JP2961833B2 - Grain size measurement method - Google Patents
Grain size measurement methodInfo
- Publication number
- JP2961833B2 JP2961833B2 JP2213993A JP21399390A JP2961833B2 JP 2961833 B2 JP2961833 B2 JP 2961833B2 JP 2213993 A JP2213993 A JP 2213993A JP 21399390 A JP21399390 A JP 21399390A JP 2961833 B2 JP2961833 B2 JP 2961833B2
- Authority
- JP
- Japan
- Prior art keywords
- frequency
- crystal grain
- grain size
- distribution area
- frequency distribution
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N29/00—Investigating or analysing materials by the use of ultrasonic, sonic or infrasonic waves; Visualisation of the interior of objects by transmitting ultrasonic or sonic waves through the object
- G01N29/04—Analysing solids
- G01N29/12—Analysing solids by measuring frequency or resonance of acoustic waves
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/02—Indexing codes associated with the analysed material
- G01N2291/028—Material parameters
- G01N2291/0289—Internal structure, e.g. defects, grain size, texture
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01N—INVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
- G01N2291/00—Indexing codes associated with group G01N29/00
- G01N2291/04—Wave modes and trajectories
- G01N2291/044—Internal reflections (echoes), e.g. on walls or defects
Landscapes
- Physics & Mathematics (AREA)
- Acoustics & Sound (AREA)
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- General Physics & Mathematics (AREA)
- Immunology (AREA)
- Pathology (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
Description
【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、被測定物の結晶粒度を、超音波を用いて、
非破壊の状態で測定する結晶粒度測定方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention uses an ultrasonic wave to determine the crystal grain size of an object to be measured.
The present invention relates to a method for measuring the grain size in a non-destructive state.
一般に、鋼材等の結晶粒度の測定は、例えば、JIS−
G−0551に示されるように、鋼の断面を研磨仕上げして
腐食させ試験片を作成し、腐食面に現れた結晶粒を顕微
鏡で観察し、標準図と比較すること、あるいは、所定面
積内の結晶数を測定することにより行なわれている。In general, the measurement of the grain size of steel materials, for example,
As shown in G-0551, a steel cross section is polished and polished to corrode to prepare a test piece, and the crystal grains appearing on the corroded surface are observed with a microscope and compared with a standard diagram, or within a predetermined area. The number of crystals is measured.
しかしながら、このような従来の方法では、鋼の断面
を研磨仕上げして腐食させ試験片を作成する必要がある
ため、試験片の作成に多大な時間がかかり、また、非破
壊の状態で測定することが困難であるという問題があっ
た。However, in such a conventional method, since it is necessary to prepare a test piece by polishing and corroding a steel cross section, it takes a lot of time to prepare the test piece, and measurement is performed in a non-destructive state. There was a problem that it was difficult.
本発明者等はかかる従来の問題を解決するために、被
測定物の結晶粒度を、超音波を用いて、非破壊の状態で
測定する方法を鋭意研究した結果、連続的に周波数変化
する超音波が被測定物内を伝播する際に、被測定物の結
晶粒界で散乱反射し、途中から戻ってくる後方散乱ノイ
ズを周波数分析し、周波数と後方散乱ノイズ強度との関
係を求め、後方散乱ノイズ強度を周波数に対して積分す
ることにより得られた周波数分布面積が、第6図に示す
ように、結晶粒度が比較的小さい時には、小さく、一
方、第7図に示すように、結晶粒度が比較的大きい時に
は、大きくなり、さらに、この周波数分布面積と結晶粒
度との間には、第8図の直線Aに示すように、比例関係
があることを見出した。The present inventors have studied the method of measuring the crystal grain size of an object to be measured in a non-destructive state using ultrasonic waves in order to solve such a conventional problem. When the sound wave propagates through the object to be measured, it is scattered and reflected at the crystal grain boundary of the object to be measured, and the frequency of the backscattered noise that returns from the middle is analyzed to determine the relationship between the frequency and the intensity of the backscattered noise. The frequency distribution area obtained by integrating the scattering noise intensity with respect to the frequency is small when the crystal grain size is relatively small as shown in FIG. 6, while the crystal grain size is small as shown in FIG. Is relatively large, and it has been found that there is a proportional relationship between the frequency distribution area and the crystal grain size as shown by the straight line A in FIG.
すなわち、第8図において、横軸には、例えば、JIS
−G−0551に示される結晶粒度番号がとられており、番
号が大きい程結晶粒の大きさが小さく、番号が小さい程
結晶粒の大きさが大きくなっている。That is, in FIG. 8, the horizontal axis indicates, for example, JIS
The crystal grain number shown in -G-0551 is taken. The larger the number, the smaller the size of the crystal grain, and the smaller the number, the larger the size of the crystal grain.
また、縦軸には、上述した周波数分布面積値がとられ
ている。The vertical axis indicates the frequency distribution area value described above.
従って、予め、第8図に示したようなグラフを作成し
ておくことにより、周波数分布面積値がわかれば、この
グラフから、結晶粒度を容易に求めることが可能にな
る。Accordingly, by preparing a graph as shown in FIG. 8 in advance, if the frequency distribution area value is known, the crystal grain size can be easily obtained from this graph.
本発明は、かかる知見に基づいてなされたもので、被
測定物の結晶粒度を、超音波を用いて、非破壊の状態で
容易に測定することのできる結晶粒度測定方法を提供す
ることを目的とする。The present invention has been made based on such knowledge, and it is an object of the present invention to provide a crystal grain size measuring method capable of easily measuring the crystal grain size of an object to be measured in a non-destructive state using ultrasonic waves. And
本発明にかかる結晶粒度測定方法は、被測定物に、連
続的に周波数変化する超音波を発信するとともに、この
超音波が被測定物内を伝播する際に、被測定物の結晶粒
界で散乱反射して、途中から戻ってくる後方散乱ノイズ
を受信し、この後方散乱ノイズを周波数分析することに
より周波数と後方散乱ノイズ強度との関係を求め、後方
散乱ノイズ強度を周波数に対して積分することにより、
周波数分布面積を求め、この周波数分布面積の値を、予
め作成された結晶粒度と周波数分布面積との関係に照ら
し合わせて結晶粒度を求めるものである。The crystal grain size measuring method according to the present invention transmits an ultrasonic wave having a continuously changing frequency to an object to be measured, and when the ultrasonic wave propagates through the object to be measured, a crystal grain boundary of the object to be measured is generated. The scattered reflection is received and the backscattered noise returning from the middle is received. The frequency of the backscattered noise is analyzed to obtain a relationship between the frequency and the backscattered noise intensity, and the backscattered noise intensity is integrated with respect to the frequency. By doing
The frequency distribution area is determined, and the value of the frequency distribution area is compared with the relationship between the crystal grain size and the frequency distribution area created in advance to determine the crystal grain size.
本発明の結晶粒度測定方法では、先ず、被測定物の周
波数分布面積の値が求められ、この周波数分布面積の値
を、予め作成された結晶粒度と周波数分布面積との関係
に照らし合わせることにより、結晶粒度が求められる。In the crystal grain size measuring method of the present invention, first, the value of the frequency distribution area of the measured object is obtained, and the value of the frequency distribution area is compared with the relationship between the crystal grain size and the frequency distribution area created in advance. , Crystal grain size is required.
以下、本発明方法の実施例を図面を用いて詳細に説明
する。Hereinafter, embodiments of the method of the present invention will be described in detail with reference to the drawings.
本発明の結晶粒度測定方法では、先ず、第1図に示す
ように、金属からなる被測定物11に、超音波探触子13が
載置され、超音波送受信器15により、超音波探触子13か
ら、連続的に周波数変化する超音波が発信される。In the crystal grain size measuring method of the present invention, first, as shown in FIG. 1, an ultrasonic probe 13 is placed on an object to be measured 11 made of metal, and an ultrasonic An ultrasonic wave whose frequency continuously changes is transmitted from the child 13.
なお、この実施例では、被測定物11には、クロムモリ
ブデン鋼(2.25Cr−1Mo)が使用され、また、超音波
は、0.5MHz〜20MHzの間で連続的に周波数変化される。In this embodiment, chromium molybdenum steel (2.25Cr-1Mo) is used for the DUT 11, and the frequency of the ultrasonic wave is continuously changed between 0.5 MHz and 20 MHz.
そして、この超音波が被測定物11内を伝播する際に、
被測定物11の結晶粒界17で散乱反射し、途中から戻って
くる後方散乱ノイズ19が超音波探触子13により受信さ
れ、超音波送受信器15を介して、例えば、ステップレス
ゲート回路21に取り込まれる。Then, when this ultrasonic wave propagates inside the DUT 11,
The backscattered noise 19 scattered and reflected at the crystal grain boundary 17 of the device under test 11 and returned from the middle is received by the ultrasonic probe 13 and, via the ultrasonic transceiver 15, for example, a stepless gate circuit 21. It is taken in.
このステップレスゲート回路21に取り込まれた後方散
乱ノイズの、時間と、強度との関係は、例えば、第2図
に示すようになる。なお、図において、四角で囲った部
分は、ノイズ分析がされる領域を示しており、符号25,2
6は、被測定物11の底面で反射した超音波27の強度を示
している。The relationship between the time and the intensity of the backscattered noise taken into the stepless gate circuit 21 is, for example, as shown in FIG. Note that, in the figure, a portion surrounded by a square indicates a region where noise analysis is performed, and reference numerals 25 and 2 indicate the region.
6 indicates the intensity of the ultrasonic wave 27 reflected on the bottom surface of the device under test 11.
この後、第2図に示した、後方散乱ノイズが、周波数
分析器29により、周波数分析され、第3図に示すよう
に、周波数と後方散乱ノイズ強度との関係が求められ
る。Thereafter, the backscattered noise shown in FIG. 2 is frequency-analyzed by the frequency analyzer 29, and the relationship between the frequency and the backscattered noise intensity is obtained as shown in FIG.
なお、第3図において、横軸には、周波数が、縦軸に
は、後方散乱ノイズ強度がとられている。In FIG. 3, the horizontal axis represents the frequency, and the vertical axis represents the backscattering noise intensity.
この後、例えば、パーソナルコンピューター31によ
り、第3図の後方散乱ノイズ強度が周波数に対して積分
され、第3図の斜線の部分の面積、すなわち、周波数分
布面積Sが求められる。Thereafter, for example, the personal computer 31 integrates the intensity of the backscattered noise in FIG. 3 with respect to the frequency to obtain the area of the hatched portion in FIG. 3, that is, the frequency distribution area S.
そして、この後、この周波数分布面積Sの値が、予め
作成された、結晶粒度と周波数分布面積との関係に照ら
し合わせられ、結晶粒度が求められる。Then, after that, the value of the frequency distribution area S is compared with a previously created relationship between the crystal grain size and the frequency distribution area to determine the crystal grain size.
すなわち、上述した周波数分布面積Sの値が、例え
ば、175の時には、第4図において、縦軸の175の点をと
り、これを横軸に平行に延長し、マスター直線Aと交わ
ったところで、この点を縦軸に平行に延長し、横軸との
交点となる位置の値5.5が結晶粒度の値として求められ
る。That is, when the value of the frequency distribution area S described above is, for example, 175, the point of 175 on the vertical axis in FIG. 4 is taken, extended in parallel with the horizontal axis, and intersected with the master straight line A. This point is extended parallel to the vertical axis, and the value 5.5 at the position of intersection with the horizontal axis is determined as the value of the crystal grain size.
なお、第4図において、横軸には、結晶粒度番号が、
縦軸には、周波数分布面積値がとられている。In FIG. 4, the horizontal axis represents the crystal grain size number,
The vertical axis indicates the frequency distribution area value.
また、マスター直線Aは、被測定物11と同一の材料お
より形状からなり、予め結晶粒度がわかっている結晶粒
度の異なる複数の部材を、上述した方法により超音波測
定し、周波数分布面積Sを求めることにより、予め作成
されたもので、図の○で示す測定点を、近似直線で結ぶ
ことにより、得られたものである。The master straight line A is made of the same material and the same shape as the object 11 to be measured, and a plurality of members having different crystal grain sizes whose crystal grain sizes are known in advance are ultrasonically measured by the above-described method, and the frequency distribution area S Is obtained in advance, and is obtained by connecting the measurement points indicated by the circles in the figure with an approximate straight line.
しかして、本発明の結晶粒度測定方法では、被測定物
11に、連続的に周波数変化する超音波を発信するととも
に、この超音波が被測定物11内を伝播する際に、被測定
物11の結晶粒界17で散乱反射し、途中から戻ってくる後
方散乱ノイズ19を受信し、この後方散乱ノイズ19を周波
数分析することにより周波数と後方散乱ノイズ強度との
関係を求め、後方散乱ノイズ強度を周波数に対して積分
することにより、周波数分布面積Sを求め、この周波数
分布面積Sの値を、予め作成された結晶粒度と周波数分
布面積との関係に照らし合わせて結晶粒度を求めるよう
にしたので、被測定物11の結晶粒度を、超音波を用い
て、非破壊の状態で容易に測定することが可能となる。In the method for measuring the grain size of the present invention,
11, an ultrasonic wave whose frequency continuously changes is transmitted, and when the ultrasonic wave propagates through the object 11, the ultrasonic wave is scattered and reflected at a crystal grain boundary 17 of the object 11 and returns from the middle. The frequency distribution area S is obtained by receiving the backscattering noise 19, analyzing the frequency of the backscattering noise 19 to determine the relationship between the frequency and the backscattering noise intensity, and integrating the backscattering noise intensity with respect to the frequency. The value of the frequency distribution area S is obtained, and the crystal grain size is determined by comparing the relationship between the crystal grain size and the frequency distribution area created in advance. Thus, measurement can be easily performed in a non-destructive state.
従って、従来のように、鋼の断面を研磨仕上げして腐
食させ試験片を作成する必要がなくなり、測定を簡易,
迅速に行なうことができ、また、非破壊の状態で測定で
きるため、被測定物11が測定により損傷することもなく
なる。Therefore, unlike the conventional method, there is no need to prepare a test piece by polishing and corroding a steel cross section.
Since the measurement can be performed quickly and the measurement can be performed in a non-destructive state, the measured object 11 is not damaged by the measurement.
なお、以上述べた実施例では、超音波探触子13から、
0.5MHz〜20MHzの間で連続的に周波数変化する超音波を
発信し、この発信により生ずる後方散乱ノイズ19を受信
し、この後方散乱ノイズを周波数分析することにより周
波数と後方散乱ノイズ強度との関係を求め、この周波数
と後方散乱ノイズ強度とを全周波嵩域にわたって積分す
ることにより、周波数分布面積Sを求めた例について述
べたが、本発明は、かかる実施例に限定されるものでは
なく、例えば、その被測定物によって決まる所定の周波
数範囲を積分することにより、周波数分布面積を求める
ようにしても良い。In the embodiment described above, from the ultrasonic probe 13,
Transmits an ultrasonic wave whose frequency continuously changes between 0.5 MHz and 20 MHz, receives the backscattered noise 19 generated by this transmission, and analyzes the frequency of the backscattered noise to determine the relationship between the frequency and the backscattered noise intensity. Was obtained, and the frequency and the backscattering noise intensity were integrated over the entire frequency bulk area, to describe the example in which the frequency distribution area S was obtained.However, the present invention is not limited to such an example. For example, the frequency distribution area may be obtained by integrating a predetermined frequency range determined by the device under test.
すなわち、第5図は、所定の周波数範囲を積分するこ
とにより求められた上述したクロムモリブデン鋼の周波
数分布面積と結晶粒度との関係を示すもので、横軸に
は、結晶粒度が、縦軸には、周波数分布面積値がとられ
ている。That is, FIG. 5 shows the relationship between the frequency distribution area and the crystal grain size of the chromium molybdenum steel obtained by integrating a predetermined frequency range, in which the horizontal axis represents the crystal grain size and the vertical axis represents the crystal grain size. Indicates a frequency distribution area value.
図において、符号41は、1〜3MHzの周波数範囲を積分
して求められた結晶粒度と周波数分布面積値の関係を、
符号43は、3〜5MHzの周波数範囲を積分して求められた
結晶粒度と周波数分布面積値との関係を示しており、同
様に、符号45,47,49,51,53,55は、それぞれ5〜8MHz,8
〜10MHz,10〜13MHz,13〜16MHz,16〜18MHz,18〜21MHzの
周波数範囲を積分して求められた結晶粒度と周波数分布
面積値との関係を示している。In the figure, reference numeral 41 indicates the relationship between the crystal grain size and the frequency distribution area value obtained by integrating the frequency range of 1 to 3 MHz,
Reference numeral 43 indicates the relationship between the crystal grain size and the frequency distribution area value obtained by integrating the frequency range of 3 to 5 MHz, and similarly, reference numerals 45, 47, 49, 51, 53, and 55 respectively indicate 5-8MHz, 8
It shows the relationship between the crystal grain size and the frequency distribution area value obtained by integrating the frequency ranges of 10 MHz, 101013 MHz, 13〜16 MHz, 16〜18 MHz, and 18〜21 MHz.
この図から明らかなように、上述したクロムモリブデ
ン鋼では、8〜10MHzの周波数範囲を積分して求められ
た周波数分布面積値が結晶粒度に対して比較的高い比例
関係にあり、この周波数範囲を積分することによって、
結晶粒度を求めることができる。As is apparent from this figure, in the chromium-molybdenum steel described above, the frequency distribution area value obtained by integrating the frequency range of 8 to 10 MHz has a relatively high proportional relationship with the crystal grain size. By integrating,
The crystal grain size can be determined.
なお、他と比べ特に大きなノイズが有った場合は、傷
か介在物によるものと思われるので、これは除去する方
が良い。It should be noted that if there is a particularly large noise as compared with the others, it is considered that the noise is caused by a flaw or an inclusion, and it is better to remove it.
また、以上述べた実施例では、マスター直線Aから結
晶粒度を求めた例について述べたが、本発明は、かかる
実施例に限定されるものではなく、例えば、結晶粒度と
周波数分布面積値との関係を表にしたものから求めても
良く、さらに、これ等の関係をコンピューターに記憶さ
せ、コンピューターに周波数分布面積値を入力すること
により、自動的に求めるようにしても良い。Further, in the above-described embodiment, an example in which the crystal grain size is obtained from the master straight line A has been described. However, the present invention is not limited to this embodiment. The relations may be obtained from a tabulated form, or these relations may be stored in a computer and automatically obtained by inputting a frequency distribution area value to the computer.
以上述べたように、本発明の結晶粒度測定方法では、
被測定物に、連続的に周波数変化する超音波を発信する
とともに、この超音波が被測定物内を伝播する際に、被
測定物の結晶粒界で散乱反射して、途中から戻ってくる
後方散乱ノイズを受信し、この後方散乱ノイズを周波数
分析することにより周波数と後方散乱ノイズ強度との関
係を求め、後方散乱ノイズ強度を周波数に対して積分す
ることにより、周波数分布面積を求め、この周波数分布
面積の値を、予め作成された結晶粒度と周波数分布面積
との関係に照らし合わせて結晶粒度を求めるようにした
ので、被測定物の結晶粒度を、超音波を用いて、非破壊
の状態で容易に測定することができるという利点があ
る。As described above, in the crystal grain size measuring method of the present invention,
An ultrasonic wave whose frequency continuously changes is transmitted to the object to be measured, and when the ultrasonic wave propagates through the object to be measured, the ultrasonic wave is scattered and reflected at a crystal grain boundary of the object to be measured and returns from the middle. The backscattering noise is received, the frequency of the backscattering noise is determined by analyzing the frequency of the backscattering noise, and the frequency distribution area is determined by integrating the backscattering noise intensity with respect to the frequency. Since the value of the frequency distribution area was determined by comparing the value of the frequency distribution area with the relationship between the previously prepared crystal grain size and the frequency distribution area, the crystal grain size of the object to be measured was measured using a non-destructive method using ultrasonic waves. There is an advantage that measurement can be easily performed in a state.
第1図は本発明方法の一実施例において被測定物に超音
波探触子を載置し超音波を発信した状態を示す説明図で
ある。 第2図は後方散乱ノイズの、時間と、強度との関係を示
す説明図である。 第3図は周波数分析された周波数と後方散乱ノイズ強度
との関係を示す説明図である。 第4図はマスター直線を用いて周波数分布面積値から結
晶粒度を求める方法を示す説明図である。 第5図は積分範囲と周波数分布面積値との関係を示すグ
ラフである。 第6図は結晶粒度が比較的小さい時の周波数分布面積値
を示す説明図である。 第7図は結晶粒度が比較的大きい時の周波数分布面積値
を示す説明図である。 第8図は結晶粒度と周波数分布面積値との関係を示すグ
ラフである。 〔主要な部分の符号の説明〕 11……被測定物 17……結晶粒界 19……後方散乱ノイズ。FIG. 1 is an explanatory view showing a state in which an ultrasonic probe is mounted on an object to be measured and an ultrasonic wave is transmitted in one embodiment of the method of the present invention. FIG. 2 is an explanatory diagram showing the relationship between time and intensity of backscattered noise. FIG. 3 is an explanatory diagram showing the relationship between the frequency subjected to frequency analysis and the backscattering noise intensity. FIG. 4 is an explanatory diagram showing a method for obtaining a crystal grain size from a frequency distribution area value using a master straight line. FIG. 5 is a graph showing the relationship between the integration range and the frequency distribution area value. FIG. 6 is an explanatory diagram showing frequency distribution area values when the crystal grain size is relatively small. FIG. 7 is an explanatory diagram showing the frequency distribution area value when the crystal grain size is relatively large. FIG. 8 is a graph showing the relationship between the crystal grain size and the frequency distribution area value. [Explanation of Signs of Main Parts] 11: DUT 17: Grain boundary 19: Backscatter noise.
Claims (1)
波を発信するとともに、この超音波が被測定物内を伝播
する際に、被測定物の結晶粒界で散乱反射して、途中か
ら戻ってくる後方散乱ノイズを受信し、この後方散乱ノ
イズを周波数分析することにより周波数と後方散乱ノイ
ズ強度との関係を求め、後方散乱ノイズ強度を周波数に
対して積分することにより、周波数分布面積を求め、こ
の周波数分布面積の値を、予め作成された結晶粒度と周
波数分布面積との関係に照らし合わせて結晶粒度を求め
ることを特徴とする結晶粒度測定方法。An ultrasonic wave whose frequency continuously changes is transmitted to an object to be measured, and when the ultrasonic wave propagates through the object to be measured, the ultrasonic wave is scattered and reflected at a crystal grain boundary of the object to be measured. The frequency distribution is obtained by receiving the backscattered noise returning from the middle, analyzing the frequency of the backscattered noise to find the relationship between the frequency and the backscattered noise intensity, and integrating the backscattered noise intensity with respect to the frequency. A method for measuring crystal grain size, comprising determining an area, and comparing a value of the frequency distribution area with a relationship between a crystal grain and a frequency distribution area prepared in advance to determine a crystal grain size.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2213993A JP2961833B2 (en) | 1990-08-13 | 1990-08-13 | Grain size measurement method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2213993A JP2961833B2 (en) | 1990-08-13 | 1990-08-13 | Grain size measurement method |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH0495870A JPH0495870A (en) | 1992-03-27 |
JP2961833B2 true JP2961833B2 (en) | 1999-10-12 |
Family
ID=16648484
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2213993A Expired - Fee Related JP2961833B2 (en) | 1990-08-13 | 1990-08-13 | Grain size measurement method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2961833B2 (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007110900A1 (en) * | 2006-03-24 | 2007-10-04 | Ihi Corporation | Defect inspecting device, and defect inspecting method |
JP2012159466A (en) * | 2011-02-02 | 2012-08-23 | Jfe Steel Corp | Metallographic structure measuring method and metallographic structure measuring device |
CN107941907A (en) * | 2017-10-31 | 2018-04-20 | 武汉大学 | A kind of method of the average grain size based on effective ultrasonic backscattered signal extraction polycrystalline material |
Families Citing this family (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR100448599B1 (en) * | 2000-12-23 | 2004-09-13 | 주식회사 포스코 | Nondestructive Method for Measurement of the Effective Grain size in Lath Martensitic Steel |
JP4524494B2 (en) * | 2005-04-11 | 2010-08-18 | 国立大学法人福井大学 | Crystal structure inspection support device and support method for metal material |
JP4679319B2 (en) * | 2005-09-22 | 2011-04-27 | 非破壊検査株式会社 | Method and apparatus for detecting tissue change by ultrasound |
JP5974650B2 (en) * | 2012-06-09 | 2016-08-23 | 大同特殊鋼株式会社 | Grain anisotropy judgment method |
CN104251888A (en) * | 2013-06-28 | 2014-12-31 | 硕德(北京)科技有限公司 | Grain characteristic-based improved split spectrum optimization realization method in cast iron ultrasonic flaw detection |
CN105738257B (en) * | 2014-12-12 | 2019-06-18 | 通用电气公司 | Measurement method and system |
JP6990046B2 (en) * | 2017-05-31 | 2022-01-12 | 三菱重工業株式会社 | Detection method and detection device for internal defects of inspection objects |
JP7196581B2 (en) * | 2018-12-10 | 2022-12-27 | 大同特殊鋼株式会社 | Structure inspection method of material to be inspected |
JP6775233B2 (en) * | 2019-06-04 | 2020-10-28 | 原子燃料工業株式会社 | Material diagnostic method |
-
1990
- 1990-08-13 JP JP2213993A patent/JP2961833B2/en not_active Expired - Fee Related
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2007110900A1 (en) * | 2006-03-24 | 2007-10-04 | Ihi Corporation | Defect inspecting device, and defect inspecting method |
US8175820B2 (en) | 2006-03-24 | 2012-05-08 | Ihi Corporation | Defect inspection apparatus and defect inspection method |
JP2012159466A (en) * | 2011-02-02 | 2012-08-23 | Jfe Steel Corp | Metallographic structure measuring method and metallographic structure measuring device |
CN107941907A (en) * | 2017-10-31 | 2018-04-20 | 武汉大学 | A kind of method of the average grain size based on effective ultrasonic backscattered signal extraction polycrystalline material |
Also Published As
Publication number | Publication date |
---|---|
JPH0495870A (en) | 1992-03-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2961833B2 (en) | Grain size measurement method | |
US8826740B2 (en) | Methods and apparatus for porosity measurement and defect detection | |
US7713201B2 (en) | Method and apparatus for shear property characterization from resonance induced by oscillatory radiation force | |
US6532821B2 (en) | Apparatus and method for evaluating the physical properties of a sample using ultrasonics | |
Shakibi et al. | Resolution enhancement of ultrasonic defect signals for crack sizing | |
US20100121584A1 (en) | Method and apparatus for ultrasonic characterization of scale-dependent bulk material heterogeneities | |
US4441369A (en) | Ultrasonic detection of extended flaws | |
JPH07167842A (en) | Method and device for measuring and controlling angle of refraction of ultrasonic wave | |
Cho et al. | Foreign object and internal disorder detection in food materials using noncontact ultrasound imaging | |
JP3535417B2 (en) | Ultrasonic defect height measuring device and defect height measuring method | |
JP2004150875A (en) | Method and system for imaging internal flaw using ultrasonic waves | |
Panetta et al. | Use of electron backscatter diffraction in understanding texture and the mechanisms of backscattered noise generation in titanium alloys | |
JP5633404B2 (en) | Metal structure measurement method and metal structure measurement apparatus | |
Garcia-Alvarez et al. | Noise level analysis in buffer rod geometries for ultrasonic sensors | |
JP2002323481A (en) | Ultrasonic flaw detection method and device | |
EP4148425B1 (en) | System and method for testing of monocrystalline components | |
Osman et al. | Characterization of speckle noise in three dimensional ultrasound data of material components. | |
JP2001343366A (en) | Crystal grain measuring method and device for metal sheet | |
Ramuhalli et al. | In-situ Characterization of Cast Stainless Steel Microstructures | |
Hung | Development of Semi-Auto SAM with Optimal Data Processing by GPU Computing | |
JPH06300550A (en) | Layer thickness measurement method for layer structure material using ultrasonic wave | |
JP3388316B2 (en) | Ultrasonic inspection method | |
Lizzi et al. | Simulation studies of ultrasonic backscattering and B-mode images of liver using acoustic microscopy data | |
Kroening et al. | Heavy-loaded Components Quality Assurance by Means of Non-destructive Testing | |
Tittmann | Experimental measurements and interpretation of ultrasonic scattering by flaws |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070806 Year of fee payment: 8 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20070806 Year of fee payment: 8 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080806 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20080806 Year of fee payment: 9 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20090806 Year of fee payment: 10 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20100806 Year of fee payment: 11 |
|
LAPS | Cancellation because of no payment of annual fees |