JPH0444217B2 - - Google Patents

Info

Publication number
JPH0444217B2
JPH0444217B2 JP62330975A JP33097587A JPH0444217B2 JP H0444217 B2 JPH0444217 B2 JP H0444217B2 JP 62330975 A JP62330975 A JP 62330975A JP 33097587 A JP33097587 A JP 33097587A JP H0444217 B2 JPH0444217 B2 JP H0444217B2
Authority
JP
Japan
Prior art keywords
fracture toughness
value
measured
cast iron
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP62330975A
Other languages
Japanese (ja)
Other versions
JPH01170849A (en
Inventor
Toshiaki Fujita
Namio Urabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kokan Ltd filed Critical Nippon Kokan Ltd
Priority to JP62330975A priority Critical patent/JPH01170849A/en
Publication of JPH01170849A publication Critical patent/JPH01170849A/en
Publication of JPH0444217B2 publication Critical patent/JPH0444217B2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は球状黒鉛鋳鉄の破壊靭性を非破壊的手
法により測定することができる方法に関する。 〔従来の技術及びその問題点〕 従来、金属材料の破壊靭性値は、材料の一部を
切り出してコンパクト引張試験片に加工し、これ
を疲労試験機によつて破壊することにより測定さ
れている。従来の破壊靭性値測定法は、このよう
な破壊試験が唯一の方法であり、したがつて、そ
の測定値は当該金属材に関する代表値とみなされ
るに過ぎない。 ところで、球状黒鉛鋳鉄は原子力関連の部材
(例えばキヤスク等)として使用されており、こ
のような場合、製品の破壊靭性を厳重にチエツク
する必要がある。しかし、従来では破壊靭性の測
定は上記のような破壊試験によらざるを得ないた
め、そのチエツクを十分に行い得ない難点があつ
た。 球状黒鉛鋳鉄については、その黒鉛球状化率を
超音波を使つた減衰法、音速法等で計測する方法
が行われているが、製品形状によつては計測でき
ない場合がある。黒鉛球状化率は破壊靭性値と一
定の相関関係があると考えられるが、このような
計測法によつて破壊靭性値を測定することは現実
的には難しい。すなわち、破壊靭性値を非破壊的
手法により測定しようとすると、その値は黒鉛粒
径のみならず、黒鉛間距離等の諸々の要因の影響
を受けるものと考えられ、したがつて、単純に黒
鉛粒径だけをみても全く意味がない。 〔問題を解決するための手段〕 本発明者等はこのような従来の問題に鑑み、非
破壊的手法による球状黒鉛鋳鉄の破壊靭性の測定
法について検討を行つた。この結果、鋳鉄を透過
した超音波の周波数上端値と鋳鉄の破壊靭性値と
の間に非常に高い相関関係があり、その上端値を
測定することにより破壊靭性値の相対値を求め得
ることを見い出した。 本発明はこのような知見に基づいてなされたも
ので、その特徴とするところは、被測定体たる球
状黒鉛鋳鉄中に広帯域の超音波を入射して、透過
した超音波の周波数上端値を測定し、該周波数上
端値から被測定体の破壊靭性値を求めるようにし
たことにある。 以下、本発明の原理と具体的な測定方法につい
て説明する 上述したように、球状黒鉛鋳鉄の破壊靭性値は
黒鉛粒径、黒鉛間距離等の要因の影響を受ける。
第1図a,aに示すように、被測定体1であ
る球状黒鉛鋳鉄中に超音波探触子2から広帯域の
超音波Xを入射すると、一部は黒鉛3で散乱され
る。このような入射波の散乱は高い周波数から先
に生じ、徐々に低い周波数に移つてくる。この場
合、第1図aに示すように黒鉛粒径が小さく且
つ黒鉛間距離が大きいと、高い周波数帯域だけが
散乱して減衰し、また第1図aに示すように黒
鉛粒径が大きく且つ黒鉛間距離が小さくなる程、
低い周波数帯域まで減衰してくる。 このため、第1図a及びaの場合、球状黒
鉛鋳鉄中を透過(反射も含む)してきた超音波の
周波数は、その上端値がそれぞれ第1図b,
bのようになる。そして、このように黒鉛粒径、
黒鉛間距離によつて影響を受ける透過波の周波数
上端値を測定することにより、黒鉛粒径及び黒鉛
間距離と相関関係にある破壊靭性値を相対値とし
て求めることができる。第2図は、球状黒鉛鋳鉄
を透過した超音波の周波数上端値とその破壊靭性
値(試験片の破壊試験による実測値)との関係を
調べたもので、周波数上端値と破壊靭性値は非常
に明確な相関関係を有していることが判る。 なお、周波数上端値からの破壊靭性値は相対値
として求められるものであり、適当な校正曲線に
より正規の破壊靭性値を得ることができる。 また、鋳鉄中に入射すべき超音波の周波数帯域
は、なるべく広いほうが周波数による減衰の差が
はつきりと表われ、精度よい測定が可能である。
その帯域の範囲は特に限定されるものではない
が、測定精度の面から少なくとも0.7〜7MHzの範
囲を確保することが好ましい。通常は0.5〜10M
Hz程度の周波数帯域を持つ超音波が入射される。 第3図は本発明の一実施状況を示すもので、探
触子2から超音波パルスを被測定体1内に入射
し、その反射エコーを検出する。検出されたエコ
ーは、第4図Aに示されるようにゲート装置4に
より最初の底面エコーのみが抜き出された後、ス
ペクトルアナライザ5に通され、第4図Bに示さ
れるように周波数の上端値が求められる。 なお、透過波の測定は、第3図に示すように反
射波を捉える方法以外に、被測定体1の両側に発
信器と受信器を設ける所謂透過法で行つてもよ
い。 〔実施例〕 球状黒鉛鋳鉄製のキヤスク(330×500×360mm)
について本発明法により破壊靭性を測定(測定箇
所:中央部)した。また同一の対象から試験片を
採取し、疲労試験機によつて破壊靭性値を測定し
た。それらの結果を第1表に示す。
[Industrial Application Field] The present invention relates to a method for measuring the fracture toughness of spheroidal graphite cast iron by a non-destructive method. [Prior art and its problems] Conventionally, the fracture toughness value of metal materials has been measured by cutting out a part of the material, processing it into a compact tensile test piece, and breaking this using a fatigue testing machine. . In the conventional fracture toughness measurement method, such a fracture test is the only method, and therefore, the measured value is only considered to be a representative value for the metal material concerned. Incidentally, spheroidal graphite cast iron is used as nuclear power related components (for example, casks, etc.), and in such cases, it is necessary to strictly check the fracture toughness of the product. However, in the past, the fracture toughness had to be measured by the above-mentioned fracture test, which had the disadvantage that it could not be checked sufficiently. Regarding spheroidal graphite cast iron, there are methods to measure the graphite nodularity rate using an attenuation method using ultrasonic waves, a sonic method, etc., but it may not be possible to measure it depending on the shape of the product. Although graphite nodularity is considered to have a certain correlation with the fracture toughness value, it is practically difficult to measure the fracture toughness value by such a measurement method. In other words, when trying to measure the fracture toughness value using a non-destructive method, it is thought that the value is influenced not only by the graphite particle size but also by various factors such as the distance between graphite particles. Looking at particle size alone is meaningless. [Means for Solving the Problem] In view of these conventional problems, the present inventors investigated a method for measuring the fracture toughness of spheroidal graphite cast iron using a non-destructive method. As a result, there is a very high correlation between the upper limit of the frequency of ultrasonic waves transmitted through cast iron and the fracture toughness value of cast iron, and it is possible to determine the relative value of the fracture toughness value by measuring the upper limit value. I found it. The present invention was made based on such knowledge, and its characteristics are that broadband ultrasonic waves are incident on the spheroidal graphite cast iron that is the object to be measured, and the upper end value of the frequency of the transmitted ultrasonic waves is measured. However, the fracture toughness value of the object to be measured is determined from the upper end value of the frequency. The principle and specific measuring method of the present invention will be described below. As described above, the fracture toughness value of spheroidal graphite cast iron is influenced by factors such as the graphite particle size and the distance between graphite particles.
As shown in FIGS. 1a and 1a, when broadband ultrasonic waves X are incident from the ultrasonic probe 2 into the spheroidal graphite cast iron that is the object to be measured 1, some of the ultrasonic waves are scattered by the graphite 3. Such scattering of incident waves occurs first at high frequencies and gradually moves to lower frequencies. In this case, as shown in Figure 1a, if the graphite particle size is small and the distance between graphites is large, only the high frequency band will be scattered and attenuated; The smaller the distance between graphites,
Attenuates down to low frequency bands. Therefore, in the cases of Fig. 1 a and a, the upper end values of the frequencies of the ultrasonic waves transmitted (including reflection) through the spheroidal graphite cast iron are Fig. 1 b and a, respectively.
It will look like b. And in this way, the graphite particle size,
By measuring the upper end of the frequency of the transmitted wave, which is affected by the distance between graphite, it is possible to determine the fracture toughness value, which is correlated with the graphite particle size and the distance between graphite, as a relative value. Figure 2 shows the relationship between the upper frequency value of ultrasonic waves transmitted through spheroidal graphite cast iron and its fracture toughness value (actually measured value from a fracture test of a specimen). It can be seen that there is a clear correlation between the two. Note that the fracture toughness value from the upper frequency limit value is determined as a relative value, and a regular fracture toughness value can be obtained using an appropriate calibration curve. Furthermore, the wider the frequency band of the ultrasonic waves that should be incident on the cast iron, the more clearly the difference in attenuation depending on the frequency will appear, allowing for more accurate measurements.
Although the range of the band is not particularly limited, it is preferable to secure a range of at least 0.7 to 7 MHz from the viewpoint of measurement accuracy. Usually 0.5~10M
Ultrasonic waves having a frequency band of approximately Hz are incident. FIG. 3 shows a state of implementation of the present invention, in which an ultrasonic pulse is introduced into the object to be measured 1 from the probe 2, and its reflected echo is detected. From the detected echoes, only the first bottom echo is extracted by the gate device 4 as shown in FIG. 4A, and then passed through the spectrum analyzer 5, and the upper end of the frequency is extracted as shown in FIG. 4B. A value is required. Note that, in addition to the method of capturing reflected waves as shown in FIG. 3, the measurement of transmitted waves may be performed by a so-called transmission method in which a transmitter and a receiver are provided on both sides of the object to be measured 1. [Example] Spheroidal graphite cast iron cask (330 x 500 x 360 mm)
The fracture toughness was measured using the method of the present invention (measurement location: central part). In addition, a test piece was taken from the same object, and the fracture toughness value was measured using a fatigue testing machine. The results are shown in Table 1.

〔発明の効果〕〔Effect of the invention〕

以上述べた本発明によれば、非破壊的手法によ
り球状黒鉛鋳鉄の破壊靭性を精度良く測定するこ
とがてき、これにより、個々の製品の破壊靭性を
厳重にチエツクすることができる。また本発明に
よれば、製品の任意の箇所でその部分の破壊靭性
を簡単に測定することができる。
According to the present invention described above, the fracture toughness of spheroidal graphite cast iron can be measured with high precision using a non-destructive method, and thereby the fracture toughness of each product can be strictly checked. Further, according to the present invention, it is possible to easily measure the fracture toughness of any part of a product.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図a,b及びa,bは本発明の測
定原理を示すもので、このうちa,aは材料
内における超音波の散乱状態を示す説明図、また
b,bはそれぞれa,aに対応した透過
波の周波数上端値を示すものである。第2図は材
料内の透過波の周波数上端値と破壊靭性との関係
を示すものである。第3図は本発明に供される測
定装置及びこれによる測定状況を示す説明図であ
る。第4図A,Bは本発明を実施した際の超音波
のオシロスコープ波形とスペクトルアナライザ表
示を示すものである。 図において、1は被測定体、2は探触子、5は
スペクトルアナライザである。
Figure 1 a, b and a, b show the measurement principle of the present invention, of which a, a is an explanatory diagram showing the state of scattering of ultrasonic waves within the material, and b, b are respectively a and a. This indicates the upper limit value of the frequency of the corresponding transmitted wave. FIG. 2 shows the relationship between the upper frequency limit of transmitted waves in a material and fracture toughness. FIG. 3 is an explanatory diagram showing a measuring device used in the present invention and a measurement situation using the measuring device. FIGS. 4A and 4B show the ultrasonic oscilloscope waveform and spectrum analyzer display when the present invention is implemented. In the figure, 1 is an object to be measured, 2 is a probe, and 5 is a spectrum analyzer.

Claims (1)

【特許請求の範囲】[Claims] 1 被測定体たる球状黒鉛鋳鉄中に広帯域の超音
波を入射して、透過した超音波の周波数上端値を
測定し、該周波数上端値から被測定体の破壊靭性
値を求めることを特徴とする球状黒鉛鋳鉄の強度
測定方法。
1. The method is characterized by injecting broadband ultrasonic waves into spheroidal graphite cast iron as the object to be measured, measuring the upper end of the frequency of the transmitted ultrasonic waves, and determining the fracture toughness value of the object to be measured from the upper end of the frequency. Method for measuring the strength of spheroidal graphite cast iron.
JP62330975A 1987-12-26 1987-12-26 Method for measuring strength of spheroidal graphite cast iron Granted JPH01170849A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62330975A JPH01170849A (en) 1987-12-26 1987-12-26 Method for measuring strength of spheroidal graphite cast iron

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62330975A JPH01170849A (en) 1987-12-26 1987-12-26 Method for measuring strength of spheroidal graphite cast iron

Publications (2)

Publication Number Publication Date
JPH01170849A JPH01170849A (en) 1989-07-05
JPH0444217B2 true JPH0444217B2 (en) 1992-07-21

Family

ID=18238439

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62330975A Granted JPH01170849A (en) 1987-12-26 1987-12-26 Method for measuring strength of spheroidal graphite cast iron

Country Status (1)

Country Link
JP (1) JPH01170849A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017015601A1 (en) * 2015-07-22 2017-01-26 Fluor Technologies Corporation Nondestructive determination of toughness of metal, plastic, and composite materials
CN106483198B (en) * 2015-10-21 2019-03-19 中南大学 A kind of metal grain size ultrasonic attenuation evaluation method rejecting curved surface and extending influence

Also Published As

Publication number Publication date
JPH01170849A (en) 1989-07-05

Similar Documents

Publication Publication Date Title
US11366082B2 (en) Non-linear Lamb wave mixing method for measuring stress distribution in thin metal plates
Achenbach et al. Self-calibrating ultrasonic technique for crack depth measurement
US4299128A (en) Ultrasonic satellite-pulse technique for characterizing defects of arbitrary shape
CA2159568C (en) Emat measurement of ductile cast iron nodularity
Klinman et al. Ultrasonic prediction of grain size, strength, and toughness in plain carbon steel
Xu et al. Quantification of guided mode propagation in fractured long bones
Kırlangıç et al. Assessment of Concrete Beams with Irregular Defects Using Surface Waves.
Saka et al. A new approach to detect and size closed cracks by ultrasonics
JP2855800B2 (en) Fatigue damage measurement method
JPH0444217B2 (en)
US6378375B1 (en) Method for non-destructive detection for foreign matter in medium using waveform of ultrasonic wave
JPH04323553A (en) Method and device for ultrasonic resonance flaw detection
JP3140244B2 (en) Grain size measurement method
JPS61184458A (en) Measuring device for depth of crack of surface
Kumar et al. Evaluation of ultrasonic attenuation without invoking the diffraction correction separately
ES2147141A1 (en) Ultrasonic grading of cheeses determining moisture content and texture of sample to ascertain maturity homogeneity of the cheese
Chaloner et al. Investigation of the 1-D inverse Born technique
Goebbels et al. INHOMOGENEITIES IN STEEL BY ULTRASONIC BACKSCATTERING MEASUREMENTS
Ni et al. HHT-based CEEMD to improve an impact echo test
JPH08160020A (en) Ultrasonic creep damage evaluating apparatus
GB2054146A (en) Ultrasonic Testing
JPH0212609Y2 (en)
JPH06242086A (en) Ultrasonic inspection system
Fitting et al. Bulk and surface wave scattering from surface breaking cracks
Kachanov et al. Ultrasonic testing of complexly structured cast-iron articles using a multifunctional software-hardware measuring system