JPH01172212A - Easily sinterable superconducting material - Google Patents

Easily sinterable superconducting material

Info

Publication number
JPH01172212A
JPH01172212A JP62329946A JP32994687A JPH01172212A JP H01172212 A JPH01172212 A JP H01172212A JP 62329946 A JP62329946 A JP 62329946A JP 32994687 A JP32994687 A JP 32994687A JP H01172212 A JPH01172212 A JP H01172212A
Authority
JP
Japan
Prior art keywords
rare earth
alkaline earth
easily sinterable
superconducting material
elements
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62329946A
Other languages
Japanese (ja)
Inventor
Hideaki Imai
秀秋 今井
Akinobu Sudo
須藤 昭信
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Chemical Industry Co Ltd
Original Assignee
Asahi Chemical Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Chemical Industry Co Ltd filed Critical Asahi Chemical Industry Co Ltd
Priority to JP62329946A priority Critical patent/JPH01172212A/en
Publication of JPH01172212A publication Critical patent/JPH01172212A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To provide an easily sinterable superconducting material exhibiting high critical current density by increasing the density by heat-treating and sintering a specified compsn. obtd. by adding a compd. contg. Ag, Pb, etc., in a liquid state to a rare earth element-alkaline earth element-Cu-O compd. CONSTITUTION:The title easily sinterable material has a compsn. consisting of 4-15atom.% rare earth element, 8-25atom.% alkaline earth element, 12-30atom.% Cu, 0.01-5atom.% additional element, and residual atom.% O. The material is produced by heat-treating after admixing a compd. contg. the additional element in the liquid state. Said rare earth element is at least one kind among Y, La, Nd, Sm, Eu, Gd, Dy, Ho, Er, Tm, Yb, and Lu. Said alkaline earth metal is at least one kind among Ca, Sr, and Ba. Said additional element is at east one kind among Ag, Pb, Ta, Nb, Sb, Bi, V, W, Mo, Cr, Ge, and Sn.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は希土類−アルカリ土類〜銅−酸素系化合物から
なる高密度化することができ、かつ高臨界電流密度とす
ることが可能な易焼結性超伝導材料に関する。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention is an easy-to-use material that can be made of rare earth-alkaline earth to copper-oxygen compounds, which can be highly densified and can have a high critical current density. Concerning sinterable superconducting materials.

(従来の技術) 従来、超伝導性を示す物質は数多く知られており、合金
系においてもNbzGe ’P NbNのようなNb系
合金が高い超伏S臨界温度(以下、Tcと記述する)を
示し、Nb、Geが23.6 KというTcを有するこ
とが10年程前に報告されていたが(Applied 
PhysicsLett、 23480 (1973)
 ]最近までそれ以上のTcを有する物質は知られてい
なかった。最近になって、Ba−La−Cu−0系の複
合酸化物が30にという高いTcを持つことが報告され
(Zeitschrift fur Physik。
(Prior art) Many materials have been known to exhibit superconductivity, and among alloys, Nb-based alloys such as NbzGe 'P NbN have a high superconducting S critical temperature (hereinafter referred to as Tc). It was reported about 10 years ago that Nb and Ge have a Tc of 23.6 K (Applied
Physics Lett, 23480 (1973)
] Until recently, no substance with higher Tc was known. Recently, it has been reported that a Ba-La-Cu-0-based composite oxide has a Tc as high as 30 (Zeitschrift fur Physik).

B 64.189 (1986)) 、更に液体窒素の
沸点以上のTcを有するY−Ba−Cu−0県北合物が
報告された(Phys。
B 64.189 (1986)), and a Y-Ba-Cu-0 Kenhokuai compound having a Tc higher than the boiling point of liquid nitrogen was reported (Phys.

Rev、Lett、 58 911 (1987)) 
、また、Yのサイトを他の希土類元素で置換した希土類
−B a −Cu −0県北合物も、Y−Ba−Cu−
0県北合物と同程度のTcを有することが報告されてい
る(Jap、J、Appl、Phys、 26 L85
6 (1987))。
Rev, Lett, 58 911 (1987))
, In addition, the rare earth -B a -Cu -0 Kenhokugo product in which the Y site is replaced with another rare earth element is also Y-Ba-Cu-
It has been reported that it has Tc comparable to that of the 0 prefecture Hokuai product (Jap, J, Appl, Phys, 26 L85
6 (1987)).

これら希土類−Ba−Cu−0県北合物は、超伝導磁石
、ジョセフソン素子等に応用するにあたり、従来の超伝
導材料のように冷媒として高価で資源的にも問題のある
液体ヘリウムを用いる必要はなく、安価で資源的にも豊
富な液体窒素を使用することができる。しかしながら、
希土類−アルカリ土類−制御酸素系化合物は焼結性が低
く、密度の小さい材料しか得ることができない。したが
って、粒子間の接触面積は小さくなり、臨界電流密度(
以下、Jcと記述する)も低くなってしまう。実用的な
Jcを有する材料を得るためには希土類−アルカリ土類
−制御酸素系化合物の高密度化が必要とされている。
When applied to superconducting magnets, Josephson elements, etc., these rare earth - Ba - Cu - 0 Kenhokugo products use liquid helium as a refrigerant, which is expensive and problematic in terms of resources, unlike conventional superconducting materials. There is no need for this, and liquid nitrogen, which is inexpensive and abundant in resources, can be used. however,
Rare earth-alkaline earth-controlled oxygen-based compounds have poor sinterability and can only yield materials with low density. Therefore, the contact area between particles becomes smaller and the critical current density (
(hereinafter referred to as Jc) also becomes low. Densification of rare earth-alkaline earth-controlled oxygen based compounds is required to obtain materials with practical Jc.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明は以上の点を考慮してなされたもので、高いJc
を付与することが可能な易焼結性超伝導材料を提供する
ものである。
The present invention has been made in consideration of the above points, and has a high Jc
The object of the present invention is to provide an easily sinterable superconducting material that can impart the following properties.

〔問題を解決するための手段〕[Means to solve the problem]

本発明者らは前記問題点を解決すべく鋭意研究を重ねた
結果、希土類−アルカリ土類−制御酸素系化合物におい
て、Ag + Pb 、 Ta 、Nb 、 Sb 、
 Bt。
As a result of intensive research to solve the above problems, the present inventors found that in rare earth-alkaline earth-controlled oxygen-based compounds, Ag + Pb, Ta, Nb, Sb,
Bt.

V + W + Mo + Cr + GeあるいはS
nの化合物を液状で添加混合して熱処理することにより
易焼結性超伝導材料が得られ焼結して高密度化すること
により高いJcが発現することを見出し本発明を完成す
るに至った。
V + W + Mo + Cr + Ge or S
The inventors discovered that an easily sinterable superconducting material was obtained by adding and mixing compound n in liquid form and heat-treating the mixture, and that a high Jc was developed by sintering and densifying the material, leading to the completion of the present invention. .

すなわち、本発明の易焼結性超伝導材料は原子百分比と
して4〜15%のRC但しRはY 、 La 。
That is, the easily sinterable superconducting material of the present invention has an RC of 4 to 15% as an atomic percentage, where R is Y or La.

Nd、 Sum 、Eu lGd + Dy + Ho
 + Er + Tm 、YbあるいはLuから選ばれ
た少なくとも1種の希土類元素)、8〜25%のアルカ
リ土類金属(但しアルカリ土類金属はCa + Srあ
るいはBaがら選ばれた少な(とも1種)、12〜30
%のCu、 0.01〜5%の添加元素M(但し旧よA
g r Pb 、 Ta 、 Nb。
Nd, Sum, Eu lGd + Dy + Ho
+ Er + Tm, at least one rare earth element selected from Yb or Lu), 8 to 25% alkaline earth metal (however, the alkaline earth metal is at least one selected from Ca + Sr or Ba). ), 12-30
% Cu, 0.01~5% additive element M (however, the old A
gr Pb, Ta, Nb.

Sb 、 Bi + V + W * Mo + Cr
 * GeあるいはSnから選ばれた少なくとも1種)
、および残部は実質上酸素からなる組成を有し、添加元
素を含む化合物を液状で添加混合して熱処理をほどこし
た易焼結性材・料である。
Sb, Bi + V + W * Mo + Cr
*At least one selected from Ge or Sn)
, and the remainder essentially consist of oxygen, and is an easily sinterable material that is heat-treated by adding and mixing a compound containing an additive element in a liquid state.

以下、本発明の易焼結性超伝導材料について詳細に説明
する。
Hereinafter, the easily sinterable superconducting material of the present invention will be explained in detail.

本発明における易焼結性超伝導材料は、希土類元素とし
てはY + La + Nd + Sm + Eu +
 Gd + Dy 。
The easily sinterable superconducting material in the present invention includes Y + La + Nd + Sm + Eu + as rare earth elements.
Gd + Dy.

Ho + Er + Trl+ YbおよびLuの1種
または2種以上を用いることができ、原子百分比として
4〜15%を含有するものである。原子百分比が4%未
満、あるいは15%を超えると超伝導性を示さない結晶
層が大量に生成するためJcが小さくなるので好ましく
ない。したがって、希土類元素の原子百分比としては4
〜15%であることが好ましく、さらに好ましくは6〜
12%である。
One or more of Ho + Er + Trl+ Yb and Lu can be used, and the content thereof is 4 to 15% in terms of atomic percentage. If the atomic percentage is less than 4% or more than 15%, a large amount of crystal layers that do not exhibit superconductivity will be generated, resulting in a decrease in Jc, which is not preferable. Therefore, the atomic percentage of rare earth elements is 4
It is preferably ~15%, more preferably 6~15%.
It is 12%.

アルカリ土類金属としては、Ca + SrおよびBa
のうちから1種または2種以上を用いることができ、原
子百分比として8〜25%を含有するものである。原子
百分比が8%未満では超伝導相が生成しないことがあり
、25%を超えると絶縁体相が大量に生成するためJc
が小さくなるので好ましくない、したがって、アルカリ
土類金属の原子百分比としては8〜25%であることが
好ましく、さらに好ましくは10〜20%である。銅の
含有量は原子百分比で12〜30%である。原子百分比
が12%未満、あるいは30%を超えると超伝導性を示
さない結晶相が大量に生成するためJcが小さくなるの
で好ましい。したがって、銅の原子百分比としては12
〜30%であることが好ましく、さらに好ましくは18
〜25%である。
Alkaline earth metals include Ca + Sr and Ba
One or more of them can be used, and the content is from 8 to 25% in terms of atomic percentage. If the atomic percentage is less than 8%, a superconducting phase may not be generated, and if it exceeds 25%, a large amount of insulating phase will be generated, so Jc
Therefore, the atomic percentage of the alkaline earth metal is preferably 8 to 25%, more preferably 10 to 20%. The copper content is 12-30% in atomic percentage. If the atomic percentage is less than 12% or more than 30%, a large amount of crystalline phase that does not exhibit superconductivity will be generated, resulting in a decrease in Jc, which is preferable. Therefore, the atomic percentage of copper is 12
It is preferably ~30%, more preferably 18%.
~25%.

本発明における添加元素とは、Ag 、 Pb 、 T
a。
The additive elements in the present invention include Ag, Pb, T
a.

Nb 、Sb 、 Bi + V t W t Mo 
、 Cr + GeあるいはSnであり、その量は原子
百分比として0.01〜5%である。原子百分比が06
01%未満では高密度の超伝導材料を得ることができな
いし、5%をこえると絶縁体相が生成してJcが小さく
なるので好ましくない。したがって、これらの添加元素
の百分比としては0.01〜5%であることが好ましく
、さらに好ましくは0.05〜3%である。4 また、本発明においては上記の添加元素を含む化合物を
液状にして希土類−アルカリ土類−制御酸素系複合酸化
物の粉末、あるいは該超伝導体の原料混合物に添加して
均一混合して加熱処理することにより、易焼結性の超伝
導材科料とすることができるものである。
Nb, Sb, Bi + VtWtMo
, Cr + Ge or Sn, and the amount thereof is 0.01 to 5% as an atomic percentage. Atomic percentage is 06
If it is less than 0.01%, it is not possible to obtain a high-density superconducting material, and if it exceeds 5%, an insulator phase is generated and Jc becomes small, which is not preferable. Therefore, the percentage of these additional elements is preferably 0.01 to 5%, more preferably 0.05 to 3%. 4 In addition, in the present invention, the compound containing the above-mentioned additive element is liquefied and added to the rare earth-alkaline earth-controlled oxygen-based composite oxide powder or the raw material mixture of the superconductor, mixed uniformly, and heated. By processing, it can be made into an easily sinterable superconducting material.

次に本発明の易焼結性超伝導材料の製造方法について説
明するが、特にこれらに限定されるものではない。一つ
の方法としては、希土類−アルカリ土類−制御酸素系化
合物をあらかじめ合成した後に、本発明の添加元素を含
む液状の化合物を添加するものがある。希土類−アルカ
リ土類−制御酸素系化合物の合成方法としては、例えば
希土類の酸化物、硝酸塩、塩化物、炭酸塩やシュウ酸塩
等の化合物とカルシウム、ストロンチウムやバリウムの
ようなアルカリ土類金属の酸化物、硝酸塩、塩化物、炭
酸塩やシュシ酸塩等の化合物および酸化第二銅、炭酸第
二銅や硝酸第二銅のような銅化合物を所定量混合した後
、所定の温度、所定の雰囲気下において加熱することに
よる固相反応、あるいは、希土類元素、アルカリ土類金
属や銅の塩化物や硝酸塩のような可溶性塩水溶液の混合
物にシュウ酸や炭酸アンモニウムのような沈澱剤を添加
して共沈せしめた後、該共沈化合物を加熱・分解するこ
とにより合成する方法がある。ついで、上記のような方
法で得られた希土類−アルカリ土類−制御酸素系化合物
の粉末に本発明の添加元素を含む化合物を液状で添加し
て均一混合する。該添加元素を含む化合物とは、炭化水
素類、ケトン類、アルコール類、エーテル類、あるいは
ハロゲン化合物のような有機溶媒に可溶な、アルコラー
ド、カルボン酸塩、ビスベンゼン系譜体、フタロシアニ
ン系錯体、アルキル化合物、アリール化合物、シクロペ
ンタジェニル系錯体、アセチルアセトン系錯体やエチレ
ンジアミン四酢酸系錯体のような有機金属化合物、ある
いはカルボニル系化合物、塩化物、臭化物、ヨウ化物、
硝酸塩や過塩素酸塩からなる無機化合物より選ばれた少
なくとも1種である。
Next, a method for manufacturing the easily sinterable superconducting material of the present invention will be described, but the method is not particularly limited thereto. One method is to synthesize a rare earth-alkaline earth-controlled oxygen compound in advance and then add a liquid compound containing the additive element of the present invention. As a method for synthesizing rare earth-alkaline earth-controlled oxygen compounds, for example, compounds such as rare earth oxides, nitrates, chlorides, carbonates, and oxalates are combined with alkaline earth metals such as calcium, strontium, and barium. After mixing predetermined amounts of compounds such as oxides, nitrates, chlorides, carbonates, and succinates, and copper compounds such as cupric oxide, cupric carbonate, and cupric nitrate, the mixture is heated at a predetermined temperature and at a predetermined temperature. Solid phase reaction by heating under atmosphere or by adding a precipitant such as oxalic acid or ammonium carbonate to a mixture of aqueous solutions of soluble salts such as chlorides or nitrates of rare earth elements, alkaline earth metals or copper. There is a method of synthesis by co-precipitating and then heating and decomposing the coprecipitated compound. Next, the compound containing the additive element of the present invention is added in liquid form to the rare earth-alkaline earth-controlled oxygen compound powder obtained by the above method and mixed uniformly. Compounds containing the additive element include alcoholades, carboxylates, bisbenzene series, phthalocyanine complexes, which are soluble in organic solvents such as hydrocarbons, ketones, alcohols, ethers, or halogen compounds. Alkyl compounds, aryl compounds, cyclopentadienyl complexes, organometallic compounds such as acetylacetone complexes and ethylenediaminetetraacetic acid complexes, or carbonyl compounds, chlorides, bromides, iodides,
It is at least one kind selected from inorganic compounds consisting of nitrates and perchlorates.

上記のような添加元素を含む化合物は、それが液体であ
ればそのまま希土類−アルカリ土類−銅−酸素系化合物
の粉末に添加して均一混合することができる。しかし、
より均一に分散させるためには該化合物を有機溶媒に溶
解した後に混合することが好ましい。該化合物が固体の
場合は適当な有機溶媒に溶解した後に混合する方法が必
要となる。易焼結性超伝導材料を得るためには、添加元
素を微粒子状で均一分散させる必要があり、これは添加
元素を含む化合物を液状で添加した後に適当な温度で熱
処理することにより達成することができる。熱処理する
温度は、有機溶媒を用いる場合はそれが蒸発する温度以
上で、かつ希土類−アルカリ土類−制御酸素系化合物が
焼結しない温度以下であればよい。
If the compound containing the above additive element is liquid, it can be added as is to the powder of the rare earth-alkaline earth-copper-oxygen compound and mixed uniformly. but,
In order to achieve more uniform dispersion, it is preferable to dissolve the compound in an organic solvent and then mix. If the compound is a solid, a method of dissolving it in a suitable organic solvent and then mixing it is required. In order to obtain an easily sinterable superconducting material, it is necessary to uniformly disperse the additive element in the form of fine particles, and this can be achieved by adding a compound containing the additive element in liquid form and then heat-treating it at an appropriate temperature. Can be done. When an organic solvent is used, the heat treatment temperature may be at least the temperature at which the organic solvent evaporates, and at the temperature at which the rare earth-alkaline earth-controlled oxygen-based compound does not sinter.

本発明の易焼結性超伝導材料製造の他の方法としては、
希土類化合物、アルカリ土類金属や銅化合物のような原
料中に前述のような本発明の添加元素を含んだ化合物を
液状で均一混合した後に、適当な温度で加熱処理するも
のがある。この場合の温度は、希土類−アルカリ土類−
銅−酸素系化合物が生成、あるいはそのプレカーサーが
生成する温度以上であればよく、好ましくは500℃以
上の温度で加熱処理することである。
Other methods for producing the easily sinterable superconducting material of the present invention include:
There is a method in which a compound containing the additive element of the present invention as described above is uniformly mixed in a liquid state into a raw material such as a rare earth compound, an alkaline earth metal, or a copper compound, and then heat-treated at an appropriate temperature. The temperature in this case is rare earth - alkaline earth -
The heat treatment may be performed at a temperature not lower than that at which a copper-oxygen compound or its precursor is generated, preferably at a temperature of 500° C. or higher.

上記のような方法で得られる易焼結性超伝導材料は比較
的低温で焼結することができ、930℃以上の温度で焼
結することにより理論密度の95%以上の高密度の超伝
導材料を得ることができる。
The easily sinterable superconducting material obtained by the above method can be sintered at a relatively low temperature, and by sintering at a temperature of 930°C or higher, it becomes a high-density superconductor with a density of 95% or more of the theoretical density. materials can be obtained.

このような高密度の超伝導材料は、機械的強度が大きく
、かつJcを高くすることが可能である。
Such a high-density superconducting material has high mechanical strength and can increase Jc.

また、本発明のような添加元素は磁束をピニングする効
果もあり、磁場中のJcを向上させることもできるので
超伝導磁石や電気配線への応用については有効であると
考えられる。
Additionally, the additive elements of the present invention have the effect of pinning magnetic flux and can improve Jc in a magnetic field, so they are considered to be effective in application to superconducting magnets and electrical wiring.

〔実施例〕〔Example〕

以下実施例によりさらに詳細に説明する。 The present invention will be explained in more detail with reference to Examples below.

実施例1 酸化イツトリウム8.48 g 、硫酸バリウム39.
20gおよび酸化第二銅17.90gを乳鉢中で混合し
た後、960℃の温度で空気中において12時間焼成し
た。
Example 1 Yttrium oxide 8.48 g, barium sulfate 39.
After mixing 20 g and 17.90 g of cupric oxide in a mortar, they were fired in air at a temperature of 960° C. for 12 hours.

得られた複合酸化物はジェットミルで粉砕して平均粒径
3μmの粒末とした。該複合酸化物1 、95gに0.
05 gのテトライソプロポキシゲルマニウムを溶解し
た10mgのトルエン溶液を添加してメノウ乳鉢中で混
合した後に、トルエンを蒸発せしめることにより除去し
、100℃の温度で30分間加熱した。
The obtained composite oxide was pulverized with a jet mill to obtain powder with an average particle size of 3 μm. 0.0 to 95 g of the composite oxide 1.
After adding 10 mg of a toluene solution in which 0.5 g of tetraisopropoxygermanium was dissolved and mixing in an agate mortar, the toluene was removed by evaporation and heated at a temperature of 100° C. for 30 minutes.

得られた粉末は2トン/−の圧力で円板状にプレス成形
した後に、940℃の温度で酸素流中において24時間
焼結・アニールを行い、続いて60℃/時の条件で冷却
した。
The obtained powder was press-molded into a disk shape at a pressure of 2 tons/-, then sintered and annealed in an oxygen flow at a temperature of 940°C for 24 hours, and then cooled at 60°C/hour. .

該焼結体の密度は6.03g/cm’であった。つぎに
、該焼結体を直方体状に切り出して電極を付け、液体窒
素中でJcを測定したところ210OA/cdであった
The density of the sintered body was 6.03 g/cm'. Next, the sintered body was cut into a rectangular parallelepiped shape, an electrode was attached thereto, and Jc was measured in liquid nitrogen and found to be 210 OA/cd.

また、四端子法にて10mAの電流を流しながら電気抵
抗を測定した結果、超伝導臨界温度(以下、Tcと記述
する)は91にであった。
Further, as a result of measuring the electrical resistance while flowing a current of 10 mA using the four-probe method, the superconducting critical temperature (hereinafter referred to as Tc) was 91.

また、抗折力は25 kgf/mu”であった。Further, the transverse rupture strength was 25 kgf/mu''.

実施例2〜11 実施例1において、テトライソプロポキシゲルマニウム
の代りにテトラフェニル鉛、ペンタエトキシタンタル、
ペンタエトキシニオブ、トリエトキシアンチモン、トリ
エトキシバナジル、ペンタエトキシタングステン、テト
ラエトキシスズ、ビスベンゼンモリブデン、ビスベンゼ
ンクロム、あるいはトリフェニルビスマスを添加する以
外は同様の方法を用いることにより粉末を作成し焼結体
とした後、実施例1と同様の測定を行った。その結果を
第1表に示す。
Examples 2 to 11 In Example 1, tetraphenyl lead, pentaethoxy tantalum,
Powders were made and sintered using the same method but with the addition of pentaethoxyniobium, triethoxyantimony, triethoxyvanadyl, pentaethoxytungsten, tetraethoxytin, bisbenzene molybdenum, bisbenzene chromium, or triphenyl bismuth. After making it into a body, the same measurements as in Example 1 were performed. The results are shown in Table 1.

比較例1 実施例1においてテトライソプロポキシゲルマニウムを
添加しないで行う以外は同様の方法を用いて焼結体を測
定し、同様の測定を行った。その結果を第1表に示す。
Comparative Example 1 A sintered body was measured using the same method as in Example 1 except that tetraisopropoxygermanium was not added, and the same measurements were performed. The results are shown in Table 1.

また、抗折力は3.5 kgf/1m”であった。Further, the transverse rupture strength was 3.5 kgf/1 m''.

以下 余白 実施例13 実施例1においてテトライソプロポキシゲルマニウムの
代りに硝酸銀0.05gを用いてメタノール20n+j
?に溶解して添加する以外は同様の方法によって粉末を
作成し焼結体とした後、実施例1と同様の測定を行った
Margin Example 13 In Example 1, 0.05 g of silver nitrate was used instead of tetraisopropoxygermanium, and 20 n+j of methanol was added.
? A powder was prepared in the same manner except that it was added after being dissolved in a sintered body, and then the same measurements as in Example 1 were performed.

該焼結体の密度は6.13g/am3で、Tcは92に
、JCは2330A/cdであった。
The density of the sintered body was 6.13 g/am3, Tc was 92, and JC was 2330 A/cd.

実施例14 実施例1においてテトライソプロポキシゲルマニウムの
代りに三塩化ビスマス0.05gを用いてアセトン20
mfに溶解して添加する以外は同様の方法によって粉末
を作成し焼結体とした後、実施例1と同様の測定を行っ
た。
Example 14 In Example 1, 0.05 g of bismuth trichloride was used instead of tetraisopropoxygermanium, and 20 g of acetone was added.
A powder was prepared by the same method except that it was added after being dissolved in mf, and after making a sintered body, the same measurements as in Example 1 were performed.

該焼結体の密度は6.02g/am3で、Tcは91に
、Jcは1870A/+J!であった。
The density of the sintered body is 6.02 g/am3, Tc is 91, and Jc is 1870A/+J! Met.

実施例15 実施例1において酸化イツトリウムの代りに酸化エルビ
ウム6.37gを用いて複合酸化物を合成し、該複合酸
化物1.94gとペンタエトキシニオブ0.03gおよ
びテトライソプロポキシゲルマニウム0.03gをトル
エン20m1に溶解して添加する以外は同様の方法によ
って粉末を作成し焼結体とした後、実施例1と同様の測
定を行った。
Example 15 A composite oxide was synthesized using 6.37 g of erbium oxide instead of yttrium oxide in Example 1, and 1.94 g of the composite oxide, 0.03 g of pentaethoxyniobium, and 0.03 g of tetraisopropoxygermanium were synthesized. A powder was prepared by the same method except that it was added after being dissolved in 20 ml of toluene, and after making a sintered body, the same measurements as in Example 1 were performed.

該焼結体の密度は6.09g/am”で、Tcは93に
、Jcは206OA/cdであった。
The density of the sintered body was 6.09 g/am'', Tc was 93, and Jc was 206 OA/cd.

実施例16 酸化ガドリニウム6.05g、炭酸バリウム13.15
gおよび酸化第二銅7.95gを乳鉢中で混合した後、
さらに酢酸鉛三水和物0.6gを20抛lのエタノール
に溶解した溶液を添加して混合しながらエタノールを蒸
発せしめて乾固した。ついで900℃の温度で加熱処理
してガドリニウム−バリウム−銅−酸素からなる複合酸
化物を得た。該複合酸化物をジェットミルにより平均粒
径3μmの粉末とした後、2トン/dの圧力で円板状に
プレス成形した。
Example 16 Gadolinium oxide 6.05g, barium carbonate 13.15g
After mixing g and 7.95 g of cupric oxide in a mortar,
Further, a solution of 0.6 g of lead acetate trihydrate dissolved in 20 liters of ethanol was added, and the ethanol was evaporated to dryness while mixing. Then, heat treatment was performed at a temperature of 900°C to obtain a composite oxide consisting of gadolinium-barium-copper-oxygen. The composite oxide was made into powder with an average particle size of 3 μm using a jet mill, and then press-molded into a disk shape at a pressure of 2 tons/d.

該成形体は950℃の温度で酸素流中において24時間
焼結・アニールを行い、続いて60℃/分の速度で冷却
した。
The compact was sintered and annealed in a flow of oxygen at a temperature of 950° C. for 24 hours, followed by cooling at a rate of 60° C./min.

該焼結体の密度は6.07g/cA’であった。実施例
1と同様の方法で測定したTcは92にで、Jcは19
90A/cJであった。
The density of the sintered body was 6.07 g/cA'. Tc measured in the same manner as in Example 1 was 92, and Jc was 19.
It was 90A/cJ.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明による易焼結性超伝導材料は
、高密度化することができるために機械的強度が大きく
、かつ臨界電流密度を高くすることができる。したがっ
て、種々の用途に応用することができるので、工業上極
めて有用なものである。
As explained above, since the easily sinterable superconducting material according to the present invention can be made highly dense, it has high mechanical strength and can have a high critical current density. Therefore, it can be applied to various uses and is extremely useful industrially.

特許出願人  旭化成工業株式会社Patent applicant: Asahi Kasei Industries, Ltd.

Claims (1)

【特許請求の範囲】[Claims] (1)原子百分比で表した組成が 希土類元素4〜15% アルカリ土類金属8〜25% 銅12〜30% 添加元素0.01〜5% 残部が実質的に酸素 (ただし、希土類元素とは、Y,La,Nd,Sm,E
u,Gd,Dy,Ho,Er,Tm,YbおよびLuの
うちから選んだ一つ以上の元素;アルカリ土類金属とは
、Ca,SrおよびBaのうちから選んだ一つ以上の元
素;添加元素とは、Ag,Pb,Ta,Nb,Sb,B
i,V,W.Mo,Cr,GeおよびSnのうちから選
んだ少なくとも1つ以上の元素である。) であり、添加元素を含む化合物が液状で添加混合された
後に熱処理されたこと特徴とする易焼結性超伝導材料
(1) The composition expressed in atomic percentage is 4-15% rare earth elements, 8-25% alkaline earth metals, 12-30% copper, 0.01-5% additional elements, and the balance is substantially oxygen (however, rare earth elements , Y, La, Nd, Sm, E
One or more elements selected from u, Gd, Dy, Ho, Er, Tm, Yb and Lu; Alkaline earth metals are one or more elements selected from Ca, Sr and Ba; addition Elements are Ag, Pb, Ta, Nb, Sb, B
i, V, W. It is at least one element selected from Mo, Cr, Ge, and Sn. ), an easily sinterable superconducting material characterized in that a compound containing an additive element is added and mixed in a liquid state and then heat treated.
JP62329946A 1987-12-28 1987-12-28 Easily sinterable superconducting material Pending JPH01172212A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62329946A JPH01172212A (en) 1987-12-28 1987-12-28 Easily sinterable superconducting material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62329946A JPH01172212A (en) 1987-12-28 1987-12-28 Easily sinterable superconducting material

Publications (1)

Publication Number Publication Date
JPH01172212A true JPH01172212A (en) 1989-07-07

Family

ID=18227031

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62329946A Pending JPH01172212A (en) 1987-12-28 1987-12-28 Easily sinterable superconducting material

Country Status (1)

Country Link
JP (1) JPH01172212A (en)

Similar Documents

Publication Publication Date Title
JP3332334B2 (en) Superconductor and method of manufacturing the same
EP0356722B1 (en) Oxide superconductor and method of producing the same
CN116903369A (en) Preparation method of rare earth alkaline earth manganese-based perovskite electronic phase-change ceramic material
JPH01172212A (en) Easily sinterable superconducting material
US5270292A (en) Method for the formation of high temperature semiconductors
JP2920001B2 (en) Method for producing rare earth oxide superconductor
JP3115915B2 (en) Method for producing rare earth oxide superconductor
JP2980650B2 (en) Method for producing rare earth oxide superconductor
JPS63307113A (en) Production of superconductor
JPH04124032A (en) Superconductor and its synthesis
JPH01122959A (en) Highly oriented superconducting material
JPS63233069A (en) Preparation of superconductive ceramic
JPH01264930A (en) Production of oxide superconductor and applied product of said oxide superconductor
JPS63233067A (en) Preparation of superconductive ceramic
JPH02204358A (en) Oxide superconductor and production thereof
JP3286327B2 (en) Manufacturing method of oxide superconductor
JPS63307156A (en) Method for synthesizing superconducting ceramics
JP2801806B2 (en) Metal oxide material
JPH0818834B2 (en) Composite oxide superconducting material and method for producing the same
JPH0446015A (en) Oxide superconducting material and its production
JPH01126258A (en) Production of oxide high-temperature superconductive material
EP0494927A1 (en) Process for making supraconductors
JPH01103919A (en) Production of superconductive ceramic
EP0339886A2 (en) A-site substituted bismuth oxide superconductors, and devices and systems comprising such a superconductor
JPH03295816A (en) Superconductor and method for synthesizing same