JPH01172903A - Diffraction grating forming device - Google Patents

Diffraction grating forming device

Info

Publication number
JPH01172903A
JPH01172903A JP62332013A JP33201387A JPH01172903A JP H01172903 A JPH01172903 A JP H01172903A JP 62332013 A JP62332013 A JP 62332013A JP 33201387 A JP33201387 A JP 33201387A JP H01172903 A JPH01172903 A JP H01172903A
Authority
JP
Japan
Prior art keywords
exposed
diffraction grating
interval
intensity distribution
ratio
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62332013A
Other languages
Japanese (ja)
Inventor
Kiyokazu Hagiwara
萩原 清和
Masanori Iida
正憲 飯田
Hiroyuki Asakura
宏之 朝倉
Minoru Nishioka
稔 西岡
Koichi Murase
宏一 村瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62332013A priority Critical patent/JPH01172903A/en
Publication of JPH01172903A publication Critical patent/JPH01172903A/en
Pending legal-status Critical Current

Links

Landscapes

  • Diffracting Gratings Or Hologram Optical Elements (AREA)

Abstract

PURPOSE:To obtain a uniform and highly efficient holographic diffraction grating being free from speckle noise by bringing divergent light and divergent light which have been set to a special condition to interference. CONSTITUTION:The diffraction grating device is formed so that H/LXC/L being the product of a ratio H/L of a difference H between a middle point of an interval C of pin holes of two special filters 7, 8 and an object to be exposed and the interval C of the pin holes of two special filters 7, 8 and an object to be exposed and length L of a diameter or a long side of the object to be exposed, and a ratio C/L of the interval C of the pin holes of two special filters 7, 8 and the length L of the object to be exposed is >=32, and also, the intensity distribution of laser radiated to the object to be exposed becomes a uniform intensity distribution of >=80% against a peak value. In this state, the divergent light and divergent light of such an intensity distribution are brought to interference. In such a way, a uniform and highly efficient holographic diffraction grating being free from speckle noise can be obtained.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、回折格子の形成装置に関するものである。[Detailed description of the invention] Industrial applications The present invention relates to a diffraction grating forming apparatus.

回折格子は、分光分野において分光器の分散素子として
用いられていたが、近年、光通信の分野においても半導
体レーザの共振器や、分波器の分散素子としても用いら
れている。
Diffraction gratings have been used in the field of spectroscopy as dispersive elements in spectrometers, but in recent years they have also been used in the field of optical communications as resonators in semiconductor lasers and dispersive elements in demultiplexers.

この回折格子を作製する方法には、ルーリングエンジン
を用いた機械刻線方法が従来多く用いられていたが、近
年、ホログラフィック露光を用いた方法も用いられるよ
うになってきた。
As a method for producing this diffraction grating, a mechanical scoring method using a ruling engine has traditionally been widely used, but in recent years, a method using holographic exposure has also come to be used.

従来の技術 このホログラフィック露光法を用いた方法としては、平
面波と平面波を干渉させて作製させる方法や、発散波と
発散波を干渉させて作製する方法などがあった。
Prior Art Methods using this holographic exposure method include a method in which plane waves are made to interfere with each other, and a method in which divergent waves are made to interfere with each other.

平面直線ホログラフィック回折格子は、2つのレーザビ
ームを干渉させる際、平面波と平面波とを干渉させて露
光する方法が一般に用いられて形成されていた。
Planar linear holographic diffraction gratings have generally been formed by using a method in which two laser beams are made to interfere with each other, in which plane waves are made to interfere with each other for exposure.

また、発散波と発散波を干渉させてホログラフィック露
光を行う方法もあったが、双曲線の回折格子になり、平
面直線ホログラフィック回折格子の作製には用いられて
いなかった。
There was also a method to perform holographic exposure by interfering divergent waves with one another, but this resulted in a hyperbolic diffraction grating and was not used to fabricate a planar linear holographic diffraction grating.

以下図面を参照しながら、上述した従来のホログラフィ
ック回折格子の形成装置の例について説明する。
An example of the above-described conventional holographic diffraction grating forming apparatus will be described below with reference to the drawings.

第5図および第6図は従来の平面直線ホログラフィック
回折格子の形成装置を示すものである。
5 and 6 show a conventional planar linear holographic diffraction grating forming apparatus.

第5図において、基板51の上にホトレジスト52を塗
布した後、三光束干渉法ホログラフィック露光により、
露光用レーザ53からでた光束をハーフミラ−54で2
つの光束に分離し、それぞれの光束を、スペシャルフィ
ルタ55・56でビームのノイズを除去された後、ビー
ムを拡大し、レンズ57・58で平行波に変換されミラ
ー59および6oで反射させて2光束を試料上で干渉さ
せ、所要の間隔をもった平面直線ホログラフィック回折
格子を得る。
In FIG. 5, after coating a photoresist 52 on a substrate 51, by three-beam interferometry holographic exposure,
The light beam emitted from the exposure laser 53 is divided into two by a half mirror 54.
The beam is separated into two beams, each beam is filtered with special filters 55 and 56 to remove noise, and then expanded, converted into parallel waves by lenses 57 and 58, and reflected by mirrors 59 and 6o. The light beams are caused to interfere on the sample to obtain a planar linear holographic diffraction grating with the required spacing.

(例えば、特開昭61−189502号公報)第6図に
おいて、基板61の上にホトレジスト62を塗布した後
、三光束干渉法ホログラフィック露光により、露光用レ
ーザ63からでた光束をレンズ64で拡大し、放物面鏡
65で平行光に変換され平面波ビームをミラー66およ
び67で反射させて2光束を試料上で干渉させる様に配
置されている。2つの平面波を基板上で干渉させて所要
の間隔をもった平面直線ホログラフィック回折格子42
を得る。
(For example, Japanese Unexamined Patent Application Publication No. 189502/1982) In FIG. 6, after a photoresist 62 is applied on a substrate 61, a light beam emitted from an exposure laser 63 is passed through a lens 64 by three-beam interference method holographic exposure. The plane wave beam is expanded, converted into parallel light by a parabolic mirror 65, and reflected by mirrors 66 and 67, so that the two beams interfere with each other on the sample. A planar linear holographic diffraction grating 42 with a required spacing by interfering two plane waves on a substrate.
get.

(例えば、特開昭61−281529号公報)しかしな
がら上記のような形成装置では、レーザビームの光束は
、スペシャルフィルタで一旦ノイズが除去されている場
合も、露光が行われる基板上ではスペシャルフィルタの
後の光学系によってスペックルノイズが発生し、均一な
格子を得るのがむずかしいという問題があった。
(For example, Japanese Unexamined Patent Publication No. 61-281529) However, in the above-mentioned forming apparatus, even if the light flux of the laser beam is once noise removed by the special filter, the light flux of the laser beam is There was a problem in that speckle noise was generated by the subsequent optical system, making it difficult to obtain a uniform grating.

第7図は従来の発散波と発散波を干渉させて作製する回
折格子の形成装置を示すものである。
FIG. 7 shows a conventional apparatus for forming a diffraction grating by interfering divergent waves.

第7図において、基板71の上にホトレジスト72を塗
布した後、三光束干渉法ホログラフィック露光により、
露光用レーザ73からでた光束をハーフミラ−74で2
つの光束に分離し、それぞれの光束を、ミラー75およ
び76で反射させてレンズ77・78でビームを拡大し
、2光束を試料上で干渉させ、ホログラフィック回折格
子を得る。
In FIG. 7, after coating a photoresist 72 on a substrate 71, by three-beam interferometry holographic exposure,
The light beam emitted from the exposure laser 73 is divided into two by a half mirror 74.
The beam is separated into two beams, each beam is reflected by mirrors 75 and 76, the beam is expanded by lenses 77 and 78, and the two beams are caused to interfere on the sample to obtain a holographic diffraction grating.

(例えば、特開昭61−189502号公報)この発散
波と発散波を干渉させて作製した回折格子は第8図の8
1に示すように、双曲線の格子となり平面直線ホログラ
フィック回折格子の作製には用いられていなかった。
(For example, Japanese Patent Application Laid-Open No. 189502/1982) The diffraction grating made by interfering these divergent waves is shown in Fig. 8.
As shown in Figure 1, the grating is a hyperbolic grating and has not been used to fabricate a planar linear holographic diffraction grating.

〔例えば、イー、ダブルオーエルエフ、プログリース 
イン オブティクスCB、 WOLF+ Progre
ssin 0ptics)  X IVのP2O5)発
明が解決しようとする問題点 本発明は上記問題点を考慮し、簡単な光学系でしかも、
スペックルノイズのない均一な平面直線ホログラフィッ
ク回折格子を作製する装置を提供するものである。
[For example, E, Double OLF, Progrease
In Obtics CB, WOLF+ Progre
ssin 0ptics)
The present invention provides an apparatus for producing a uniform planar linear holographic diffraction grating without speckle noise.

問題点を解決するための手段 上記問題点を解決するために本発明のホログラフィック
回折格子の形成装置は゛、露光用レーザ光と、前記露光
用レーザ光を2つの光束に分けるハーフミラ−と、前記
2つに分けられた各々の光束を反射させて2光束を試料
上で干渉させるための2組のミラーと、前記ミラーより
反射されたレーザ光のノイズを取ると共に光束を発散光
に拡大するためのピンホールとレンズより成る2組のス
ペシャルフィルタとを具備し、前記2つのスペシャルフ
ィルタのピンホールの間隔Cの、中点と被露光物の間の
距離Hと被露光物の大きさ(径あるいは長辺)Lとの比
H/Lと、前記2つのスペシャルフィルタのピンホール
の間隔Cと前記被露光物の大きさLとの比C/Lとの積
H/LxC/Lが32以上であり、かつ、被露光物にあ
たるレーザの強度分布がピークの値に対して80%以上
の均一な強度分布になるようにした回折格子形成装置で
ある。
Means for Solving the Problems In order to solve the above problems, the holographic diffraction grating forming apparatus of the present invention includes: an exposure laser beam; a half mirror that divides the exposure laser beam into two beams; Two sets of mirrors for reflecting each of the two divided light beams and causing the two light beams to interfere on the sample, and for removing noise from the laser light reflected from the mirrors and expanding the light beam into diverging light. It is equipped with two sets of special filters consisting of a pinhole and a lens, and the distance H between the midpoint of the pinhole interval C of the two special filters and the object to be exposed and the size (diameter) of the object to be exposed are Alternatively, the product H/LxC/L of the ratio H/L to the long side) and the ratio C/L between the distance C between the pinholes of the two special filters and the size L of the exposed object is 32 or more. This is a diffraction grating forming apparatus in which the intensity distribution of the laser beam hitting the object to be exposed becomes a uniform intensity distribution of 80% or more of the peak value.

作用 本発明は上記した、特別な条件に設定した発散光と発散
光とを、被露光物の大きさに応じて双曲線が直線とみな
せるような特別な配置に設定して干渉させることによっ
て、スペックルノイズのない均一で高効率なホログラフ
ィック回折格子を得ることができる。
Effects of the present invention The above-mentioned diverging light and diverging light set under special conditions are set in a special arrangement such that the hyperbola can be regarded as a straight line depending on the size of the object to be exposed, and the specs are adjusted. A uniform and highly efficient holographic diffraction grating without noise can be obtained.

実施例 以下本発明の一実施例のホログラフィック回折格子の形
成装置について図面を参照しながら説明する。
EXAMPLE Hereinafter, a holographic diffraction grating forming apparatus according to an example of the present invention will be described with reference to the drawings.

第1図は本発明の実施例を示すホログラフィック回折格
子の作製装置を示す図である。
FIG. 1 is a diagram showing an apparatus for manufacturing a holographic diffraction grating according to an embodiment of the present invention.

第1図において一辺がLの正方形の基板1の上にホトレ
ジスト2を塗布した後、露光用レーザ光3と、前記露光
用レーザ光を2つの光束に分けるハーフミラ−4と、前
記2つに分けられた各々の光束を反射させて2光束を試
料上で干渉させるための2組のミラー5・6と、前記ミ
ラーより反射されたレーザ光のノイズを取ると共に光束
を発散光に拡大するためのピンホールとレンズより成る
2組のスペシャルフィルタ7・8とから成っている。
In FIG. 1, after coating a photoresist 2 on a square substrate 1 with one side L, a half mirror 4 is installed to separate the exposure laser beam 3 and the exposure laser beam into two beams. two sets of mirrors 5 and 6 for reflecting each of the light beams and causing the two light beams to interfere on the sample; and a mirror for removing noise from the laser light reflected from the mirrors and expanding the light beam into diverging light. It consists of two sets of special filters 7 and 8 consisting of a pinhole and a lens.

前述の構成において、基板1上のレジスト2には2つの
発散波によって干渉縞ができ、二光束干渉法ホログラフ
ィック露光により、所要の間隔をもった正弦波状のホロ
グラフィック回折格子を得る。
In the above configuration, interference fringes are formed on the resist 2 on the substrate 1 by two diverging waves, and a sinusoidal holographic diffraction grating with a required interval is obtained by two-beam interferometry holographic exposure.

前述のように、本発明においては、スペシャルフィルタ
でビームのノイズが除去された後は、露光部までに光学
系がなく、干渉縞の中にスペックルノイズが発生するこ
とはない。
As described above, in the present invention, after the beam noise is removed by the special filter, there is no optical system up to the exposure section, and no speckle noise is generated in the interference fringes.

前記2つのスペシャルフィルタのピンホールの間隔Cの
中点と被露光物の間の距離Hと被露光物の径あるいは長
辺の大きさLとの比H/Lと、前記2つのスペシャルフ
ィルタのピンホールの間隔Cと前記被露光物の大きさL
との比C/Lとの積、H/L×C/Lが32以上であり
、かつ、被露光物にあたるレーザの強度分布がピークの
値に対して80%以上の均一な強度分布になるようにし
たものである。
The ratio H/L of the distance H between the midpoint of the pinhole interval C of the two special filters and the exposed object to the diameter or long side size L of the exposed object, and Interval C between pinholes and size L of the exposed object
The product of the ratio C/L, H/L x C/L, is 32 or more, and the intensity distribution of the laser hitting the exposed object is a uniform intensity distribution of 80% or more of the peak value. This is how it was done.

第2図は、2つのスペシャルフィルタのピンホールの間
隔Cの中点と被露光物の間の距離Hと被露光物の径ある
いは長辺の大きさLとの比H/Lと、前記2つのスペシ
ャルフィルタのピンホールの間隔Cと前記被露光物の大
きさLとの比C/Lの関係で、回折格子の溝間隔につい
て調べたものである。
FIG. 2 shows the ratio H/L of the distance H between the midpoint of the pinhole interval C of two special filters and the exposed object to the diameter or long side size L of the exposed object, and The groove spacing of the diffraction grating was investigated based on the relationship of the ratio C/L between the pinhole spacing C of the two special filters and the size L of the exposed object.

中央部の溝間隔dと径あるいは長辺の大きさしの端にお
ける溝間隔りの差の割合(d−D/D)×100%の値
が1%以下になる点を結んだものである。この曲線はH
/L×C/Lが32の値になり、これ以上では1%以下
の誤差におさまり、はぼ直線の回折格子として使用して
も問題はない。
It connects the points where the ratio of the difference between the groove spacing d in the center and the groove spacing at the end of the diameter or long side size (d-D/D) x 100% is 1% or less. . This curve is H
/L×C/L becomes a value of 32, and if it exceeds this value, the error falls within 1%, and there is no problem even if it is used as a substantially linear diffraction grating.

例えば、光分波器としてレンズと組み合わせて使用した
場合、焦点距離が5鶴のもので、1%の誤差であれは1
0μm以下の誤差に抑えることができ、光ファイバに集
光することができる。
For example, when used in combination with a lens as an optical demultiplexer, if the focal length is 5 Tsuru, an error of 1% will result in 1
The error can be suppressed to 0 μm or less, and the light can be focused onto an optical fiber.

また、第3図に示すようにレーザの強度分布はガウス分
布になり、均一な回折格子を得るためにはレーザの強度
は80%以上の均一な分布であることが必要である。
Further, as shown in FIG. 3, the laser intensity distribution becomes a Gaussian distribution, and in order to obtain a uniform diffraction grating, the laser intensity needs to have a uniform distribution of 80% or more.

80%以上の均一な分布では、50%以上の回折効率を
得ることができる。
With a uniform distribution of 80% or more, a diffraction efficiency of 50% or more can be obtained.

前述のような、2つのスペシャルフィルタのピンホール
の間隔Cの中点と被露光物の間の距離Hと被露光物の径
あるいは長辺の大きさLとの比H/Lと、前記2つのス
ペシャルフィルタのピンホールの間隔Cと前記被露光物
の大きさLとの比C/Lとの積、H/L×C/Lが32
以上であり、かつ、被露光物にあたるレーザの強度分布
がピークの値に対して80%以上の均一な強度分布にな
るようにした発散波と発散波とで形成される干渉縞は、
非常にきれいな干渉縞で、かつ、均一で高効率な平面直
線回折格子が得られる。
The ratio H/L of the distance H between the midpoint of the interval C between the pinholes of the two special filters and the exposed object to the diameter or long side size L of the exposed object, as described above; The product of the interval C between the pinholes of the two special filters and the ratio C/L of the size L of the exposed object, H/L×C/L, is 32
The interference fringes formed by the diverging waves and the diverging waves that are above and in which the intensity distribution of the laser hitting the object to be exposed is a uniform intensity distribution of 80% or more of the peak value are as follows:
A uniform and highly efficient planar linear diffraction grating with extremely clean interference fringes can be obtained.

以下、本発明の詳細な説明する。The present invention will be explained in detail below.

被露光物の大きさしの1辺が30mの正方形のガラス基
板上に、ポジ型のホトレジストを500Orpmの回転
スピードで約1.5μm塗布した後、441.6鶴mの
波長のHe−Cdレーザ光によりホログラフィック露光
を行った。
After applying a positive photoresist to a thickness of about 1.5 μm at a rotation speed of 500 rpm on a square glass substrate with a side of 30 m, which is the size of the object to be exposed, a He-Cd laser with a wavelength of 441.6 m was applied. Holographic exposure was performed with light.

スペシャルフィルタの対物レンズは40倍を用いて30
度の角度で140mのビーム径に拡大した2つの発散波
を、前記2つのスペシャルフィルタのピンホールの間隔
Cの中点と被露光物の間の距離Hを600flとし、C
を400鶴とした。
The objective lens of the special filter is 30
Two diverging waves expanded to a beam diameter of 140 m at an angle of 140 m, with the distance H between the midpoint of the pinhole interval C of the two special filters and the exposed object being 600 fl, and C
was set as 400 cranes.

この時、C/Lは13で、)(/Lは20であり、H/
L X C/Lは260の値である。
At this time, C/L is 13, )(/L is 20, H/
L x C/L has a value of 260.

この時、中央部の溝間隔dと1辺の大きさLの端におけ
る溝間隔りの差の割合(d−D/D)X100%の値は
0.1%以下になり、実用上はまったく問題にない値で
ある。
At this time, the ratio of the difference between the groove spacing d in the center and the groove spacing at the end of the side size L (d-D/D) This value is not a problem.

また、この時の被露光物にあたるレーザの強度分布がピ
ークの値に対してほぼ100%の均一な強度分布になる
ようにした干渉させて、1200本/鶴の溝数をもつ正
弦波のホログラフィック回折格子で、75%の回折効率
を得た。第3図のaに当たる部分。
In addition, the intensity distribution of the laser hitting the object to be exposed at this time was made to have a uniform intensity distribution of almost 100% with respect to the peak value. A diffraction efficiency of 75% was obtained with the graphic grating. The part corresponding to a in Figure 3.

第4図はレーザの強度分布と回折効率の関係を示す図で
ある。
FIG. 4 is a diagram showing the relationship between laser intensity distribution and diffraction efficiency.

第4図に示すように、第3図のbに当たるレーザの強度
分布が80%では回折効率は58%であり、第3図のC
に当たるレーザの強度分布が60%では回折効率は38
%であった。
As shown in Figure 4, when the laser intensity distribution corresponding to b in Figure 3 is 80%, the diffraction efficiency is 58%, and C in Figure 3 is
When the laser intensity distribution is 60%, the diffraction efficiency is 38
%Met.

以上のように本実施例によれば、スペクルノイズがなく
、均一な格子を得ることができ、ベース材を用いた場合
においても垂直イオンエツチングと斜めイオンエツチン
グを組み合わせることによって、溝の深い形の良いプレ
ズドホログラフィック回折格子の製造を容易にする形成
装置である。
As described above, according to this example, it is possible to obtain a uniform lattice without speckle noise, and even when using a base material, by combining vertical ion etching and oblique ion etching, deep grooves can be etched with good quality. This is a forming device that facilitates the manufacture of preselected holographic diffraction gratings.

発明の効果 以上のように本発明は、2つのスペシャルフィルタのピ
ンホールの間隔Cの中点と被露光物の間の距離Hと被露
光物の径あるいは長辺の大きさLとの比H/Lと、前記
2つのスペシャルフィルタのピンホールの間隔Cと前記
被露光物の大きさLとの比C/Lとの積、H/L×C/
Lが32以上であり、かつ、被露光物にあたるレーザの
強度分布がピークの値に対して80%以上の均一な強度
分布になるようにした発散光と発散光との干渉によって
、スペックルノイズのない均一で高効率なホログラフィ
ック回折格子を得ることができる。
Effects of the Invention As described above, the present invention provides a method for adjusting the ratio H of the distance H between the midpoint of the interval C between the pinholes of two special filters and the exposed object to the diameter or long side size L of the exposed object. /L and the ratio C/L of the distance C between the pinholes of the two special filters and the size L of the exposed object, H/L×C/
L is 32 or more, and the intensity distribution of the laser hitting the object to be exposed is made to be a uniform intensity distribution of 80% or more of the peak value. Speckle noise is caused by interference between the diverging lights. It is possible to obtain a uniform and highly efficient holographic diffraction grating without any defects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例におけるホログラフィック回折
格子の形成装置を示す説明図、第2図は、2つのスペシ
ャルフィルタのピンホールの間隔Cの中点と被露光物の
間の距離Hと被露光物の径あるいは長辺の大きさLとの
比H/Lと、前記2つのスペシャルフィルタのピンホー
ルの間隔Cと前記被露光物の大きさLとの比C/Lの関
係で、回折格子の溝間隔について調べたグラフ、第3図
は、レーザの強度分布を示す分布図、第4図はレーザの
強度分布と回折効率の関係を示すグラフ、第5図・第6
図・第7図は従来のホログラフィック回折格子形成装置
の説明図、第8図は双曲線ホログラフィック回折格子を
示す平面図である。 l・・・・・・基板、2・・・・・・ホトレジスト、3
・・・・・・露光用レーザ光、4・・・・・・ハーフミ
ラ−15・6・・・・・・ミラー、7・8・・・・・・
スペシャルフィルタ。 代理人の氏名 弁理士 中尾敏男 はか1名第2図 臀 第3図 イ立 置 第4図 1θ0 δ0 60 40 し−ザの強度轄(2ジ 第5図 wE6図 第7図
Fig. 1 is an explanatory diagram showing a holographic diffraction grating forming apparatus in an embodiment of the present invention, and Fig. 2 shows the distance H between the midpoint of the interval C between the pinholes of two special filters and the object to be exposed. The relationship between the ratio H/L of the diameter or long side size L of the exposed object and the ratio C/L of the interval C between the pinholes of the two special filters and the size L of the exposed object, A graph examining the groove spacing of a diffraction grating, Figure 3 is a distribution diagram showing the laser intensity distribution, Figure 4 is a graph showing the relationship between the laser intensity distribution and diffraction efficiency, Figures 5 and 6
7 is an explanatory diagram of a conventional holographic diffraction grating forming apparatus, and FIG. 8 is a plan view showing a hyperbolic holographic diffraction grating. l...Substrate, 2...Photoresist, 3
...Laser beam for exposure, 4... Half mirror 15, 6... Mirror, 7, 8...
special filter. Name of agent Patent attorney Toshio Nakao 1 person Figure 2 Buttocks Figure 3 A Standing Figure 4 1θ0 δ0 60 40

Claims (1)

【特許請求の範囲】[Claims] 露光用レーザ光と、前記露光用レーザ光を2つの光束に
分けるハーフミラーと、前記2つに分けられた各々の光
束を反射させて2光束を試料上で干渉させるための2組
のミラーと、前記ミラーより反射されたレーザ光のノイ
ズを取ると共に光束を発散光に拡大するためのピンホー
ルとレンズより成る2組のスペシャルフィルタとを具備
し、前記2つのスペシャルフィルタのピンホールの間隔
Cの中点と被露光物の間の距離Hと被露光物の径あるい
は長辺の大きさLとの比H/Lと、前記2つのスペシャ
ルフィルタのピンホールの間隔Cと前記被露光物の大き
さLとの比C/Lとの積、H/L×C/Lが32以上で
あり、かつ、被露光物にあたるレーザの強度分布がピー
クの値に対して80%以上の均一な強度分布になるよう
にしたことを特徴とする回折格子形成装置。
an exposure laser beam, a half mirror that divides the exposure laser beam into two beams, and two sets of mirrors that reflect each of the two divided beams and cause the two beams to interfere on the sample. , comprising two sets of special filters consisting of a pinhole and a lens for removing noise from the laser beam reflected by the mirror and expanding the luminous flux into diverging light, and an interval C between the pinholes of the two special filters. The ratio H/L between the distance H between the midpoint and the exposed object and the diameter or long side size L of the exposed object, the interval C between the pinholes of the two special filters, and the exposed object. The product of the size L and the ratio C/L, H/L x C/L, is 32 or more, and the intensity distribution of the laser hitting the object to be exposed is a uniform intensity of 80% or more of the peak value. A diffraction grating forming device characterized in that it has a distribution.
JP62332013A 1987-12-28 1987-12-28 Diffraction grating forming device Pending JPH01172903A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62332013A JPH01172903A (en) 1987-12-28 1987-12-28 Diffraction grating forming device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62332013A JPH01172903A (en) 1987-12-28 1987-12-28 Diffraction grating forming device

Publications (1)

Publication Number Publication Date
JPH01172903A true JPH01172903A (en) 1989-07-07

Family

ID=18250165

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62332013A Pending JPH01172903A (en) 1987-12-28 1987-12-28 Diffraction grating forming device

Country Status (1)

Country Link
JP (1) JPH01172903A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102087481A (en) * 2010-12-22 2011-06-08 中国科学院长春光学精密机械与物理研究所 Method for adjusting real-time monitor device in exposure path of concave holographic grating
CN102087480A (en) * 2010-12-22 2011-06-08 中国科学院长春光学精密机械与物理研究所 Method for adjusting real-time monitoring device in exposure light path of planar holographic grating

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168403A (en) * 1983-03-15 1984-09-22 Sumitomo Electric Ind Ltd Exposing device
JPS61172101A (en) * 1985-01-25 1986-08-02 Matsushita Electric Ind Co Ltd Formation of diffraction grating

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59168403A (en) * 1983-03-15 1984-09-22 Sumitomo Electric Ind Ltd Exposing device
JPS61172101A (en) * 1985-01-25 1986-08-02 Matsushita Electric Ind Co Ltd Formation of diffraction grating

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102087481A (en) * 2010-12-22 2011-06-08 中国科学院长春光学精密机械与物理研究所 Method for adjusting real-time monitor device in exposure path of concave holographic grating
CN102087480A (en) * 2010-12-22 2011-06-08 中国科学院长春光学精密机械与物理研究所 Method for adjusting real-time monitoring device in exposure light path of planar holographic grating

Similar Documents

Publication Publication Date Title
EP0323238B1 (en) Diffraction grating and manufacturing method thereof
EP1635198A1 (en) Apodized diffraction grating with improved dynamic range
JP3243102B2 (en) Method of forming diffraction grating in optical waveguide
US8520297B2 (en) Spectra shaping scheme for chirped pulse amplification
Aoyagi et al. Blazed ion-etched holographic gratings
JPH09508713A (en) Light grating
JP2002529762A (en) Wavelength tuning of light-induced diffraction grating
GB2473147A (en) Spectra shaping device for chirped pulse amplification
JP2936187B2 (en) Method of forming resist pattern
JPH01172903A (en) Diffraction grating forming device
JPH10282450A (en) Binary optics and laser beam machining device
US4208637A (en) Tunable optical device
JPH01172901A (en) Manufacture of diffraction grating
KR20010053247A (en) Apodization of optical filters formed in photosensitive media
JPS59116602A (en) Production of chirped-grating
DE102017212417A1 (en) collector
JP3549331B2 (en) Binary optics
JPH10197709A (en) Binary optics and laser working device using the same
JP2982832B2 (en) Blaze reflection diffraction grating fabrication method
JP2001066442A (en) Device for processing grating
JP2510191B2 (en) Concave grating spectrometer
KR100296386B1 (en) Method and apparatus for transforming laser beam profile and method for processing optical fiber grating
KR20020049493A (en) Method and device to fabricate holographic gratings with large area uniformity
JPH0317282Y2 (en)
CN118426266A (en) Projection-assisted dual-path laser interference lithography system and method