JPH01169901A - Positive resistance temperature characteristic resistor - Google Patents

Positive resistance temperature characteristic resistor

Info

Publication number
JPH01169901A
JPH01169901A JP32857787A JP32857787A JPH01169901A JP H01169901 A JPH01169901 A JP H01169901A JP 32857787 A JP32857787 A JP 32857787A JP 32857787 A JP32857787 A JP 32857787A JP H01169901 A JPH01169901 A JP H01169901A
Authority
JP
Japan
Prior art keywords
temperature characteristic
crystalline resin
resistor
positive resistance
temperature
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32857787A
Other languages
Japanese (ja)
Inventor
Nobuyuki Hirai
伸幸 平井
Takahito Ishii
隆仁 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP32857787A priority Critical patent/JPH01169901A/en
Publication of JPH01169901A publication Critical patent/JPH01169901A/en
Pending legal-status Critical Current

Links

Landscapes

  • Resistance Heating (AREA)
  • Thermistors And Varistors (AREA)

Abstract

PURPOSE:To prevent the decrease in the resistance value at or above the temperature of the melting point of crystalline resin by a method wherein a positive resistance temperature characteristic resistor is formed with crystalline resin, the rubber composition dispersed into the crystalline resin, and the conductivity grains dispersed into the rubber composition. CONSTITUTION:A positive resistance temperature characteristics resistor is composed of crystalline resin 1, the rubber composition 2 dispersed into the resin, and the conductivity grains 3 dispersed into the composition 2. As a result, a brown movement is generated with the grain diameter of a conductivity substance at or above the temperature of melting point of the resin 1, but as the grain diameter is larger than the grain 3, the brown movement is smaller than that of the grain 3, and the decrease in resistance is small. The conductivity substance has a positive temperature characteristics by the combination of the composition 2 and the grains 3. As a result, the decrease in resistance value at or above the temperature of melting point of the resin 1 can be prevented.

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、採暖器具および一般の加熱装置として有用な
正抵抗温度特性発熱体に用いられる正抵抗温度特性抵抗
体の製造方法に関するものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a method for manufacturing a positive resistance temperature characteristic resistor used in a positive resistance temperature characteristic heating element useful as a warming appliance and a general heating device.

従来の技術 従来から結晶樹脂に導電性粒子を分散した抵抗体が正抵
抗温度特性を示すことは良く知られている。これをイン
ク状あるいは可撓性組成物の形にして自己温度制御性を
有する発熱体を試みがなされてきた。この方式の利点は
、抵抗体の形状加工製が優れていて任意の形状が容易に
得られること、可撓性に優れていること、抵抗体の調整
範囲が広いことであり、これ1で面状発熱体および長尺
発熱体として用いられてきた。
2. Description of the Related Art It has been well known that a resistor made of a crystalline resin in which conductive particles are dispersed exhibits positive resistance temperature characteristics. Attempts have been made to create a heating element with self-temperature control properties by using it in the form of an ink or a flexible composition. The advantages of this method are that the shape of the resistor is excellent, so any shape can be easily obtained, it has excellent flexibility, and the adjustment range of the resistor is wide. It has been used as a shaped heating element and a long heating element.

発明が解決しようとする問題点 上記の抵抗体の抵抗温度特性は、結晶性樹脂の軟化点T
1近傍で急激に立上がシ融点T2以上の温度で減少する
(負の抵抗温度特性頭載)傾向がみられる。この特性を
第5図に示す。このため、通常の状態で電圧を印加し使
用する場合は結晶性樹脂の軟化点以下で使われるために
問題はないが、他熱源により抵抗体に熱が加わり抵抗体
の温度が結晶性樹脂の融点以上になった場合、負の抵抗
温度特性@域に入るため自己の発熱によシ異常に温度が
上昇し発火するという問題があった。
Problems to be Solved by the Invention The resistance temperature characteristics of the above resistor are based on the softening point T of the crystalline resin.
There is a tendency for the sudden rise near 1 to decrease at temperatures above the melting point T2 (negative resistance-temperature characteristic overhang). This characteristic is shown in FIG. Therefore, when a voltage is applied and used under normal conditions, there is no problem because the temperature is below the softening point of the crystalline resin, but when heat is applied to the resistor by other heat sources, the temperature of the resistor increases When the temperature exceeds the melting point, the temperature falls into the negative resistance-temperature characteristic region, which causes the temperature to rise abnormally due to its own heat generation, causing a problem of ignition.

この問題を解決するために、電子線架橋また化学架橋等
の方法が考えられる。しかしながら、電子線架橋法は設
備コストが高く夫用化が困難であるといった問題を有し
ていた。化学架橋法は低コストで採用できる方法である
が架橋により抵抗体が硬化し成形等の加工性が悪く実用
化しにくい問題があった。
In order to solve this problem, methods such as electron beam crosslinking and chemical crosslinking can be considered. However, the electron beam crosslinking method has the problem of high equipment cost and difficulty in commercialization. Although the chemical crosslinking method is a method that can be adopted at low cost, there is a problem that the crosslinking hardens the resistor and has poor processability such as molding, making it difficult to put it into practical use.

本発明はかかる従来の問題を解消するもので、結晶性樹
脂の融点以上の温度における抵抗値の減少がない実用可
能な正抵抗温度特性抵抗体を給すすることを目的とする
The present invention has been made to solve these conventional problems, and aims to provide a practically usable positive resistance temperature characteristic resistor that does not reduce its resistance value at temperatures above the melting point of the crystalline resin.

問題点を解決するための手段 上記問題点を解決するために本発明の正抵抗温度特性抵
抗体は、結晶性樹脂と、前記結晶性樹脂の中に分散され
たゴム組成物と、前記ゴム組成物中に分散された導電性
粒子とから構成されている。
Means for Solving the Problems In order to solve the above problems, the positive resistance temperature characteristic resistor of the present invention comprises a crystalline resin, a rubber composition dispersed in the crystalline resin, and the rubber composition. It consists of conductive particles dispersed throughout the material.

作   用 本発明の技術的作用は次のようになる。結晶性樹脂内に
導電性微粒末を混練により分散させたこの種の抵抗体は
、結晶性樹脂の熱膨張により導電性微粒末間の距離が変
化するために正抵抗温度特性を有するものと考えられる
。しかし、結晶性樹脂の融点以上の温度においては結晶
性樹脂が融解するためにこの関係が崩れ、導電性微粒末
が融解した結晶性樹脂内でブラウン運動を開始する。ブ
ラウン運動は温度が高くなるに従って大きくなり、隣り
あう導電性微粒末の接触の機会が増加する。
Function The technical function of the present invention is as follows. This type of resistor, in which conductive fine particles are dispersed in a crystalline resin by kneading, is thought to have positive resistance temperature characteristics because the distance between the conductive fine particles changes due to thermal expansion of the crystalline resin. It will be done. However, at a temperature equal to or higher than the melting point of the crystalline resin, the crystalline resin melts, so this relationship collapses, and the conductive fine particles start Brownian motion within the melted crystalline resin. Brownian motion increases as the temperature increases, and the chances of contact between adjacent conductive fine particles increases.

このために、結晶性樹脂の融点以上の温度で負の抵抗温
度特性@域が発生するものと考えられる。
For this reason, it is thought that a negative resistance temperature characteristic @ region occurs at a temperature equal to or higher than the melting point of the crystalline resin.

また、ブラウン運動は粒子径に反比例するために、大粒
径の導電性粒子を用いれば、結晶性樹脂の融点以上の温
度での負の抵抗温度特性を抑えることができるが正の抵
抗温度特性をもたせることはできない。
Additionally, since Brownian motion is inversely proportional to the particle size, if large-diameter conductive particles are used, the negative resistance-temperature characteristic at temperatures above the melting point of the crystalline resin can be suppressed, but the positive resistance-temperature characteristic You can't make it last.

そこで、導電性粒子をゴム組成物中に分散させ、そのゴ
ム組成物自体を新たに導電性物とする。この導電性物は
ゴム組成物と導電性粒子の組合わせにより正の抵抗温度
特性を有する抵抗体となる。
Therefore, conductive particles are dispersed in a rubber composition to make the rubber composition itself a new conductive material. This conductive material becomes a resistor having positive resistance-temperature characteristics due to the combination of the rubber composition and conductive particles.

このため、結晶性樹脂の融点以上の温度では、この導電
性物の粒子径でブラウン運動は発生するが、粒子径が導
電性粒子に比べて大きいためにブラウン運動の大きさは
導電性粒子に比べて小さく抵抗減少は少ない。かつ、こ
の導電性物はゴム組成物と導電性粒子の組合わせにより
正の抵抗温度特性を有する。
Therefore, at temperatures above the melting point of the crystalline resin, Brownian motion occurs with the particle size of this conductive material, but since the particle size is larger than that of the conductive particles, the size of the Brownian motion is smaller than that of the conductive particles. It is smaller than that and the resistance decrease is small. Moreover, this conductive material has positive resistance-temperature characteristics due to the combination of the rubber composition and conductive particles.

そのために、抵抗値は前者抵抗減少と、後者抵抗増加の
組合わせであるために、全体として正の抵抗温度特性を
有する抵抗体となる。
Therefore, since the resistance value is a combination of the former resistance decrease and the latter resistance increase, the resistor has a positive resistance temperature characteristic as a whole.

実施例 以下、本発明の実施例を添付図面をもとに説明する。Example Embodiments of the present invention will be described below with reference to the accompanying drawings.

第1図において、結晶性樹脂1として低密度ポリエチレ
ン46重量部に、ゴム組成物2として低密度ポリエチレ
ンと非相溶のポリエステル系熱可塑性ゴム31重量部に
導電性粒子3として平均粒子径5ooAのカーボン・ブ
ラック23重量部を分散した導電性物を0.5μから2
0μの粒径で分散して抵抗体4が構成されている。第2
図に示すように、この抵抗体4と0.3mm径のハンダ
メツキ銅線を電極5,6として用い、発熱体を成形して
いる。
In FIG. 1, 46 parts by weight of low-density polyethylene is used as crystalline resin 1, 31 parts by weight of polyester thermoplastic rubber incompatible with low-density polyethylene is used as rubber composition 2, and conductive particles 3 have an average particle size of 5 ooA. A conductive material in which 23 parts by weight of carbon black is dispersed is 0.5 μ to 2
The resistor 4 is constructed by dispersing the particles with a particle size of 0μ. Second
As shown in the figure, a heating element is formed by using this resistor 4 and solder-plated copper wires with a diameter of 0.3 mm as electrodes 5 and 6.

このようにして得た発熱体の抵抗温度特性を第3図に示
す。第3図の横軸は発熱体周囲温度を示し、縦軸は電極
5.6間の抵抗値である。
FIG. 3 shows the resistance temperature characteristics of the heating element thus obtained. The horizontal axis in FIG. 3 shows the ambient temperature of the heating element, and the vertical axis shows the resistance value between the electrodes 5.6.

上記構成において、ゴム組成物2中に導電性粒子3であ
るカーボン・ブランクを分散した導電性物を結晶性樹脂
中に0.5μから20μの粒径で分散しており、粒径が
導電性粒子そのものよりも6倍から250倍と大きいた
めにブラウン運動が起こりにくい構造となっている。ま
た、導電性物そのものが第4図に示すように正の抵抗温
度特性を有するために全体の抵抗値として正の抵抗温度
特性をもつという効果がある。
In the above structure, a conductive substance in which carbon blanks, which are conductive particles 3, are dispersed in a rubber composition 2 is dispersed in a crystalline resin with a particle size of 0.5 μ to 20 μ, and the particle size is conductive. Because it is 6 to 250 times larger than the particle itself, it has a structure that makes it difficult for Brownian motion to occur. Further, since the conductive material itself has a positive resistance-temperature characteristic as shown in FIG. 4, there is an effect that the overall resistance value has a positive resistance-temperature characteristic.

上記実施例では導電性粒子としてカーボン・ブラックを
用いたが、ほかに導電性粒子としてグラファイト粉末す
たは金層微粉末であっても、また、その組合わせであっ
てもどのような効果が得られるのは明らかである。
In the above examples, carbon black was used as the conductive particles, but what kind of effects can be obtained by using graphite powder, gold layer fine powder, or a combination thereof as the conductive particles? The result is clear.

なお、非相溶性とは、樹脂のSP値(ツルビリΔEは蒸
発エネルギー、■は分子容で定義される)の差が1.8
以上のものをいう。
Incompatibility means that the difference in SP value of the resins (Tsurubiri ΔE is defined by evaporation energy, and ■ is defined by molecular volume) is 1.8.
This refers to the above.

発明の効果 以上のように本発明の正抵抗温度特性抵抗体によれば、
つぎの効果が得られる。
Effects of the Invention As described above, according to the positive resistance temperature characteristic resistor of the present invention,
The following effects can be obtained.

(1)  ゴム組成物と導電性粒子で構成された導電性
物自体が正の抵抗温度特性を有し、かつ、導電性物の粒
径が導電性粒子に比べ大きいために、結晶性樹脂の融点
以上の温度においても正の抵抗温度特性を有する。
(1) The conductive material itself, which is composed of a rubber composition and conductive particles, has positive resistance-temperature characteristics, and the particle size of the conductive material is larger than that of the conductive particles. It has positive resistance temperature characteristics even at temperatures above the melting point.

(2)  ゴム組成物が混入しているために、ゴムの3
次元網目構造より加熱変形率も少ない。
(2) Because the rubber composition is mixed in, the rubber
The heating deformation rate is also lower than that of the dimensional network structure.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例における正抵抗温度特性抵抗
体の断面斜視図、第2図は本発明の実施例および比較例
1〜3で得た正抵抗温度特性抵抗体の評価に使用した発
熱体0酔面斜視図、第3図は本発明の実施例の抵抗温度
特性図、第4図は本発明の実施例の正抵抗温度特性抵抗
体の導電性物の抵抗温度特性図、第5図は従来の正抵抗
温度特性抵抗体の抵抗温度特性図である。 1・・・・・・結晶性図示、2・・・・・・ゴム組成物
、3・・・・・・導電性粒子、4・・・・・・抵抗体、
5.6・・・・・・電極。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名3−
溝電性&乎 第3図 Q”c    100°C200°C 温鷹 第4図 温友
Fig. 1 is a cross-sectional perspective view of a positive resistance temperature characteristic resistor in an example of the present invention, and Fig. 2 is used for evaluation of positive resistance temperature characteristic resistors obtained in the example of the present invention and Comparative Examples 1 to 3. FIG. 3 is a resistance temperature characteristic diagram of an embodiment of the present invention, FIG. 4 is a resistance temperature characteristic diagram of a conductive material of a positive resistance temperature characteristic resistor of an embodiment of the present invention, FIG. 5 is a resistance temperature characteristic diagram of a conventional positive resistance temperature characteristic resistor. 1... Crystalline diagram, 2... Rubber composition, 3... Conductive particles, 4... Resistor,
5.6... Electrode. Name of agent: Patent attorney Toshio Nakao and 1 other person3-
Groove conductivity & Figure 3 Q”c 100°C200°C Warm Hawk Figure 4 Warm friend

Claims (3)

【特許請求の範囲】[Claims] (1)結晶性樹脂と、前記結晶性樹脂の中に分散された
ゴム組成物と、前記ゴム組成物中に分散された導電性粒
子とからなる正抵抗温度特性抵抗体。
(1) A positive resistance temperature characteristic resistor comprising a crystalline resin, a rubber composition dispersed in the crystalline resin, and conductive particles dispersed in the rubber composition.
(2)ゴム組成物が結晶性樹脂と非相溶である特許請求
の範囲第1項記載の正抵抗温度特性抵抗体。
(2) The positive resistance temperature characteristic resistor according to claim 1, wherein the rubber composition is incompatible with the crystalline resin.
(3)導電性粒子がカーボン・ブラックである特許請求
の範囲第1項記載の正抵抗温度特性抵抗体。
(3) A positive resistance temperature characteristic resistor according to claim 1, wherein the conductive particles are carbon black.
JP32857787A 1987-12-24 1987-12-24 Positive resistance temperature characteristic resistor Pending JPH01169901A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32857787A JPH01169901A (en) 1987-12-24 1987-12-24 Positive resistance temperature characteristic resistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32857787A JPH01169901A (en) 1987-12-24 1987-12-24 Positive resistance temperature characteristic resistor

Publications (1)

Publication Number Publication Date
JPH01169901A true JPH01169901A (en) 1989-07-05

Family

ID=18211831

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32857787A Pending JPH01169901A (en) 1987-12-24 1987-12-24 Positive resistance temperature characteristic resistor

Country Status (1)

Country Link
JP (1) JPH01169901A (en)

Similar Documents

Publication Publication Date Title
JP3022644B2 (en) Organic positive temperature coefficient thermistor
JP2007531217A (en) Conductive composition for producing flexible carbon heating structure, flexible carbon heating structure using the same, and method for producing the same
KR960032513A (en) Constant temperature coefficient element and its manufacturing method
JP3101048B2 (en) Organic positive temperature coefficient thermistor
JPH01169901A (en) Positive resistance temperature characteristic resistor
JPH0235702A (en) Resistor having positive temperature characteristics of resistance
JPS59122524A (en) Composition having positive temperature characteristics of resistance
JP2876125B2 (en) Low resistance PTC element
JP2734253B2 (en) Positive resistance temperature coefficient heating element
JP3028979B2 (en) Organic positive temperature coefficient thermistor
GB2033707A (en) Conductive polymer compositions of an electrical device
JPS6240394Y2 (en)
JPS63257197A (en) Manufacture of resistor with positive resistance-temperature characteristics
JP2000133502A (en) Organic positive temperature coefficient thermistor
JP2000269001A (en) Overcurrent protective element
JP2000133503A (en) Manufacture of organic positive temperature coefficient thermistor
JP3022645B2 (en) Organic positive temperature coefficient thermistor
JP2734250B2 (en) Positive resistance temperature coefficient heating element
JPS61193390A (en) Heat generating body
JPH11329675A (en) Ptc composition
JP2734251B2 (en) Positive resistance temperature coefficient heating element
JPS6196689A (en) Manufacture of temperature self-controlling heater
JPH052961A (en) Polymer switch and its manufacture
JPH05234707A (en) Resistance material with positive temperature coefficient
JPH0927383A (en) Surface heater element and its manufacture