JPH01170849A - Method for measuring strength of spheroidal graphite cast iron - Google Patents

Method for measuring strength of spheroidal graphite cast iron

Info

Publication number
JPH01170849A
JPH01170849A JP62330975A JP33097587A JPH01170849A JP H01170849 A JPH01170849 A JP H01170849A JP 62330975 A JP62330975 A JP 62330975A JP 33097587 A JP33097587 A JP 33097587A JP H01170849 A JPH01170849 A JP H01170849A
Authority
JP
Japan
Prior art keywords
fracture toughness
cast iron
measured
ultrasonic waves
spheroidal graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62330975A
Other languages
Japanese (ja)
Other versions
JPH0444217B2 (en
Inventor
Toshiaki Fujita
利明 藤田
Namio Urabe
浦辺 浪夫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP62330975A priority Critical patent/JPH01170849A/en
Publication of JPH01170849A publication Critical patent/JPH01170849A/en
Publication of JPH0444217B2 publication Critical patent/JPH0444217B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Abstract

PURPOSE:To improve accuracy by projecting ultrasonic waves of a wide frequency band into a spheroidal graphite cast iron and measuring the upper limit value of the frequencies of the ultrasonic waves transmitted through the cast iron, then determining the fracture toughness of an object to be measured from the upper limit value of the frequencies. CONSTITUTION:The ultrasonic waves X of, for example, an about 0.5-10MHz frequency band are projected from an ultrasonic probe 2 into the spheroidal graphite cast iron which is the object 1 to be measured. Only the high frequency bands of the ultrasonic waves transmitted through and reflected by the object 1 to be measured scatter and attenuate according to the grain sizes of the graphite 3 and the distance between the graphite 3 particles and, therefore, the fracture toughness is determined as a relative value by measuring the upper limit value of the frequencies and the normal fracture toughness is obtd. by a suitable calibration curve. The fracture toughness is, therefore, measured with good accuracy by a non-destructive method.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は球状黒鉛鋳鉄の破壊靭性を非破壊的手法により
測定することができる方法に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method capable of measuring the fracture toughness of spheroidal graphite cast iron by a non-destructive method.

〔従来の技術及びその問題点〕[Conventional technology and its problems]

従来、金属材料の破壊靭性値は、材料の一部を切り出し
てコンパクト引張試験片に加工し、これを疲労試験機に
よって破壊することにより測定されている。従来の破壊
靭性値測定法は、このような破壊試験が唯一の方法であ
り、したがって、その測定値は当該金属材に関する代表
値とみなされるに過ぎない。
Conventionally, the fracture toughness value of a metal material has been measured by cutting out a part of the material, processing it into a compact tensile test piece, and fracturing this using a fatigue testing machine. In the conventional fracture toughness measurement method, such a fracture test is the only method, and therefore, the measured value is only considered to be a representative value for the metal material concerned.

ところで、球状黒鉛鋳鉄は原子力関連の部材(例えばキ
ャスク等)として使用されており、このような場合、製
品の破壊靭性を厳重にチエツクする必要がある。しかし
、従来では破壊靭性の測定は上記のような破壊試験によ
らざるを得ないため、そのチエツクを十分に行い得ない
難点があった。
Incidentally, spheroidal graphite cast iron is used as nuclear power related components (for example, casks, etc.), and in such cases it is necessary to strictly check the fracture toughness of the product. However, conventionally, the fracture toughness has to be measured by the above-mentioned fracture test, which has the disadvantage that it cannot be checked sufficiently.

球状黒鉛鋳鉄については、その黒鉛球状化率を超音波を
使った減衰法、音速法等で計測する方法が行われている
が、製品形状によっては計測できない場合がある。黒鉛
球状化率は破壊靭性値と一定の相関関係があると考えら
れるが、このような計測法によって破壊靭性値を測定す
ることは現実的には難しい。すなわち、破壊靭性値を非
破壊的手法により測定しようとすると、その値は黒鉛粒
径のみならず、黒鉛間距離等の諸々の要因の影響を受け
るものと考えられ、したがって、単純に黒鉛粒径だけを
みても全く意味がない。
Regarding spheroidal graphite cast iron, there are methods to measure the graphite nodularity using an attenuation method using ultrasonic waves, a sonic method, etc., but it may not be possible to measure it depending on the shape of the product. Although graphite nodularity is considered to have a certain correlation with the fracture toughness value, it is practically difficult to measure the fracture toughness value by such a measurement method. In other words, when trying to measure the fracture toughness value using a non-destructive method, it is thought that the value is affected not only by the graphite particle size but also by various factors such as the distance between graphite particles. Just looking at it alone makes no sense.

〔問題を解決するための手段〕[Means to solve the problem]

本発明者等はこのような従来の問題に鑑み、非破壊的手
法による球状黒鉛鋳鉄の破壊靭性の測定法について検討
を行った。この結果、鋳鉄を透過した超音波の周波数上
端値と鋳鉄の破壊靭性値との間に非常に高い相関関係が
あり、その」二端値を測定することにより破壊靭性値の
相対値を求め得ることを見い出した。
In view of such conventional problems, the present inventors investigated a method for measuring the fracture toughness of spheroidal graphite cast iron using a non-destructive method. As a result, there is a very high correlation between the upper end of the frequency of ultrasonic waves transmitted through cast iron and the fracture toughness of the cast iron, and by measuring the two end values, the relative value of the fracture toughness can be determined. I discovered that.

本発明はこのような知見に基づいてなされたもので、そ
の特徴とするところは、被測定体たる球状黒鉛鋳鉄中に
広帯域の超音波を入射して、透過した超音波の周波数上
端値を測定し、該周波数上端値から被測定体、の破壊靭
性値を求めるようにしたことにある。
The present invention was made based on such knowledge, and its characteristics are that broadband ultrasonic waves are incident on the spheroidal graphite cast iron that is the object to be measured, and the upper end value of the frequency of the transmitted ultrasonic waves is measured. However, the fracture toughness value of the object to be measured is determined from the upper end value of the frequency.

以下、本発明の原理と具体的な測定方法について説明す
る。
The principle and specific measurement method of the present invention will be explained below.

上述したように、球状黒鉛鋳鉄の破壊靭性値は黒鉛粒径
、黒鉛間距離等の要因の影響を受ける。第1図(Ia)
 (na)に示すように、被測定体1である球状黒鉛鋳
鉄中に超音波探触子2から広帯域の超音波Xを入射する
と、一部は黒鉛3で散乱される。このような入射波の散
乱は高い周波数から先に生じ、徐々に低い周波数に移っ
てくる。この場合、第1図(1a)に示すように黒鉛粒
径が小さく且つ黒鉛間距離が大きいと、高い周波数帯域
だけが散乱して減衰し、また第1図([la)に示すよ
うに黒鉛粒径が大きく且つ黒鉛間距離が小さくなる程、
低い周波数帯域まで減衰してくる。
As mentioned above, the fracture toughness value of spheroidal graphite cast iron is influenced by factors such as graphite particle size and distance between graphite. Figure 1 (Ia)
As shown in (na), when a broadband ultrasonic wave X is incident from the ultrasonic probe 2 into the spheroidal graphite cast iron that is the object to be measured 1, a part of the ultrasonic wave is scattered by the graphite 3. Such scattering of incident waves occurs first at high frequencies and gradually moves to lower frequencies. In this case, as shown in Fig. 1 (1a), if the graphite particle size is small and the distance between graphites is large, only the high frequency band is scattered and attenuated, and as shown in Fig. 1 ([la)] The larger the particle size and the smaller the distance between graphites,
Attenuates down to low frequency bands.

このため、第1図(1a)及び(Ila)の場合、球状
黒鉛鋳鉄中を透過(反射も含む)してきた超音波の周波
数は、その」二端値がそれぞれ第1図(Ib) (fi
b)のようになる。そして、このように黒鉛粒径、黒鉛
間距離によって影響を受ける透過波の周波数上端値を測
定することにより、黒鉛粒径及び黒鉛間距離と相関関係
にある破壊靭性値を相対値として求めることができる。
Therefore, in the case of Figures 1 (1a) and (Ila), the two extreme values of the frequencies of the ultrasonic waves transmitted (including reflection) through the spheroidal graphite cast iron are Figure 1 (Ib) (fi
b) By measuring the upper end of the frequency of the transmitted wave, which is affected by the graphite particle size and distance between graphite, it is possible to determine the fracture toughness value, which is correlated with graphite particle size and distance between graphite, as a relative value. can.

第2図は、球状黒鉛鋳鉄を透過した超音波の周波数上端
値とその破壊靭性値(試験片の破壊試験による実測値)
との関係を調べたもので、周波数」二端値と破壊靭性値
は非常に明確な相関関係を有していることが判る。
Figure 2 shows the upper frequency value of ultrasonic waves transmitted through spheroidal graphite cast iron and its fracture toughness value (actually measured value from a fracture test of a test piece).
It was found that there is a very clear correlation between the two-end value of the frequency and the fracture toughness value.

なお、周波数上端値からの破壊靭性値は相対値として求
められるものであり、適当な校正曲線により正規の破壊
靭性値を得ることができる。
Note that the fracture toughness value from the upper frequency limit value is determined as a relative value, and a regular fracture toughness value can be obtained using an appropriate calibration curve.

また、鋳鉄中に入射すべき超音波の周波数帯域は、なる
べく広いほうが周波数による減衰の差がはっきりと表わ
れ、精度よい測定が可能である。その帯域の範囲は特に
限定されるものではないが、測定精度の面から少なくと
も0.7〜7Mt+zの範囲を確保することが好ましい
。通常は0.5〜10Mt(z程度の周波数帯域を持つ
超音波が入射される。
Furthermore, the wider the frequency band of the ultrasonic waves that should be incident on the cast iron, the more clearly the difference in attenuation depending on the frequency will appear, allowing for more accurate measurements. Although the range of the band is not particularly limited, it is preferable to secure a range of at least 0.7 to 7 Mt+z from the viewpoint of measurement accuracy. Usually, ultrasonic waves having a frequency band of about 0.5 to 10 Mt (z) are incident.

第3図は本発明の一実施状況を示すもので、探触子2か
ら超音波パルスを被測定体1内に入射し、その反射エコ
ーを検出する。検出されたエコーは、第4図(A)に示
されるようにゲート装置4により最初の底面エコーのみ
が抜き出された後、スペクトルアナライザ5に通され、
第4図(B)に示されるように周波数の上端値が求めら
れる。
FIG. 3 shows a state of implementation of the present invention, in which an ultrasonic pulse is introduced into the object to be measured 1 from the probe 2, and its reflected echo is detected. From the detected echoes, only the first bottom echo is extracted by a gate device 4 as shown in FIG. 4(A), and then passed through a spectrum analyzer 5.
The upper end value of the frequency is determined as shown in FIG. 4(B).

なお、透過波の測定は、第3図に示すように反射波を捉
える方法以外に、被測定体1の両側に発信器ヒ受信器を
設ける所謂透過法で行ってもよい。
In addition to the method of capturing reflected waves as shown in FIG. 3, the measurement of transmitted waves may be performed by a so-called transmission method in which a transmitter and a receiver are provided on both sides of the object to be measured 1.

〔実施例〕〔Example〕

球状黒鉛鋳鉄製のキャスク(330x 500 x 3
60画)について本発明法により破壊靭性を測定(測定
箇所:中央部)した。また同一の対象から試験片を採取
し、疲労試験機によって破壊靭性値を測定した。それら
の結果を第1表に示す。
Spheroidal graphite cast iron cask (330 x 500 x 3
Fracture toughness was measured using the method of the present invention (measuring location: central portion) for 60 strokes). In addition, a test piece was taken from the same object, and the fracture toughness value was measured using a fatigue tester. The results are shown in Table 1.

第  1  表 同表から明らかなように、本発明法により球状黒鉛鋳鉄
の破壊靭性を精度良く測定しく測定精度:±10%程度
)得るものである。
As is clear from Table 1, the fracture toughness of spheroidal graphite cast iron can be accurately measured by the method of the present invention (measurement accuracy: approximately ±10%).

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明によれば、非破壊的手法により球状黒
鉛鋳鉄の破壊靭性を精度良く測定することができ、これ
により、個々の製品の破壊靭性を厳重にチエツクするこ
とができる。また本発明によれば、製品の任意の箇所で
その部分の破壊靭性を簡単に測定することができる。
According to the present invention described above, the fracture toughness of spheroidal graphite cast iron can be measured with high precision using a non-destructive method, and thereby the fracture toughness of each product can be strictly checked. Further, according to the present invention, it is possible to easily measure the fracture toughness of any part of a product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(la) (lb)及び(Da) (Ilb)は
本発明の測定原理を示すもので、このうち(Ia)(D
a)は材料内における超音波の散乱状態を示す説明図、
また(Ib) (llb)はそれぞれ(la) (na
)に対応した透過波の周波数上端値を示すものである。 第2図は材料内の透過波の周波数上端値と破壊靭性との
関係を示すものである。第3図は本発明に供される測定
装置及びこれによる測定状況を示す説明図である。第4
図(A)(B)は本発明を実施した際の超音波のオシロ
スコープ波形とスペクトルアナライザ表示を示すもので
ある。 図において、1は被測定体、2は探触子、5はスペクト
ルアナライザである。 第  1  図 (I[a) (Ib) (nb)
Figure 1 (la) (lb) and (Da) (Ilb) show the measurement principle of the present invention, among which (Ia) (D
a) is an explanatory diagram showing the state of scattering of ultrasonic waves within the material;
Also, (Ib) (llb) are (la) (na) respectively
) indicates the upper limit value of the frequency of the transmitted wave corresponding to FIG. 2 shows the relationship between the upper frequency limit of transmitted waves in a material and fracture toughness. FIG. 3 is an explanatory diagram showing a measuring device used in the present invention and a measurement situation using the measuring device. Fourth
Figures (A) and (B) show the ultrasonic oscilloscope waveform and spectrum analyzer display when the present invention is implemented. In the figure, 1 is an object to be measured, 2 is a probe, and 5 is a spectrum analyzer. Figure 1 (I[a) (Ib) (nb)

Claims (1)

【特許請求の範囲】[Claims] 被測定体たる球状黒鉛鋳鉄中に広帯域の超音波を入射し
て、透過した超音波の周波数上端値を測定し、該周波数
上端値から被測定体の破壊靭性値を求めることを特徴と
する球状黒鉛鋳鉄の強度測定方法。
A spherical device characterized by injecting broadband ultrasonic waves into spheroidal graphite cast iron as the object to be measured, measuring the upper end of the frequency of the transmitted ultrasonic waves, and determining the fracture toughness value of the object to be measured from the upper end of the frequency. How to measure the strength of graphite cast iron.
JP62330975A 1987-12-26 1987-12-26 Method for measuring strength of spheroidal graphite cast iron Granted JPH01170849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62330975A JPH01170849A (en) 1987-12-26 1987-12-26 Method for measuring strength of spheroidal graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62330975A JPH01170849A (en) 1987-12-26 1987-12-26 Method for measuring strength of spheroidal graphite cast iron

Publications (2)

Publication Number Publication Date
JPH01170849A true JPH01170849A (en) 1989-07-05
JPH0444217B2 JPH0444217B2 (en) 1992-07-21

Family

ID=18238439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62330975A Granted JPH01170849A (en) 1987-12-26 1987-12-26 Method for measuring strength of spheroidal graphite cast iron

Country Status (1)

Country Link
JP (1) JPH01170849A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017015601A1 (en) * 2015-07-22 2017-01-26 Fluor Technologies Corporation Nondestructive determination of toughness of metal, plastic, and composite materials
CN106483198A (en) * 2015-10-21 2017-03-08 中南大学 The metal grain size ultrasonic attenuation evaluation methodology that a kind of rejecting curved surface extends influence

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017015601A1 (en) * 2015-07-22 2017-01-26 Fluor Technologies Corporation Nondestructive determination of toughness of metal, plastic, and composite materials
CN106483198A (en) * 2015-10-21 2017-03-08 中南大学 The metal grain size ultrasonic attenuation evaluation methodology that a kind of rejecting curved surface extends influence
CN106483198B (en) * 2015-10-21 2019-03-19 中南大学 A kind of metal grain size ultrasonic attenuation evaluation method rejecting curved surface and extending influence

Also Published As

Publication number Publication date
JPH0444217B2 (en) 1992-07-21

Similar Documents

Publication Publication Date Title
US11193838B2 (en) Method for determining plane stresses on in-service steel structure member based on phase spectrum of ultrasonic transverse wave
CN101169363B (en) Granule graininess, concentration and density measuring method and device
CA2159568C (en) Emat measurement of ductile cast iron nodularity
CN105606181B (en) The method of oil level in a kind of oil-filled insulator of ultrasound detection
Mayworm et al. A metrological approach to the time of flight diffraction method (ToFD)
JP2961833B2 (en) Grain size measurement method
JP2019100912A (en) Identification device of substance using electromagnetic wave and identification method
JPH01170849A (en) Method for measuring strength of spheroidal graphite cast iron
JP2855800B2 (en) Fatigue damage measurement method
JPS61184458A (en) Measuring device for depth of crack of surface
WO1990013024A1 (en) Calibration standard for measuring surface cracks by ultrasound and method
JP3140244B2 (en) Grain size measurement method
ES2147141A1 (en) Ultrasonic grading of cheeses determining moisture content and texture of sample to ascertain maturity homogeneity of the cheese
Kumar et al. Evaluation of ultrasonic attenuation without invoking the diffraction correction separately
US2645933A (en) Solids characteristics tester
JPH05333003A (en) Method and apparatus for measuring attenuating amount of ultrasonic wave in body to be inspected
Duong et al. Determination of acoustic attenuation in composites by the time frequency method
Sani et al. A study of PC-based ultrasonic goniometer system of surface properties and characterization of materials
Senni et al. Industrial applications: Ultrasonic inspection of large forgings
JPH0212609Y2 (en)
JPH0194205A (en) Measurement of propagation distance of ultrasonic wave
SU1185220A1 (en) Method of ultrasound structural analysis of material
JP3542173B2 (en) Ultrasonic flaw detection method
JPS6110204Y2 (en)
GB2054146A (en) Ultrasonic Testing