として焼成を行った。Firing was performed for 10 minutes, 15 minutes, 30 minutes, and 60 minutes.

このようにして作成した超伝導体厚膜の電気的特性を測
定した結果、実施例の範囲ではおよそ90にで超伝導状
態に転移し、電気抵抗が0となるものがあった。本実施
例において作成した超伝導体厚膜の超伝導転移温度(0
抵抗開始温度)の結果を第1表にまとめる。
As a result of measuring the electrical characteristics of the superconductor thick films produced in this manner, it was found that in the range of Examples, some of them transitioned to a superconducting state at about 90 ℃ and the electrical resistance became 0. The superconducting transition temperature (0
The results are summarized in Table 1.

焼成温度980℃にて30分以上の焼成、1000℃に
て15分以上の焼成では印刷体は緑色に変質してしまい
絶縁体となってしまった。これを粉末X線回折法を用い
て同定した結果、Y2BaCuO5に変質していること
が分かった。さらにこれら印刷体と基板の断面の形態を
走査型電子顕微鏡(SEM)を用いて観察し、印刷体と
基板の界面の元素分布をエネルギー分散型X線分析装置
(EDX)を用いて分析したところ、基板内部の界面に
BaZrO3が生成していることが判明した。これらの
分析結果から酸化物超伝導体組成物であるYBa2Cu
3O7は焼結が起こる温度でイツトリア安定化ジルコニ
アとたやすく反応し、BaZrO3が生成し、印刷体中
のBaイオンが不足するために印刷体がY2BaCuO
5に変質したと考えられる。これらのことから、印刷体
と基板の反応を制御しながら、超伝導体厚膜の焼結を行
うには焼成時間を短くすることによって達成することが
判明した。
When firing at a firing temperature of 980° C. for 30 minutes or more, or at 1000° C. for 15 minutes or more, the printed material turned green and became an insulator. As a result of identifying this using powder X-ray diffraction, it was found that it had changed into Y2BaCuO5. Furthermore, the cross-sectional morphology of these printed bodies and substrates was observed using a scanning electron microscope (SEM), and the elemental distribution at the interface between the printed bodies and the substrate was analyzed using an energy dispersive X-ray analyzer (EDX). It was found that BaZrO3 was generated at the interface inside the substrate. From these analysis results, the oxide superconductor composition YBa2Cu
3O7 readily reacts with Yttria-stabilized zirconia at the temperature at which sintering occurs, producing BaZrO3, and the lack of Ba ions in the print makes the print Y2BaCuO.
It is thought that it has changed into 5. From these results, it has been found that sintering a superconductor thick film can be achieved by shortening the firing time while controlling the reaction between the printed body and the substrate.

なお希土類元素がイツトリウムでなくランタン、ネオジ
ミウム、サマリウム、ユーロピウム、ガドリニウム、ジ
スプロシウム、ホロシウム、エルビウム、ツリウム、イ
ッテルビウム、ルテチウムなどである酸化物超伝導の一
種以上でも同様の効果を確認した。
Similar effects were also confirmed with one or more types of oxide superconductors in which the rare earth element is not yttrium but lanthanum, neodymium, samarium, europium, gadolinium, dysprosium, holosium, erbium, thulium, ytterbium, lutetium, etc.

(発明の効果) 実施例からも明らかなように、本発明の超伝導体厚膜は
90に付近で電気抵抗が0となる。本発明によれば従来
用いられていた超伝導体薄膜に比べて安価にデバイスを
作成することができ、ジョセフソン素子や超伝導トラン
ジスタや超伝導配線のLSI等を実装することができる
配線基板や5QUIDに応用が期待されるものである。
(Effects of the Invention) As is clear from the examples, the superconductor thick film of the present invention has an electrical resistance of 0 near 90°C. According to the present invention, devices can be produced at a lower cost than conventionally used superconductor thin films, and wiring substrates and wiring boards on which Josephson elements, superconducting transistors, LSIs with superconducting wiring, etc. can be mounted, etc. This is expected to be applied to 5QUID.

第1表Table 1

Claims (2)

【特許請求の範囲】[Claims] (1)希土類−バリウム−銅系の酸化物からなる超伝導
体を有機ビヒクルとともに混練したペーストを、スクリ
ーン印刷により所望の形状に部分安定化ジルコニア基板
上に形成し、酸化性雰囲気中950℃以上1000℃以
下の温度で、焼成時間が10分以下の条件で焼成するこ
とを特徴とする超伝導体厚膜の製造方法。
(1) A paste made by kneading a superconductor consisting of a rare earth-barium-copper oxide with an organic vehicle is formed into the desired shape on a partially stabilized zirconia substrate by screen printing, and the paste is formed at 950°C or higher in an oxidizing atmosphere. A method for producing a superconductor thick film, comprising firing at a temperature of 1000° C. or lower and for a firing time of 10 minutes or less.
(2)希土類元素がイットリウム、ランタン、ネオジミ
ウム、サマリウム、ユーロピウム、ガドリニウム、ジス
プロシウム、ホロミウム、エルビウム、ツリウム、イッ
テルビウム、ルテチウムの1種類か、これらの2種以上
の混合物であることを特徴とする特許請求の範囲第1項
記載の超伝導体厚膜の製造方法。
(2) A patent claim characterized in that the rare earth element is one of yttrium, lanthanum, neodymium, samarium, europium, gadolinium, dysprosium, holmium, erbium, thulium, ytterbium, and lutetium, or a mixture of two or more of these elements. A method for producing a superconductor thick film according to item 1.
JP62336033A 1987-12-29 1987-12-29 Manufacture of superconductor thick film Granted JPH01175793A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62336033A JPH01175793A (en) 1987-12-29 1987-12-29 Manufacture of superconductor thick film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62336033A JPH01175793A (en) 1987-12-29 1987-12-29 Manufacture of superconductor thick film

Publications (2)

Publication Number Publication Date
JPH01175793A true JPH01175793A (en) 1989-07-12
JPH053158B2 JPH053158B2 (en) 1993-01-14

Family

ID=18295010

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62336033A Granted JPH01175793A (en) 1987-12-29 1987-12-29 Manufacture of superconductor thick film

Country Status (1)

Country Link
JP (1) JPH01175793A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269990A (en) * 1988-09-05 1990-03-08 Mitsubishi Mining & Cement Co Ltd Manufacture of ceramic superconductor wiring board

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0269990A (en) * 1988-09-05 1990-03-08 Mitsubishi Mining & Cement Co Ltd Manufacture of ceramic superconductor wiring board

Also Published As

Publication number Publication date
JPH053158B2 (en) 1993-01-14

Similar Documents

Publication Publication Date Title
CA1329952C (en) Multi-layer superconducting circuit substrate and process for manufacturing same
JP3089294B2 (en) Manufacturing method of superconducting tape material
JPS63232208A (en) Manufacture of conductive or superconductive thin film
JPH01175793A (en) Manufacture of superconductor thick film
Ramli et al. Microstructure and superconducting properties of Ag-substituted YBa2-xAgxCu3O7-δ ceramics prepared by sol-gel method
JPH0251468A (en) Production of yttrium-barium-copper oxide powder and superconducting yttrium-barium-copper oxide sintered body
JP2817048B2 (en) Method for producing Bi-Sr-Ca-Cu-O-based superconducting film by screen printing
JPH01238190A (en) Manufacture of superconductor thick film
JP2617307B2 (en) Manufacturing method of superconducting ceramics
JPH0251806A (en) Superconducting ceramic laminated body and manufacture thereof
JPH01270518A (en) Superconductor thick film and production thereof
JP2593475B2 (en) Oxide superconductor
JP2601892B2 (en) Manufacturing method of Tl-based superconductor wiring pattern
KR930002579B1 (en) Manufacturing method of thick film super conductor
JP2598055B2 (en) Oxide superconducting thin film for electronic devices
JPH0569059B2 (en)
JP2785263B2 (en) Superconductor manufacturing method
JPH02296760A (en) Porcelain composition of oxide superconductor and its production
Hrovat et al. Thick Film Superconductors Based on Bi2O3 Modified Y‐Ba‐Cu‐O and Bi‐Sr‐Ca‐Cu‐O Systems
JP2855128B2 (en) Oxide superconductor
Haertling et al. Development of high Tc (greater than 100 K) Bi, Tl and Y-based materials as superconducting circuit elements
JPH084191B2 (en) Method for forming superconducting wiring
JPH01126208A (en) Production of superconducting thin film
JPH05330962A (en) Thick film of oxide superconductor and its production
JPS63233067A (en) Preparation of superconductive ceramic

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees