JPH0117042B2 - - Google Patents

Info

Publication number
JPH0117042B2
JPH0117042B2 JP56006239A JP623981A JPH0117042B2 JP H0117042 B2 JPH0117042 B2 JP H0117042B2 JP 56006239 A JP56006239 A JP 56006239A JP 623981 A JP623981 A JP 623981A JP H0117042 B2 JPH0117042 B2 JP H0117042B2
Authority
JP
Japan
Prior art keywords
tube
double
steel
corrosion resistance
phase
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP56006239A
Other languages
Japanese (ja)
Other versions
JPS57120002A (en
Inventor
Hisao Fujikawa
Hirofumi Makiura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP623981A priority Critical patent/JPS57120002A/en
Publication of JPS57120002A publication Critical patent/JPS57120002A/en
Publication of JPH0117042B2 publication Critical patent/JPH0117042B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は耐高温腐食性、高温強度のすぐれたボ
イラー用二重鋼管に関するものである。 ボイラー用鋼管は570℃前後の水蒸気に接する
環境で使用され、この程度の高圧高温で使用され
得る材質としては18Cr−8Ni系オーステナイトス
テンレス鋼が知られているが、将来発電効率の向
上や燃料事情によりNa、K、V、Sなどの含有
量の多い燃料の使用など、現在よりも酷しい環境
での使用が予想され、現在使用されている18Cr
−8Ni系オーステナイトステンレス鋼のような材
質では腐食性の面で不十分であり、さらに高温強
度、耐高温腐食性のすぐれた材料が要求される。 従来、ボイラー用鋼管の高温腐食対策としては
高Cr化や高Cr−高Ni化がすぐれていることがよ
く知られているが、30%Cr以上の高Cr−高Ni合
金は、熱間加工性及び冷間加工性があまり良くな
いため鋳造品として使用されることが多く、ボイ
ラーチユーブのように薄肉、細径かつ長尺の管を
製造することが困難である。このほか、ボイラー
チユーブに対する肉盛溶接は製造が困難でコスト
が高くなり適用が難しく、又溶射は母材との密着
性が弱く、加工性が悪いなどの欠点を有してい
る。このため50Cr−50NiとNCF2TB(20Cr−
32Ni鋼)とを組合せた二重管をボイラーチユー
ブへ適用することが試みられているが、50Cr−
50Niはオーステナイト一相でなく、一部フエラ
イト相も生じて熱間加工性が低く高温耐食性も劣
り、又高NiのNCF2TBとの二重管のためコスト
も高くボイラーチユーブへの適用を考えると不利
となる点がある。 本発明は上記欠点を解消し、高温での強度と耐
食性とを兼ね備えたボイラー用鋼管を提供するこ
とを目的とするもので、その特徴とするところ
は、管を二重構造とし、腐食環境のさらされるい
ずれか一方の管を耐食性のよいCr30〜45%を含
有し、かつ式Cr−0.5Ni19.0%を満足するオー
ステナイトステンレス鋼管とし、他方を高温強度
にすぐれている25%以下のCrを含有するオース
テナイトステンレス鋼管とすること、さらに必要
に応じ高温使用中、Fe又はCrの拡散を防止し、
σ相の析出を防止するために内管と外管との間に
ニツケル層を設けたことである。こゝにおいて上
記のCr−0.5Ni19.0%なる条件式は第2図に示
した実験結果を基にして導いたCrとNiとの含有
量の関係を示した数式である。 管を二重構造としたのは、腐食環境をさらされ
る方の管に耐食性のよいCr30〜45%を含有し、
かつ式Cr−0.5Ni19.0%を満足するオーステナ
イトステンレス鋼管を使用して腐食を防止し、他
の管は高温強度にすぐれているCrを25%以下含
有するオーステナイトステンレス鋼管を使用して
高温での強度を持たせるためである。このように
二重構造管とすることにより耐食性と高温強度に
すぐれた管を得ることができる。従つて耐食のた
めに用いる管の肉厚は薄くするのがよい。 一方の管をCr30〜45%を含有し、かつ式Cr−
0.5Ni19.0%を満足するオーステナイトステン
レス鋼管としたのはCrが30%以上になると後述
の実験結果が示す如く耐食性が著しく向上し、ボ
イラー用鋼管として問題なく使用できるが、45%
を超えるとオーステナイト一相域を確保できなく
なり、熱間加工性を害し、なおかつ耐食性も劣化
するためであり、また上記の式を満足することに
より熱間加工性も良好となるためで、他の成分と
しては、オーステナイト一相の組織とするために
Niを主成分とし、Cr量は30〜45%、Ni量は36〜
60%程度で上記の式を満足するものである。又こ
のような範囲であればボイラーの使用時にσ相の
析出も起らない。耐食性を確保するためにCrを
30%以上含有せしめるが、Cr量が30%以上にな
れば加工性が若干劣るため、必要に応じTi、
Nb、Zrを単独又は複合して、それぞれ1%以下
となるように含有せしめるか又はMg、Ca、La
−Ce、Yを単独又は複合して合計で0.1%以下含
有せしめることにより加工性をよくすることがで
きる。即ちこれらの元素を添加して熱間加工性を
低下させる不純物のSやOを固定することによ
り、熱間加工性を向上する。Ti、Nb、Zrはフエ
ライト形成元素であり、これらを多くするとオー
ステナイトを安定にするためにNi量を高める必
要があり、これはコスト高となるために添加する
場合は1%以下でよい。又Mg、Ca、La−Ce、
Yはこれらが多くなると逆に熱間加工性が劣化す
るので添加する場合は0.1%以下とする必要があ
る。一方、他方の管を25%以下のCrを含有する
オーステナイト鋼管としたのは、Cr含有量が25
%以下では耐食性の点では劣るが、高温強度、加
工性の点においてはすぐれており、Cr量は15〜
25%、Ni量は8〜23%程度のオーステナイトス
テンレス鋼が二重管の基材として好適である。 次に二重管の内管と外管との間にニツケル層を
設けるのは、鋼中のFe、Crの拡散を防止してσ
相の析出を防止するためである。Cr含有鋼は長
時間、高温度にさらされるとFe、Crの拡散が生
じ約900℃以下の高温でσ相が生成し合金属が脆
くなり外管が剥離することが懸念される。この問
題を解決するためにニツケル層を設けるもので、
ニツケル層は二重管の素材となるビレツトの内管
となるビレツトの外周面を電気メツキするか又は
ニツケル箔を内管となるビレツトの外周面に巻き
付け、通常の製管法により製管することにより得
ることができ、ニツケル層の厚さは5〜40μ程度
でよい。 本発明の二重管を製造するには、クラツド、溶
射、肉盛溶接などの方法が適用できるが、複合鋼
塊を製造し、これを継目無鋼管の製造方式に基い
て押出、圧延、引抜などによつて製造するのが好
適である。 以上は種々実験検討の結果得られたもので、以
下にその実験内容について説明する。 高Cr−高Ni−合金鋼中のCr量の高温腐食性に
及ぼす影響について検討するために第1表に示す
如くCr量を種々変えた。 下記第1表に示す成分の30Kg鋼塊を大気中で溶
製し鍛造後、熱延、冷延し、厚さ14mmの厚板とし
た後厚板より15×15×3mmの高温腐食性試験片を
切出し下記条件で試験を行なつた。
The present invention relates to a double steel tube for boilers that has excellent high temperature corrosion resistance and high temperature strength. Steel pipes for boilers are used in environments where they come into contact with steam at temperatures around 570°C, and 18Cr-8Ni austenitic stainless steel is known as a material that can be used at such high pressures and temperatures. 18Cr, which is currently used, is expected to be used in harsher environments than the current one, such as the use of fuel with high content of Na, K, V, and S
Materials such as −8Ni-based austenitic stainless steel are insufficient in terms of corrosion resistance, and materials with excellent high-temperature strength and high-temperature corrosion resistance are required. Conventionally, it is well known that high Cr and high Cr-high Ni alloys are excellent measures against high-temperature corrosion of boiler steel pipes, but high Cr-high Ni alloys with a content of 30% Cr or more are difficult to hot work. It is often used as a cast product because of its poor hardness and cold workability, and it is difficult to manufacture thin-walled, small-diameter, and long tubes like boiler tubes. In addition, overlay welding for boiler tubes is difficult to manufacture and expensive, making it difficult to apply, and thermal spraying has disadvantages such as poor adhesion to the base material and poor workability. Therefore, 50Cr−50Ni and NCF2TB (20Cr−
Attempts have been made to apply double tubes combining 32Ni steel) to boiler tubes, but 50Cr-
50Ni does not have a single austenite phase, but also has some ferrite phase, resulting in poor hot workability and poor high-temperature corrosion resistance.Also, since it is a double tube with high Ni NCF2TB, it is expensive and disadvantageous when considering application to boiler tubes. There is a point. The present invention aims to eliminate the above-mentioned drawbacks and provide a steel tube for boilers that has both strength and corrosion resistance at high temperatures. One of the exposed tubes is an austenitic stainless steel tube that contains 30 to 45% Cr, which has good corrosion resistance, and satisfies the formula Cr-0.5Ni19.0%, and the other tube has 25% or less Cr, which has excellent high-temperature strength. Contains austenitic stainless steel pipes, and if necessary, prevents the diffusion of Fe or Cr during high-temperature use.
A nickel layer was provided between the inner tube and the outer tube to prevent precipitation of the σ phase. Here, the above conditional expression Cr-0.5Ni19.0% is a mathematical expression showing the relationship between the contents of Cr and Ni, which was derived based on the experimental results shown in FIG. The reason why the pipe has a double structure is that the pipe that is exposed to the corrosive environment contains 30 to 45% Cr, which has good corrosion resistance.
We use austenitic stainless steel pipes that satisfy the formula Cr-0.5Ni19.0% to prevent corrosion, and other pipes are made of austenitic stainless steel pipes that contain 25% or less of Cr, which has excellent high-temperature strength, to prevent corrosion at high temperatures. This is to provide strength. By forming a double-structured pipe in this way, a pipe with excellent corrosion resistance and high-temperature strength can be obtained. Therefore, it is better to reduce the wall thickness of the tube used for corrosion resistance. One tube contains 30-45% Cr and has the formula Cr-
The austenitic stainless steel tube that satisfies 0.5Ni19.0% has a markedly improved corrosion resistance when the Cr content exceeds 30%, as shown by the experimental results described later, and can be used as a boiler steel tube without any problems.
This is because if it exceeds the austenite single phase region, it becomes impossible to secure the austenite single phase region, which impairs hot workability and also deteriorates corrosion resistance.Also, by satisfying the above formula, hot workability becomes good, and other As a component, to create a single-phase austenite structure.
The main component is Ni, the amount of Cr is 30-45%, and the amount of Ni is 36-45%.
The above formula is satisfied at about 60%. Also, within this range, precipitation of σ phase will not occur during use of the boiler. Cr to ensure corrosion resistance
However, if the Cr content exceeds 30%, the workability will be slightly inferior, so if necessary, Ti,
Nb and Zr may be contained alone or in combination at a concentration of 1% or less, or Mg, Ca, La
Processability can be improved by containing Ce and Y in a total amount of 0.1% or less, singly or in combination. That is, by adding these elements to fix impurities such as S and O that degrade hot workability, hot workability is improved. Ti, Nb, and Zr are ferrite-forming elements, and if they are increased, it is necessary to increase the amount of Ni in order to stabilize austenite, which increases cost, so if added, it may be 1% or less. Also Mg, Ca, La−Ce,
If the amount of Y increases, the hot workability will deteriorate, so if Y is added, it should be 0.1% or less. On the other hand, the reason why the other tube is an austenitic steel tube containing 25% or less Cr is that the Cr content is 25% or less.
% or less, the corrosion resistance is inferior, but the high temperature strength and workability are excellent, and the Cr content is 15 to 15%.
Austenitic stainless steel with a Ni content of about 25% and a Ni content of about 8 to 23% is suitable as the base material for the double pipe. Next, providing a nickel layer between the inner and outer tubes of the double tube prevents the diffusion of Fe and Cr in the steel.
This is to prevent phase precipitation. If Cr-containing steel is exposed to high temperatures for a long time, Fe and Cr will diffuse, and at high temperatures below about 900°C, a σ phase will form, making the alloy brittle and causing the outer tube to peel. To solve this problem, a nickel layer is provided.
The nickel layer is produced by electroplating the outer circumferential surface of the billet, which is the material for the double pipe, or by wrapping nickel foil around the outer circumferential surface of the billet, which becomes the inner tube, and manufacturing the pipe using normal pipe manufacturing methods. The thickness of the nickel layer may be about 5 to 40 μm. Methods such as cladding, thermal spraying, and overlay welding can be applied to manufacture the double-walled pipe of the present invention, but composite steel ingots are manufactured, and this is extruded, rolled, and drawn based on the manufacturing method of seamless steel pipes. It is preferable to manufacture it by, for example, The above was obtained as a result of various experimental studies, and the contents of the experiments will be explained below. In order to study the effect of the amount of Cr in high-Cr-high-Ni alloy steel on high-temperature corrosion, the amount of Cr was varied as shown in Table 1. A 30Kg steel ingot with the ingredients shown in Table 1 below was melted in the air, forged, hot-rolled and cold-rolled to form a 14mm thick plate.The plate was then subjected to a high-temperature corrosion test of 15 x 15 x 3 mm. A piece was cut out and tested under the following conditions.

【表】 試験条件 雰囲気ガス組成:−1%SO2−5%O2−15%CO2
−残部N2 腐食灰組成:−1.5M K2SO4−1.5M Na2SO4
1M Fe2O3 腐食試験条件:−ルツボ浸漬法(アルミナルツ
ボ)腐食灰5g中に試験片埋込み 浸漬温度、時間:−650℃×100hr 腐食量の評価は加熱試験後、脱スケール処理を
行ない重量減少量を求めて行なつた。結果を第1
図に示す。 図より明らかなようにCr量が30%以上と多量
になれば耐食性が極めて向上していることがわか
る。 次に高Cr−高Ni−合金鋼の熱間加工性につい
て検討するために高温捩り試験を行なつた。第2
表に示す成分のオーステナイト一相とオーステナ
イト+フエライトの二相組織の鋼塊を大気中で溶
製し、この鋼塊より平行部直径8mm、長さ50mmの
捩り試験片を作成し、1250℃で試験を行ない、熱
間加工性の評価を行なつた。捻回値は破断までの
捩り回数を示し、各2本の平均値である。
[Table] Test conditions Atmosphere gas composition: -1%SO 2 -5%O 2 -15%CO 2
−Remaining N2 corrosion ash composition: −1.5MK 2 SO 4 −1.5M Na 2 SO 4
1M Fe 2 O 3 corrosion test conditions: - Crucible immersion method (aluminum crucible) test piece embedded in 5 g of corrosive ash Immersion temperature, time: -650℃ x 100 hr The amount of corrosion was evaluated by descaling after the heating test and weight This was done to find the amount of decrease. Results first
As shown in the figure. As is clear from the figure, it can be seen that when the Cr content is increased to 30% or more, the corrosion resistance is extremely improved. Next, high-temperature torsion tests were conducted to examine the hot workability of high Cr-high Ni alloy steel. Second
A steel ingot with a single-phase austenite phase and a two-phase structure of austenite + ferrite with the composition shown in the table was melted in the air, and a torsion test piece with a parallel part diameter of 8 mm and a length of 50 mm was prepared from this steel ingot and heated at 1250℃. Tests were conducted to evaluate hot workability. The twist value indicates the number of twists until breakage, and is the average value of each two pieces.

【表】 結果は第2図に示す通りで、オーステナイト一
相域、即ち図中斜線部γ域においては高温での加
工性がよくなつており、又α+γの二相域では加
工性が低下している。 次に本発明の実施例を示す。 第3表に示す成分の合金鋼を溶製し、二重管及
び比較用として通常の管(一重)を製造し、
JIS12B号の円弧状引張試験片を作成し、650℃で
の高温引張試験を実施した。二重管は次の方法で
製造した。内管用として第3表の鋼番17の鋼、外
管用として第2表の鋼番8の鋼を用い、二重ビレ
ツトを作成、又外管と内管との間にニツケル層を
有する二重管用としては内側のビレツト外周面に
ニツケルメツキを施した。このようなビレツトを
ユジーン押出で素管を製造し、冷間抽伸、軟化焼
鈍、冷間抽伸工程を経て外径51mm、内径34mmの二
重管を作成し、1220℃で仕上焼鈍を施して供試材
とした。
[Table] The results are shown in Fig. 2. In the austenite single-phase region, that is, in the shaded γ region in the figure, workability at high temperatures is improved, and in the α+γ two-phase region, workability decreases. ing. Next, examples of the present invention will be shown. Alloy steel with the components shown in Table 3 was melted to produce double pipes and ordinary pipes (single pipes) for comparison.
A JIS12B arc-shaped tensile test piece was prepared and a high-temperature tensile test was conducted at 650°C. The double tube was manufactured by the following method. A double billet was made using steel number 17 in Table 3 for the inner tube and steel number 8 in Table 2 for the outer tube, and a double billet with a nickel layer between the outer tube and the inner tube was used. For pipe use, the outer circumferential surface of the inner billet is plated with nickel. A blank pipe is manufactured from such a billet by Eugene extrusion, and a double pipe with an outer diameter of 51 mm and an inner diameter of 34 mm is created through cold drawing, softening annealing, and cold drawing processes, and is finished annealed at 1220°C and then sold. It was used as a sample material.

【表】【table】

【表】 した
** 時効処理:−650℃×1000hr大気
中加熱
結果は第4表に示す通りで、本発明の二重管は
従来使用されているボイラー用鋼と同等の高温強
度を有しNi層を有する二重管は伸びがNi層のな
い二重管よりも少しよくなつている。これはσ相
の析出が防止されたためと考えられる。 以上実施例より明らかなように、本発明のボイ
ラー用二重管は従来のものに比較して腐食環境の
より酷しい状況でもすぐれた耐食性を示すと共に
高温での強度も従来鋼と同等であり、苛酷な高温
腐食環境での使用に耐える優れたボイラー用二重
管である。
【expressed
**Aging treatment: -650℃×1000hr Heating in air The results are shown in Table 4. The double pipe of the present invention has a high-temperature strength equivalent to conventional boiler steel and has a Ni layer. The elongation of the double tube is slightly better than that of the double tube without the Ni layer. This is considered to be because precipitation of the σ phase was prevented. As is clear from the examples above, the double boiler tube of the present invention exhibits excellent corrosion resistance even in a more severe corrosive environment than conventional tubes, and its strength at high temperatures is equivalent to that of conventional steel. This is an excellent double tube for boilers that can withstand use in harsh high-temperature corrosive environments.

【図面の簡単な説明】[Brief explanation of drawings]

第1図はCr含有量の異なるステンレス鋼の高
温腐食試験結果を示す図、第2図はオーステナイ
ト一相、オーステナイト+フエライト二相ステン
レス鋼の高温捩り試験結果を示す図である。
FIG. 1 is a diagram showing the high temperature corrosion test results of stainless steels with different Cr contents, and FIG. 2 is a diagram showing the high temperature torsion test results of austenite single phase and austenite + ferrite dual phase stainless steels.

Claims (1)

【特許請求の範囲】 1 二重管のいずれか一方が重量%でCr30〜45
%を含有し、かつ式Cr−0.5Ni19.0%を満足す
るオーステナイトステンレス鋼管、他方がCr25
%以下を含有するオーステナイトステンレス鋼管
より成ることを特徴とする耐高温腐食性にすぐれ
たボイラー用二重管。 2 二重管のいずれか一方が重量%でCr30〜45
%を含有し、かつ式Cr−0.5Ni19.0%を満足す
るオーステナイトステンレス鋼管、他方がCr25
%以下を含有するオーステナイトステンレス鋼管
より成り、内管と外管との間にニツケル層を有す
ることを特徴とする耐高温腐食性にすぐれたボイ
ラー用二重管。
[Claims] 1. Either one of the double pipes has Cr30 to 45% by weight.
% and satisfies the formula Cr-0.5Ni19.0%, the other is Cr25
A double tube for boilers with excellent high-temperature corrosion resistance, characterized by being made of austenitic stainless steel tube containing less than %. 2 Either one of the double pipes is Cr30-45 in weight%
% and satisfies the formula Cr-0.5Ni19.0%, the other is Cr25
A double tube for boilers with excellent high-temperature corrosion resistance, which is made of an austenitic stainless steel tube containing less than 100% austenite, and has a nickel layer between the inner tube and the outer tube.
JP623981A 1981-01-19 1981-01-19 Double tube for boiler Granted JPS57120002A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP623981A JPS57120002A (en) 1981-01-19 1981-01-19 Double tube for boiler

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP623981A JPS57120002A (en) 1981-01-19 1981-01-19 Double tube for boiler

Publications (2)

Publication Number Publication Date
JPS57120002A JPS57120002A (en) 1982-07-26
JPH0117042B2 true JPH0117042B2 (en) 1989-03-28

Family

ID=11632948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP623981A Granted JPS57120002A (en) 1981-01-19 1981-01-19 Double tube for boiler

Country Status (1)

Country Link
JP (1) JPS57120002A (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59176501A (en) * 1983-03-28 1984-10-05 株式会社日立製作所 Boiler tube
JP3841372B2 (en) * 1997-02-26 2006-11-01 臼井国際産業株式会社 High pressure fuel injection pipe and manufacturing method thereof
KR20010034712A (en) * 1998-03-27 2001-04-25 칼 하인쯔 호르닝어 Heat exchanger tube, method for the production of a heat exchanger tube and capacitor
CN102933327B (en) 2010-06-04 2014-12-24 新日铁住金株式会社 Double-walled pipe with a gap, and manufacturing method therefor
JP5273266B2 (en) * 2012-02-08 2013-08-28 新日鐵住金株式会社 Double pipe and welded structure using the same

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511102A (en) * 1978-06-30 1980-01-25 Nippon Steel Corp Austenite stainless steel for high temperature and high pressure water environment
JPS5542102A (en) * 1978-09-18 1980-03-25 Asahi Chem Ind Co Ltd Production of pipe clad steel

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5511102A (en) * 1978-06-30 1980-01-25 Nippon Steel Corp Austenite stainless steel for high temperature and high pressure water environment
JPS5542102A (en) * 1978-09-18 1980-03-25 Asahi Chem Ind Co Ltd Production of pipe clad steel

Also Published As

Publication number Publication date
JPS57120002A (en) 1982-07-26

Similar Documents

Publication Publication Date Title
US11230756B2 (en) Ferritic stainless steel
EP0120704B1 (en) Boiler tube
US3890143A (en) Welded constructions of stainless steels
JPS648695B2 (en)
US4443406A (en) Heat-resistant and corrosion-resistant weld metal alloy and welded structure
US4079157A (en) Method of fabrication of distortion-resistant material
EP0157509A1 (en) Sintered stainless steel and production process therefor
JPH11302801A (en) High chromium-high nickel alloy excellent in stress corrosion cracking resistance
US20180305797A1 (en) Ferritic stainless steel
US5458156A (en) Stainless steel multifold pipe
JPH0117042B2 (en)
US4140526A (en) Ferritic stainless steel having improved weldability and oxidation resistance
JPH028336A (en) Carbon deposition-resistant two-layer pipe
JPS6058779B2 (en) High Ni alloy with excellent weldability and corrosion resistance
JPS62199759A (en) Aluminum-diffused steel sheet having excellent oxidation resistance high-temperature strength and its production
JPH02203092A (en) Double layer steel pipe having corrosion resistance in environment burning fuel containing v, na, s, cl
JPS61227152A (en) Surface covered heat resisting steel pipe for boiler for recovering black liquor
JPH02213449A (en) Highly corrosion resistant steel for waste incineration waste heat boiler tube
JPH07331370A (en) Cobalt-chrominum-nickel-aluminum alloy for ultrahigh temperature use
JP7357761B2 (en) Clad steel plate and its manufacturing method and welded structure
RU2206632C2 (en) Two-layer corrosion-resistant steel
JP7324844B2 (en) Steel sheet having corrosion resistance in low-concentration sulfuric acid/hydrochloric acid complex condensed atmosphere and method for manufacturing the same
JPS6366375B2 (en)
JP2575250B2 (en) Line pipe with excellent corrosion resistance and weldability
JPH0534419B2 (en)