JPH01171327A - Decoder - Google Patents

Decoder

Info

Publication number
JPH01171327A
JPH01171327A JP62330760A JP33076087A JPH01171327A JP H01171327 A JPH01171327 A JP H01171327A JP 62330760 A JP62330760 A JP 62330760A JP 33076087 A JP33076087 A JP 33076087A JP H01171327 A JPH01171327 A JP H01171327A
Authority
JP
Japan
Prior art keywords
detection
code
error
detection signal
code word
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62330760A
Other languages
Japanese (ja)
Inventor
Chiyoko Matsumi
松見 知代子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62330760A priority Critical patent/JPH01171327A/en
Publication of JPH01171327A publication Critical patent/JPH01171327A/en
Pending legal-status Critical Current

Links

Landscapes

  • Detection And Correction Of Errors (AREA)
  • Error Detection And Correction (AREA)

Abstract

PURPOSE:To obtain a decoder with excellent error correction capability and detection efficiency by adding a detection signal at every information symbol at the cross position based on a 2nd detection signal and a 3rd detection signal with the information decoded by a 3rd decoding means. CONSTITUTION:An error correction detection circuit 15 by a 1st code and an error correction detection circuit 16 by a 2nd code are provided to eliminate errors as much as possible. Moreover, a 3rd detection circuit 17 is given to all the 1st code decided as the occurrence of an error by the error detection circuit 17 by the 1st code, a detection deciding circuit 18 checks whether or not the 3rd detection signal and the 2nd detection signal are given respectively to the 1st code word and the 2nd code word with respect to each information symbol and the detection signal is given to the information symbol when both are given. Thus, the range of detection is limited to the presence of error surely in the unit of the 1st code to obtain high detection efficiency.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は画像や音声のディジタル情報の記録・再生時に
おける雑音による劣化を減少させるために用いる誤り訂
正符号の復号化器に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to an error correction code decoder used to reduce deterioration due to noise during recording and reproduction of digital information such as images and audio.

従来の技術 画像や音声のディジタル情報を用いる場合には、その誤
り訂正が必要である。一方、それらのディジタル情報は
一般に冗長を持っており、全体としてのデータ量が非常
に多いことから高能率符号を用いて情報を圧縮すること
が多い。しかしながら高能率符号を用いた場合、生起し
た誤りが伝搬し元の情報に大きな影響を与えてしまうた
め、誤り訂正技術は更に重要な問題となる。
BACKGROUND ART When using digital information such as images or sounds, it is necessary to correct errors therein. On the other hand, such digital information generally has redundancy, and since the total amount of data is extremely large, the information is often compressed using high-efficiency codes. However, when high-efficiency codes are used, errors that occur propagate and have a large impact on the original information, so error correction technology becomes an even more important issue.

第4図に誤り訂正符号化された符号語1を示す。FIG. 4 shows code word 1 that has been encoded with error correction.

情報記号2、第1符号による検査記号3および第2符号
による検査記号4から構成される。また、符号語1の各
行はそれぞれ第1符号語5であり、各列はそれぞれ第2
符号語6である。
It consists of an information symbol 2, a check symbol 3 based on a first code, and a check symbol 4 based on a second code. Also, each row of code word 1 is the first code word 5, and each column is the second code word 5.
This is code word 6.

従来の復号化器では、第1符号の各符号語について誤り
の一部を訂正し、誤りの存在の可能性の高い符号語に検
出信号を与える。その後、第2符号の各符号語について
消失を中心として訂正し、誤りを検出した符号語には検
出は号を与え、情報シンボル全体の検出を判定する。第
5図は第1符号を(N1. N1−3 、4) Ree
d −Solomon符号、第2符号を(N2. N2
−2 、3 )Reed−3olomon符号とした時
の具体例の説明図で、第5図aは誤りの生起を示す説明
図、第5図すは第1符号による1重誤り訂正後の状態を
示す説明図、第5図Cは第2符号による1重消失訂正後
の状態を示す説明図である。第6図において、7は誤り
の生起した情報シンボル、8は1重訂正された検出信号
を持ち実際には誤訂正された第1符号語、9は誤訂正さ
れた情報シンボル、10は誤り検出された検出信号を持
った第1符号語、11は1重訂正された検出信号を持ち
実際にも正しく訂正された第1符号語、12は検出信号
を持つ第2符号語、13は実際に誤りが生起しかつ誤り
検出された情報シンボル、14は実際には正しいが誤り
検出された情報シンボルである。まだ、高能率符号化が
なされている場合、データの最小処理単位は清報シンボ
ルではなく通常は第1符号語を基準としたものであるだ
め、高能率符号化の逆変換を行なう時にメモリを用いて
情報シンボルを並べ換える必要が生ずる。
A conventional decoder corrects some of the errors in each codeword of the first code, and provides a detection signal to the codeword in which there is a high possibility of an error. Thereafter, each code word of the second code is corrected mainly for erasures, a detection code is given to the code word in which an error has been detected, and the detection of the entire information symbol is determined. In Figure 5, the first code is (N1. N1-3, 4) Ree
d -Solomon code, the second code is (N2. N2
-2, 3) This is an explanatory diagram of a specific example when a Reed-3 olomon code is used. Figure 5a is an explanatory diagram showing the occurrence of an error, and Figure 5 shows the state after single error correction using the first code. FIG. 5C is an explanatory diagram showing the state after single erasure correction using the second code. In FIG. 6, 7 is an information symbol in which an error has occurred, 8 is a first code word that has a single-corrected detection signal and is actually erroneously corrected, 9 is an erroneously corrected information symbol, and 10 is an error detection signal. 11 is the first codeword that has a single-corrected detection signal and was actually correctly corrected; 12 is the second codeword that has a detection signal; 13 is the actually corrected codeword; The information symbol 14 in which an error occurred and was detected as an error is an information symbol that is actually correct but is detected as an error. However, when high-efficiency encoding is performed, the minimum processing unit of data is usually based on the first code word, not the signal symbol, so memory is required when performing inverse transformation of high-efficiency encoding. It becomes necessary to rearrange the information symbols using

発明が解決しようとする問題点 しかしながら、上記のような構成では例えばVTR等に
用いた場合に十分な誤り訂正能力を得られないことがあ
る。また、第1符号により多くの正しく訂正された符号
語にも誤訂正の可能性のため検出信号を付加し、更に第
2符号による訂正時に誤訂正が存在すると検出不可能と
なるため多くの訂正可能な符号語に検出信号を付加して
おり、結果的に誤りの検出効率が悪くなる。
Problems to be Solved by the Invention However, the above configuration may not provide sufficient error correction ability when used in, for example, a VTR. In addition, a detection signal is added to the code words that have been correctly corrected by the first code because of the possibility of erroneous corrections, and if there is an erroneous correction at the time of correction by the second code, it becomes impossible to detect. Detection signals are added to possible code words, resulting in poor error detection efficiency.

本発明ではかかる点に鑑み誤り訂正能力に優れかつ検出
効率の良い復号化器を提供することを目的とする。
In view of these points, it is an object of the present invention to provide a decoder with excellent error correction ability and detection efficiency.

問題点を解決するための手段 本発明は、第1符号語毎に誤り訂正あるいは検出を行な
い誤訂正の可能性の大きい符号語および訂正不可能な符
号語に1種類以上の第1検出信号を付加する第1復号化
手段と、前記第1復号化手段によって復号化された情報
を第2符号語毎に誤り訂正、消失訂正あるいは検出を行
ない前記第1検出官号と誤り位置との一致に応じて誤訂
正の可能性の大きい符号語および訂正不可能な符号語に
1種類以上の第2検出信号を付加する第2復号化手段と
、前記第2復号化手段によって復号化された情報を再度
第1符号語毎に誤り検出を行ない誤りが検出された符号
語に第3符号語に第3検出信号を付加する第3復号化手
段によって復号された情報に対して前記第2検出信号と
前記第3検出信号にもとづいてそれらの交差する位置に
ある情報シンボル毎に検出信号を付加する検出手段とを
備えた復号化器である。
Means for Solving the Problems The present invention performs error correction or detection for each first codeword, and applies one or more types of first detection signals to codewords with a high possibility of error correction and codewords that cannot be corrected. A first decoding means to add the information decoded by the first decoding means is subjected to error correction, erasure correction, or detection for each second code word so that the first detected code and the error position match. a second decoding means for adding one or more types of second detection signals to codewords with a high possibility of miscorrection and codewords that cannot be corrected; and information decoded by the second decoding means. The third decoding means performs error detection again for each first code word and adds the third detection signal to the third code word to the code word in which an error has been detected. and detection means for adding a detection signal to each information symbol at a position where the third detection signal intersects the third detection signal.

作  用 本発明は前記第3複号化手段を用いて従来は不可能であ
った第2符号訂正時における誤訂正の検出が可能となっ
たため、前記第2復号化手段で従来は誤訂正を恐れて検
出のみ行なわれた符号語を訂正を行なうことによって、
従来と比べて優れた誤り訂正能力を有する復号化器を構
成する。一方、前記第3復号化手段により、正しく訂正
された第1符号語に第3検出信号が付加されることがな
くなることによって、従来と比べて検出効率の良い復号
化器を構成する。
Function: The present invention makes it possible to detect erroneous corrections at the time of second code correction using the third decoding means, which was previously impossible. By correcting code words that were only detected out of fear,
A decoder with superior error correction ability compared to conventional decoders is constructed. On the other hand, since the third detection signal is not added to the correctly corrected first code word by the third decoding means, a decoder with higher detection efficiency than the conventional one is constructed.

実施例 第1図は本発明の第1の実施例におけるReed−So
 1 omon 2重符号の復号化器のブロック図であ
る。第1図において15は第1符号による誤り訂正検出
回路、16は第2符号による誤り訂正検出回路、17は
第1符号による誤り検出回路、18は検出判定回路であ
る。以上のように構成された本実施例の復号化器につい
て、以下その動作を説明する。まず、第1符号による誤
り訂正検出回路能で検出のみ行なわれた符号語にそれぞ
れ第1検出信号を与える。その後、第2符号による誤り
訂でありかつそれらの位置が第1検出信号の示す位置と
一致する誤りの訂正と、訂正可能な消失を訂正し、誤訂
正の可能性の高い符号語および誤り訂正不可能で検出の
み行なわれた符号語にそれぞれ第2検出信号を与える。
Embodiment FIG. 1 shows Reed-So in the first embodiment of the present invention.
FIG. 1 is a block diagram of a decoder for a 1 omon dual code. In FIG. 1, 15 is an error correction detection circuit based on the first code, 16 is an error correction detection circuit based on the second code, 17 is an error detection circuit based on the first code, and 18 is a detection determination circuit. The operation of the decoder of this embodiment configured as described above will be described below. First, a first detection signal is applied to each code word that has only been detected by the error correction detection circuit function based on the first code. After that, the errors are corrected by the second code and their positions match the positions indicated by the first detection signal, and the correctable erasures are corrected. A second detection signal is given to each code word that is impossible and has only been detected.

更に、第1符号による誤り検出回路17により、誤りが
生起していると判定される全ての第1符号語に第3検出
信号を与え、検出判定回路18は各情報シンボルに対し
、それを含む第1符号語、第2符号語についてそれぞれ
第3検出信号、第2検出信号が与えられているかどうか
調べ、両方ともに与えられていれば、その情報シンボル
に検出信号を与える。
Furthermore, the error detection circuit 17 based on the first code applies a third detection signal to all the first code words determined to have an error, and the detection determination circuit 18 applies a third detection signal to each information symbol including the error detection circuit 17. It is checked whether a third detection signal and a second detection signal are given for the first code word and the second code word, respectively, and if both are given, a detection signal is given to the information symbol.

以上のように本実施例によれば、第1符号による誤り訂
正検出回路15および第2符号による誤り訂正検出回路
16を設けることにより可能なだけの誤りを除去し、更
に第1符号による誤り検出回路17を設けることにより
ほぼ完全に誤りの残留を防ぐことができる。一方、第1
符号による誤り検出回路17を設けることによシ、検出
の範囲を第1符号語単位で確実に誤りが存在するものに
制限しており高い検出効率が得られる。また、第1符号
語を基準として高能率符号化の逆変換を行なうために、
従来は復号終了時に第2符号語毎に出力されるデータの
並べ換え操作が必要であったが、前記操作のための回路
と第1符号による誤り検出回路の規模はほぼ同程度であ
り、全体としての復号化器の規模は従来のものとかわら
ない。
As described above, according to this embodiment, as many errors as possible are removed by providing the error correction detection circuit 15 using the first code and the error correction detection circuit 16 using the second code, and furthermore, the error correction detection circuit 15 using the first code is provided. By providing the circuit 17, it is possible to almost completely prevent errors from remaining. On the other hand, the first
By providing the code-based error detection circuit 17, the detection range is limited to those in which an error definitely exists in the first code word unit, and high detection efficiency can be obtained. In addition, in order to perform inverse transformation of high-efficiency encoding using the first codeword as a reference,
Conventionally, it was necessary to rearrange the data output for each second code word at the end of decoding, but the scale of the circuit for this operation and the error detection circuit based on the first code are almost the same, so overall The scale of the decoder is the same as the conventional one.

第2図は本発明の第2の実施例における第1符号を(N
1’、N1−3 、4 ) Reed −Solomo
n符号、第2符号を(N2.N2−2 、3)Reed
−3olomon符号とした2重符号の復号化器のブロ
ック図、第3図は具体例の説明図で、19は第1符号に
よる1重誤り訂正2重誤り検出回路、20は第2符号に
よる1重誤りおよび2重消失訂正回路、21は第1符号
による誤り検出回路、22は検出判定回路、23は誤り
の生起した情報シンボル、24は第1検出信号を持ち実
際には誤訂正されている第1符号語、25は誤訂正され
た情報シンボル、26は誤り検出され第1検出信号を持
つ第1符号語、27は正しく1重誤り訂正された第1検
出信号を持つ第1符号語、28は第2符号訂正時に2重
消失訂正されるべき第2符号語、29は第2符号訂正時
に1重消失訂正されるべき第2符号語、30は第2符号
訂正時に第1検出信号を持つ位置に1M誤り訂正される
べき第2符号語、31は第2検出信号を持つ第2符号語
である。前記のように構成された第2の実施例の復号化
器について、以下その動作を説明する。まず、第1符号
による1重誤り訂正2重誤り検出回路19により、各第
1符号語の訂正あるいは検出を行ない、1重誤り訂正さ
れた符号語および誤りが検出された符号語に第1検出信
号を与える。第3図aの説明図に示されるように誤りが
生起したとすれば、第1符号訂正終了時には第3図すの
説明図に示される状態となる。
FIG. 2 shows the first code (N
1', N1-3, 4) Reed-Solomo
Reed the n code and the second code (N2.N2-2, 3)
3 is a block diagram of a decoder for a double code using a -3olomon code. FIG. Double error and double erasure correction circuit; 21 is an error detection circuit based on the first code; 22 is a detection/judgment circuit; 23 is an information symbol in which an error has occurred; 24 is a first detection signal that is actually incorrectly corrected. a first code word, 25 is an error-corrected information symbol, 26 is an error-detected first code word with a first detection signal, 27 is a first code word with a correctly single error-corrected first detection signal; 28 is a second code word to be subjected to double erasure correction during second code correction, 29 is a second code word to be subjected to single erasure correction during second code correction, and 30 is a first detection signal during second code correction. 31 is a second code word having a second detection signal, which is to be corrected for 1M errors at the position where the second code word has a second detection signal. The operation of the decoder of the second embodiment configured as described above will be explained below. First, the single error correction double error detection circuit 19 using the first code corrects or detects each first code word, and applies the first detection to the single error corrected code word and the code word in which an error has been detected. give a signal. If an error occurs as shown in the explanatory diagram of FIG. 3A, the state shown in the explanatory diagram of FIG. 3A will be reached when the first code correction is completed.

その後、第2符号による1重誤りおよび2重消失訂正回
路2oにより、各第2符号語の第1検出信号と一致する
位置の1重誤り訂正および1・重消失訂正、2重消失訂
正を行ない、1M誤り訂正された符号語、2重消失訂正
された符号語および誤りが検出された符号語に第2検出
信号を与える。第1符号訂正によって第3図すの説明図
に示されるような状態が得られたとすれば第2符号訂正
終了時には第3図Cの説明図に示されるように誤りは全
て正しく訂正された状態となる。更に、第1符号による
誤り検出回路21により誤りが生起していると判定され
る全ての第1符号語に第3検出信号を与え、検出判定回
路22は第2検出信号および第3検出信号にもとづき誤
りを検出したと判定された各情報シンボルに検出信号を
与える。第2符号訂正によって第3図Cの説明図に示さ
れるような状態が得られたとすれば、第1符号検出終了
時には誤り検出された第1符号語はないため、検出信号
を与えられる情報シンボルもなく、全ての情報シンボル
を正しく得ることができる。
After that, the single error and double erasure correction circuit 2o based on the second code performs single error correction, single and double erasure correction, and double erasure correction at the position that matches the first detection signal of each second code word. , a 1M error corrected code word, a double erasure corrected code word, and an error detected code word. If the first code correction results in a state as shown in the explanatory diagram of Figure 3C, then when the second code correction is completed, all errors have been correctly corrected as shown in the explanatory diagram of Figure 3C. becomes. Further, a third detection signal is applied to all the first code words determined by the first code error detection circuit 21 to have an error, and the detection determination circuit 22 applies the third detection signal to the second detection signal and the third detection signal. A detection signal is given to each information symbol for which it is determined that an error has been detected. If the state shown in the explanatory diagram of FIG. 3C is obtained by the second code correction, there is no error-detected first code word at the end of the first code detection, so the information symbol to which the detection signal is given is All information symbols can be obtained correctly without any problems.

なお、実施例はReed −Solomon 2重符号
の例であるが、任意の2重符号に適用可能である。また
、第1符号と第2符号の各復号化手段における誤りの訂
正および検出の比は任意の配分にできる。
Note that although the embodiment is an example of a Reed-Solomon double code, it is applicable to any double code. Further, the ratio of error correction and detection in each decoding means for the first code and the second code can be arbitrarily distributed.

更に各復号化手段において誤訂正の可能性の大きい符号
語および訂正不可能な符号語に与える各検出信号は2種
類以上に割当ててもよいし、1種類にまとめてもよい。
Further, in each decoding means, the detection signals given to code words with a high possibility of error correction and code words that cannot be corrected may be assigned to two or more types, or may be combined into one type.

その他、3重以上に符号化された符号についても、同様
の復号法を用いて誤り訂正能力および検出効率の向上を
はかることが可能である。以上の説明では、誤り訂正符
号化時に、第1符号化の後第2符号化を行なうものとし
ているが、第2符号化の後第1符号化を行なっても全く
同じ符号語が得られることは明らかであり、また情報シ
ンボルのシャフリングも可能である。
In addition, it is possible to improve the error correction ability and detection efficiency by using the same decoding method for codes encoded three times or more. In the above explanation, it is assumed that the second encoding is performed after the first encoding during error correction encoding, but the exact same code word can be obtained even if the first encoding is performed after the second encoding. is obvious, and shuffling of information symbols is also possible.

発明の詳細 な説明したように、本発明によれば、装置規模は同じ程
度で、より多くの誤りを訂正し、かつ誤りの見逃しを増
加させることなく誤り検出の残留を大幅に減少させるこ
とができ、その実用効果第1図は本発明における一実施
例の復号化器のブロック図、第2図は本発明の他の実施
例の復号化化器のブロック図、第3図は同実施例の具体
例の説明図、第4図は2重符号の符号語の説明図、第5
図は従来の復号化器による誤り訂正の具体例の説明図で
ある。
As described in detail, according to the present invention, it is possible to correct more errors with the same device size, and to significantly reduce residual error detection without increasing missed errors. 1 is a block diagram of a decoder according to one embodiment of the present invention, FIG. 2 is a block diagram of a decoder according to another embodiment of the present invention, and FIG. 3 is a block diagram of a decoder according to another embodiment of the present invention. 4 is an explanatory diagram of a specific example of the code word of a double code.
The figure is an explanatory diagram of a specific example of error correction by a conventional decoder.

16・・・・・・第1符号による誤り訂正検出回路、1
6・・・・・・第2符号による誤り訂正検出回路、1了
・・・・・第1符号による誤り検出回路、18・・・検
出判定回路。
16...Error correction detection circuit using first code, 1
6...Error correction detection circuit based on the second code, 1...Error detection circuit based on the first code, 18...Detection determination circuit.

第3図 第4図Figure 3 Figure 4

Claims (1)

【特許請求の範囲】[Claims] 高能率符号化された画像や音声の信号をK_1シンボル
ずつに分割し、各シンボル毎に符号長N_1シンボルの
第1符号語に誤り訂正または検出符号化を行ない、前記
第1符号語を複数個集めて得られる情報を更にK_2シ
ンボルずつに分割し、各に2シンボル毎に符号長N_2
シンボルの第2符号語に誤り訂正または検出符号化を行
ない、前記第2符号化された情報を再度第1符号語毎に
分割し順次伝送された情報に対して、第1符号語毎に誤
り訂正あるいは検出を行ない誤訂正の可能性の大きい符
号語および訂正不可能な符号語に1種類以上の第1検出
信号を付加する第1復号化手段と、前記第1復号化手段
によって復号化された情報を第2符号語毎に誤り訂正、
消失訂正あるいは検出を行ない前記第1検出信号と誤り
位置との一致に応じて誤訂正の可能性の大きい符号語お
よび訂正不可能な符号語に1種類以上の第2検出信号を
付加する第2復号化手段と、前記第2復号化手段によっ
て復号化された情報を再度第1符号語毎に誤り検出を行
ない誤りが検出された符号語に第3検出信号を付加する
第3復号化手段と、前記第3復号化手段によって復号さ
れた情報に対して前記第2検出信号と前記第3検出信号
にもとずいてそれらの交差する位置にある情報シンボル
毎に検出信号を付加する検出手段を有することを特徴と
する復号化器。
A high-efficiency coded image or audio signal is divided into K_1 symbols each, and error correction or detection coding is performed on the first code word with a code length of N_1 symbols for each symbol, and the first code word is divided into multiple K_1 symbols. The collected information is further divided into K_2 symbols each, and each 2 symbols has a code length of N_2.
Error correction or detection coding is performed on the second code word of the symbol, and the second coded information is divided again into each first code word, and the information transmitted sequentially is corrected for each first code word. a first decoding unit that performs correction or detection and adds one or more types of first detection signals to codewords that are likely to be incorrectly corrected and codewords that cannot be corrected; error correction for each second code word,
A second method for performing erasure correction or detection and adding one or more types of second detection signals to codewords with a high possibility of error correction and codewords that cannot be corrected depending on the coincidence between the first detection signal and the error position. a third decoding means for performing error detection on the information decoded by the second decoding means again for each first code word and adding a third detection signal to the code word in which an error is detected; , a detection means for adding a detection signal to the information decoded by the third decoding means for each information symbol located at a position where the second detection signal and the third detection signal intersect, based on the second detection signal and the third detection signal. A decoder comprising:
JP62330760A 1987-12-25 1987-12-25 Decoder Pending JPH01171327A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62330760A JPH01171327A (en) 1987-12-25 1987-12-25 Decoder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62330760A JPH01171327A (en) 1987-12-25 1987-12-25 Decoder

Publications (1)

Publication Number Publication Date
JPH01171327A true JPH01171327A (en) 1989-07-06

Family

ID=18236238

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62330760A Pending JPH01171327A (en) 1987-12-25 1987-12-25 Decoder

Country Status (1)

Country Link
JP (1) JPH01171327A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260823A (en) * 1989-03-31 1990-10-23 Nippon Hoso Kyokai <Nhk> Decoding system for error correction code

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02260823A (en) * 1989-03-31 1990-10-23 Nippon Hoso Kyokai <Nhk> Decoding system for error correction code

Similar Documents

Publication Publication Date Title
KR880000426B1 (en) Decoding method and system for double-encoded reed-solomon codes
KR960003094B1 (en) Error correction code generator
EP0061288B1 (en) Digital television signal processing
US20030106009A1 (en) Error correction improvement for concatenated codes
JPH084233B2 (en) Error correction code decoding device
KR950008488B1 (en) Error correction method
US7478313B2 (en) Encoding apparatus and method, and decoding apparatus and method for error correction
JPH0393316A (en) Error detection correction decoding device
US6138263A (en) Error correcting method and apparatus for information data having error correcting product code block
US5809042A (en) Interleave type error correction method and apparatus
JPH048979B2 (en)
JPH01171327A (en) Decoder
JPH0628343B2 (en) Product code decoding method
KR0141826B1 (en) Error correction method of compression data
JPS6160618B2 (en)
KR100259296B1 (en) Error correction method
JPH10290216A (en) Method for error-correction decoding and device therefor
JPH0258815B2 (en)
JPS6322736B2 (en)
JP3277062B2 (en) Error correction code decoding device
JP2605269B2 (en) Error correction method
JPS59167145A (en) Error correcting system
JPH06244741A (en) Error correcting method
JP3135241B2 (en) Error detection and correction decoding device
EP1111799A1 (en) Error correction with a cross-interleaved Reed-Solomon code, particularly for CD-ROM