JP2000133503A - Manufacture of organic positive temperature coefficient thermistor - Google Patents

Manufacture of organic positive temperature coefficient thermistor

Info

Publication number
JP2000133503A
JP2000133503A JP31754299A JP31754299A JP2000133503A JP 2000133503 A JP2000133503 A JP 2000133503A JP 31754299 A JP31754299 A JP 31754299A JP 31754299 A JP31754299 A JP 31754299A JP 2000133503 A JP2000133503 A JP 2000133503A
Authority
JP
Japan
Prior art keywords
temperature coefficient
positive temperature
coefficient thermistor
organic positive
crystalline polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31754299A
Other languages
Japanese (ja)
Inventor
Hiroshi Sakai
洋志 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP31754299A priority Critical patent/JP2000133503A/en
Publication of JP2000133503A publication Critical patent/JP2000133503A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Abstract

PROBLEM TO BE SOLVED: To obtain an organic positive temperature coefficient thermistor in which an initial resistance value is small at room temperature, PTC characteristics rise sharply, and which designates large change in the resistance values, by a method wherein ball-like Ni powders forming a plurality of projections as a conductive substance are prepared, and are mixedly kneaded with a crystalline polymer to form a thermistor element body. SOLUTION: In this manufacture of an organic positive temperature coefficient thermistor, a crystalline polymer is mixedly kneaded with a specified amount of ball-like Ni powders having a plurality of projections as a conductive substance in the crystalline polymer. As the crystalline polymer, polyvinylidene fluoride, polyethylene, polyethylene oxide, t-4-polybutadiene, polyethylene acrylate, ethylene-ethylacrylate copolymer, etc., are used. Furthermore, as conductive particles having a plurality of projections, the ball-like Ni powders having such respective physical characteristics as a mean particle size is 3 to 7 μm are used and an apparent density of 1.8 to 2.7 (g/cc), and a specific surface area of 0.34 to 0.44 (m2/g).

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、有機質正特性サー
ミスタに関し、より詳しくは、昇温時特定の温度領域で
急激に抵抗値が増大する特性、即ち、PTC(Positive
Temperature Coefficient)特性を有する有機質正特性サ
ーミスタの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic positive temperature coefficient thermistor, and more particularly, to a characteristic in which a resistance value rapidly increases in a specific temperature range when a temperature rises, that is, a positive temperature coefficient (PTC).
The present invention relates to a method for producing an organic positive temperature coefficient thermistor having a temperature coefficient.

【0002】[0002]

【従来の技術】従来、ポリエチレン又はポリプロピレン
等の結晶性重合体に、金属微粉末やカーボンブラック等
を分散させたPTC特性を有する有機質正特性サーミス
タはこの技術分野では公知である。例えば、米国特許第
3591526 号明細書及び同第3673121 号明細書などに開示
されている。
2. Description of the Related Art Conventionally, an organic positive temperature coefficient thermistor having PTC characteristics in which a fine metal powder, carbon black or the like is dispersed in a crystalline polymer such as polyethylene or polypropylene is known in the art. For example, U.S. Patent No.
This is disclosed in, for example, Japanese Patent Nos. 3591526 and 3673121.

【0003】ところで、PTC特性は結晶性重合体がそ
の融点において、結晶質から非晶質に変化する際に急激
な体積膨脹を示すため、その中に分散された導電性微粉
末の粒子同士の間隔が押し広げられて粒子間の接触抵抗
が急激に増大するために生ずる。
[0003] By the way, the PTC characteristic shows a sharp volume expansion when the crystalline polymer changes from crystalline to amorphous at the melting point, so that the particles of the conductive fine powder dispersed in the crystalline polymer are dispersed. This occurs because the spacing is expanded and the contact resistance between the particles increases rapidly.

【0004】このような有機質正特性サーミスタは、例
えば、温度検出器あるいは自己制御型ヒーター等として
利用し得るが、この有機質正特性サーミスタに要求され
る性能はPTC特性の立ち上がりが急峻で大きな抵抗値
変化を示し、しかも室温での初期抵抗値が小さいことが
必要である。
Such an organic positive temperature coefficient thermistor can be used, for example, as a temperature detector or a self-control type heater. However, the performance required of the organic positive temperature coefficient thermistor is such that the rise of the PTC characteristic is steep and a large resistance value is obtained. It is necessary to show a change and to have a small initial resistance value at room temperature.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の有機質
正特性サーミスタにおいては、カーボンブラックを導電
性物質として充填することが多く、この場合初期抵抗値
を小さくするためにはその充填量を大きくする必要があ
った。このような場合には抵抗変化率が小さくなりヒー
ター等への適用は困難になるという問題があった。
However, conventional organic positive temperature coefficient thermistors are often filled with carbon black as a conductive substance. In this case, the filling amount is increased to reduce the initial resistance value. Needed. In such a case, there has been a problem that the rate of change in resistance becomes small and application to a heater or the like becomes difficult.

【0006】また、一般の金属微粉末粒子を導電性物質
として充填したものも知られているの充填量を大きくす
る必要があった。このような場合には抵抗変化率が小さ
くなりヒーター等への適用は困難になるという問題があ
った。
[0006] In addition, there is also known one in which general metal fine powder particles are filled as a conductive substance, but it is necessary to increase the filling amount. In such a case, there has been a problem that the rate of change in resistance becomes small and application to a heater or the like becomes difficult.

【0007】また、一般の金属微粉末粒子を導電性物質
として充填したものも知られているが、この場合にも、
同様に初期抵抗値を小さくするためにその充填量を大き
くする必要があり、また、このような場合に大きく変化
率が得られないため、実用化に至っていない。
[0007] In addition, it is also known that general metal fine powder particles are filled as a conductive substance.
Similarly, in order to reduce the initial resistance value, it is necessary to increase the filling amount, and in such a case, a large change rate cannot be obtained, so that it has not been put to practical use.

【0008】そこで、本発明は、室温での初期抵抗値が
小さく、PTC特性の立ち上がりが急峻で大きな抵抗値
変化を示す有機質正特性サーミスタの製造方法を提供す
ることを目的とするものである。
Accordingly, an object of the present invention is to provide a method for producing an organic positive temperature coefficient thermistor having a small initial resistance value at room temperature, a sharp rise in PTC characteristics and a large change in resistance value.

【0009】[0009]

【課題を解決するための手段】請求項1記載の発明は、
結晶性重合体に導電性物質が分散されたサーミスタ素体
を有する有機質正特性サーミスタの製造方法において、
前記導電性物質として、多数の突起が形成された球状の
Niパウダーを用意し、これを結晶性重合体に混練して
サーミスタ素体を得る工程を含むことを特徴とする。
According to the first aspect of the present invention,
In a method for producing an organic positive temperature coefficient thermistor having a thermistor body in which a conductive substance is dispersed in a crystalline polymer,
The method includes a step of preparing a spherical Ni powder having a large number of protrusions as the conductive substance, and kneading the Ni powder with a crystalline polymer to obtain a thermistor body.

【0010】請求項2記載の発明は、前記Niパウダー
は見掛け密度が1.8〜2.7g/ccの範囲内にある
ことを特徴とする。
According to a second aspect of the present invention, the Ni powder has an apparent density in a range of 1.8 to 2.7 g / cc.

【0011】請求項3の発明は、前記Niパウダーは、
比表面積が0.3〜0.44(m2/g)の範囲内であ
ることを特徴とする。
According to a third aspect of the present invention, the Ni powder comprises:
The specific surface area is in the range of 0.3 to 0.44 (m 2 / g).

【0012】請求項4記載の発明は、結晶性重合体に導
電性物質が分散されたサーミスタ素体を有する有機質正
特性サーミスタの製造方法において、前記導電性物質と
して、多数の突起が形成された球状のNiパウダーが鎖
状に連結された鎖状Niパウダーを用意し、これを結晶
性重合体に混練してサーミスタ素体を得る工程を含むこ
とを特徴とする。
According to a fourth aspect of the present invention, in the method of manufacturing an organic positive temperature coefficient thermistor having a thermistor body in which a conductive material is dispersed in a crystalline polymer, a large number of protrusions are formed as the conductive material. It is characterized by including a step of preparing a chain-like Ni powder in which spherical Ni powders are connected in a chain-like manner, and kneading this into a crystalline polymer to obtain a thermistor body.

【0013】請求項5記載の発明は、前記鎖状Niパウ
ダーは、見掛け密度が、0.5〜0.95(g/cc)
の範囲内であることを特徴とする。
According to a fifth aspect of the present invention, the chain Ni powder has an apparent density of 0.5 to 0.95 (g / cc).
It is characterized by being within the range.

【0014】請求項6記載の発明は、前記鎖状Niパウ
ダーは、比表面積が0.58〜0.63(m2/g)の
範囲内であることを特徴とする。
According to a sixth aspect of the present invention, the chain Ni powder has a specific surface area in a range of 0.58 to 0.63 (m 2 / g).

【0015】請求項1乃至3記載の有機質正特性サーミ
スタの製造方法によれば、結晶性重合体に、多数の突起
を有する球状Niパウダーを充填したものであるから、
真球状の導電性粒子を充填した場合に比べ、多数の突起
を有する球状Niパウダー同士では、その形状故にトン
ネル電流が流れやすく、これにより、導電性が良好とな
って、常温での初期抵抗値が小さく、また、導電性粒子
同士の間隔が球状のものに比べて大きいのでPTC特性
の立ち上がりが急峻で大きな抵抗値変化を呈する有機質
正特性サーミスタを得ることができる。
According to the method for producing an organic positive temperature coefficient thermistor according to claims 1 to 3, the crystalline polymer is filled with spherical Ni powder having a large number of projections.
Compared with the case where spherical conductive particles are filled, tunnel current easily flows between spherical Ni powders having a large number of projections due to their shapes, thereby improving conductivity and improving initial resistance at room temperature. And the distance between the conductive particles is larger than that of the spherical particles, so that an organic positive temperature coefficient thermistor having a steep rise of PTC characteristics and a large change in resistance value can be obtained.

【0016】請求項4乃至6記載の有機質正特性サーミ
スタの製造方法によれば、結晶性重合体に、多数の突起
を有する球状Niパウダーが鎖状に連結された形状の導
電性物質を充填したものであるから、真球状の導電性粒
子を充填した場合に比べ、多数の突起を有しかつ、鎖状
につながっているので、トンネル電流がより多く流れ、
これにより、導電性が良好となって、常温での初期抵抗
値が小さく、また、導電性粒子同士の間隔が真球状のも
のに比べて大きいのでPTC特性の立ち上がりが急峻で
大きな抵抗値変化を呈する有機質正特性サーミスタを得
ることができる。
According to the method of manufacturing an organic positive temperature coefficient thermistor according to claims 4 to 6, the crystalline polymer is filled with a conductive substance having a shape in which spherical Ni powders having a large number of projections are connected in a chain. Since it is a thing, compared with the case where the spherical conductive particles are filled, it has a large number of protrusions and is connected in a chain, so that more tunnel current flows,
As a result, the conductivity becomes good, the initial resistance value at room temperature is small, and the interval between the conductive particles is larger than that of a true sphere, so that the rise of the PTC characteristic is sharp and a large change in the resistance value occurs. An organic positive temperature coefficient thermistor can be obtained.

【0017】[0017]

【発明の実施の形態】以下に本発明の実施の形態を詳細
に説明する。
Embodiments of the present invention will be described below in detail.

【0018】第1の実施の形態の有機質正特性サーミス
タは、結晶性重合体と、この結晶性重合体に導電性物質
として混練した多数の突起を有する所定量の球状Niパ
ウダーからなるものである。
The organic positive temperature coefficient thermistor of the first embodiment comprises a crystalline polymer and a predetermined amount of spherical Ni powder having a large number of projections kneaded as a conductive substance with the crystalline polymer. .

【0019】この有機質正特性サーミスタの顕微鏡写真
を図1に示す。
FIG. 1 shows a micrograph of the organic positive temperature coefficient thermistor.

【0020】図1に示す写真から明らかなように、本実
施の形態の有機質正特性サーミスタによれば、多数の導
電性粒子の多数の突起があるが故にトンネル電流が流れ
やすく、これにより、導電性が良好となって、常温での
初期抵抗値が小さく、導電性粒子同士の間隔が球状のも
のに比べて大きいので接触点が容易に切れてPTC特性
の立ち上がりが急峻で大きな抵抗値変化を得ることがで
きる。
As is clear from the photograph shown in FIG. 1, according to the organic positive temperature coefficient thermistor of the present embodiment, a tunnel current easily flows due to a large number of projections of a large number of conductive particles. The resistance is good, the initial resistance at room temperature is small, and the distance between conductive particles is large compared to spherical ones. Obtainable.

【0021】前記結晶性重合体としては、ポリフッ化ビ
ニリデンを用いる。
As the crystalline polymer, polyvinylidene fluoride is used.

【0022】結晶性重合体としては、ポリフッ化ビニリ
デンの他、ポリエチレン,ポリエチレンオキシド、t−
4−ポリプタジエン,ポリエチレンアクリレート,エチ
レン−エチルアクリレート共重合体,エチレン−アクリ
ル酸共重合体,ポリエステル,ポリアミド,ポリエーテ
ル,ポリカブロラクタム,フッ素化エチレン−プロピレ
ン共重合体,塩素化ポリエチレン,クロロスルホン化エ
チレン,エチレン−酢酸ビニル共重合体,ポリプロピレ
ン,ポリスチレン,スチレン−アクリロニトリル共重合
体,ポリ塩化ビニル,ポリカーボネート,ポリアセター
ル,ポリアルキレンオキシド,ポリフェニレンオキシ
ド,ポリスルホン,フッ素樹脂等がある。
Examples of the crystalline polymer include polyethylene, polyethylene oxide, and t-polyvinylidene fluoride.
4-polybutadiene, polyethylene acrylate, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid copolymer, polyester, polyamide, polyether, polycaprolactam, fluorinated ethylene-propylene copolymer, chlorinated polyethylene, chlorosulfonated Examples include ethylene, ethylene-vinyl acetate copolymer, polypropylene, polystyrene, styrene-acrylonitrile copolymer, polyvinyl chloride, polycarbonate, polyacetal, polyalkylene oxide, polyphenylene oxide, polysulfone, and fluororesin.

【0023】結晶性重合体の種類は所望の性能,用途等
に応じて適宜選択することができる。
The kind of the crystalline polymer can be appropriately selected according to the desired performance, use and the like.

【0024】前記多数の突起を有する導電性粒子として
は、多数の突起を有する球状Niパウダー(インコ・リ
ミテッド製)を用いる。
As the conductive particles having many projections, spherical Ni powder having many projections (manufactured by Inco Limited) is used.

【0025】このNiパウダーは、例えばカーボニル法
により製造されるものであり、99.99%の純度のニ
ッケルカーボニルに対し下記化学式に示す変換を行った
ものである。
This Ni powder is produced, for example, by the carbonyl method, and is obtained by converting nickel carbonyl having a purity of 99.99% by the following chemical formula.

【0026】Ni(CO)4 →Ni+4CO その平均粒径は3乃至7μm(フィッシュー・サブシー
ブ法で測定)、見掛け密度は1.8乃至2.7(g/c
c)、比表面積は0.34乃至0.44(m2/g)の
各物理的特性を有する。
Ni (CO) 4 → Ni + 4CO The average particle size is 3 to 7 μm (measured by a fish-sub-sieve method), and the apparent density is 1.8 to 2.7 (g / c).
c) The specific surface area has physical properties of 0.34 to 0.44 (m 2 / g).

【0027】次に、第2の実施の形態について説明す
る。
Next, a second embodiment will be described.

【0028】第2の実施の形態の有機質正特性サーミス
タは、結晶性重合体と、この結晶性重合体に、導電性物
質として多数の突起を有する球状Niパウダーが連結し
た形状をのものを混練して得られるものである。
The organic positive temperature coefficient thermistor according to the second embodiment is obtained by kneading a crystalline polymer and a conductive polymer having a shape in which a spherical Ni powder having a large number of projections is connected to the crystalline polymer. It is obtained by doing.

【0029】この有機質正特性サーミスタの顕微鏡写真
を図2に示す。
FIG. 2 shows a micrograph of the organic positive temperature coefficient thermistor.

【0030】図2に示す写真から明らかなように、本実
施の形態の有機質正特性サーミスタによれば、導電性物
質の各々の多数の突起がトンネル電流を流し易くし、こ
れにより、導電性が良好となって、常温での初期抵抗値
が小さく、導電性粒子同士の間隔が大きいので、容易に
導電経路が寸断されるのでPTC特性の立ち上がりが急
峻で大きな抵抗値変化を得ることができる。
As is clear from the photograph shown in FIG. 2, according to the organic positive temperature coefficient thermistor of the present embodiment, a large number of protrusions of each of the conductive substances make it easy for a tunnel current to flow, thereby increasing the conductivity. As a result, the initial resistance value at room temperature is small, and the distance between the conductive particles is large, so that the conductive path is easily cut off, so that the rise of the PTC characteristic is sharp and a large change in the resistance value can be obtained.

【0031】前記結晶性重合体としては、ポリフッ化ビ
ニリデンを用いることは第1の実施の形態の場合と同様
である。
The use of polyvinylidene fluoride as the crystalline polymer is the same as in the first embodiment.

【0032】前記各導電性物質としては、フィラメント
状鎖状Niパウダー(インコ・リミテッド製)を用い
る。
As each of the conductive substances, a filament-like chain Ni powder (manufactured by Inco Limited) is used.

【0033】このフィラメント状鎖状Niパウダーの平
均粒径は2.2乃至2.8μm(フィッシュー・サブシ
ーブ法で測定)、見掛け密度は0.5乃至0.95(g
/cc)、比表面積は0.58乃至0.63(m2
g)の各物理的特性を有する。
The average particle size of the filamentous chain Ni powder is 2.2 to 2.8 μm (measured by a fish-sub-sieve method), and the apparent density is 0.5 to 0.95 (g).
/ Cc), and the specific surface area is 0.58 to 0.63 (m 2 /
g) each physical property.

【0034】以下、さらに詳細に説明する。The details will be described below.

【0035】実施例1 結晶性重合体としてポリフッ化ビニリデンを用い、導電
性物質として多数の突起を有する球状Niパウダー(平
均粒径3.0乃至7.0μm、インコ・リミテッド製)
を用い、該ポリフッ化ビニリデンに対してNiパウダー
を30重量部の割合で加え、ラボプラストミル(東洋精
機製作所製)で混練後、厚さ0.7mmのシートにプレ
ス成形し、その後架橋処理を施した。
Example 1 A spherical Ni powder having a large number of protrusions as a conductive substance using polyvinylidene fluoride as a crystalline polymer (average particle size: 3.0 to 7.0 μm, manufactured by Inco Limited)
Was added to the polyvinylidene fluoride in an amount of 30 parts by weight, kneaded with a Labo Plastomill (manufactured by Toyo Seiki Seisaku-sho, Ltd.), and then press-molded into a sheet having a thickness of 0.7 mm. gave.

【0036】さらに、この成形品の両面に電極としてN
i箔を圧着し直径10mmの円板状に打ち抜いてサンプ
ルとした。
Further, N electrodes were formed on both surfaces of this molded product as electrodes.
The i-foil was pressed and punched out into a disk having a diameter of 10 mm to obtain a sample.

【0037】次に、このサンプルについてPTC特性を
測定した。この測定に当たっては、前記サンプルを恒温
槽内で温度上昇及び下降を行い、各所定温度における抵
抗値を測定し、温度と抵抗値の関係を求めた。この測定
結果を図3に示す。
Next, the PTC characteristics of this sample were measured. In this measurement, the temperature of the sample was raised and lowered in a thermostat, the resistance at each predetermined temperature was measured, and the relationship between the temperature and the resistance was obtained. FIG. 3 shows the measurement results.

【0038】図3に示す測定結果から、常温での抵抗値
は0.6Ωと非常に低い値でありながら、転移温度では
抵抗値が急激に上昇して、最大抵抗値は3×107 Ωに
なり、変化率は108 以上の高い値になっていることが
分かる。
From the measurement results shown in FIG. 3, the resistance value at room temperature is a very low value of 0.6Ω, but at the transition temperature, the resistance value rises sharply and the maximum resistance value is 3 × 10 7 Ω. It can be seen that the rate of change is a high value of 10 8 or more.

【0039】また、最大抵抗値を呈する176℃以上の
温度においても抵抗値の低下はなく、サンプルの熱によ
る変形は生じなかった。
Further, even at a temperature of 176 ° C. or more where the maximum resistance was exhibited, the resistance did not decrease and the sample did not deform due to heat.

【0040】このように本実施例の有機質正特性サーミ
スタは、常温での抵抗値が低く、かつ、急峻なPTC特
性を持つものである。
As described above, the organic positive temperature coefficient thermistor of this embodiment has a low resistance value at room temperature and has a steep PTC characteristic.

【0041】実施例2 多数の突起を有する球状Niパウダーの含有量を20重
量部とした他は、実施例1と同様にして円板状のサンプ
ルを形成した。
Example 2 A disk-shaped sample was formed in the same manner as in Example 1 except that the content of the spherical Ni powder having many projections was changed to 20 parts by weight.

【0042】このサンプルに対し、実施例1と同様にし
てPTC特性を測定し、図4に示す測定結果を得た。図
4から明らかなように、常温での抵抗値は1.4Ωと低
い値でありながら、転移温度では抵抗値が急激に上昇し
て、最大抵抗値は5×107Ωになり、変化率は107
以上の高い値になった。
The PTC characteristics of this sample were measured in the same manner as in Example 1, and the measurement results shown in FIG. 4 were obtained. As is clear from FIG. 4, the resistance value at room temperature is as low as 1.4Ω, but at the transition temperature, the resistance value rises rapidly, the maximum resistance value becomes 5 × 10 7 Ω, and the rate of change is Is 10 7
It was higher than the above.

【0043】実施例3 多数の突起を有する球状Niパウダーの含有量を60重
量部とした他は、実施例1と同様にして円板状のサンプ
ルを形成した。
Example 3 A disk-shaped sample was formed in the same manner as in Example 1, except that the content of the spherical Ni powder having many projections was changed to 60 parts by weight.

【0044】このサンプルに対し、実施例1と同様にし
てPTC特性を測定し、図5に示す測定結果を得た。図
5から明らかなように、常温での抵抗値は0.07Ωと
非常に低い値でありながら、転移温度では抵抗値が急激
に上昇して、最大抵抗値は3×106 Ω・cmになり、
その変化率は108 以上の高い値になった。
The PTC characteristics of this sample were measured in the same manner as in Example 1, and the measurement results shown in FIG. 5 were obtained. As is clear from FIG. 5, the resistance value at room temperature is a very low value of 0.07Ω, but at the transition temperature, the resistance value rises sharply, and the maximum resistance value becomes 3 × 10 6 Ω · cm. Become
The rate of change was as high as 10 8 or more.

【0045】実施例4 結晶性重合体としてポリフッ化ビニリデンを用い、導電
性物質としてフィラメント状鎖状Niパウダー(平均粒
径2.2乃至2.8μm、インコ・リミテッド製)を用
い、該ポリフッ化ビニリデンに対してフィラメント状鎖
状Niパウダーを30重量部の割合で加え、ラボプラス
トミルで混練後、厚さ0.7mmのシートにプレス成形
し、その後架橋処理を施した。
Example 4 Polyvinylidene fluoride was used as the crystalline polymer, and filamentous chain Ni powder (average particle size of 2.2 to 2.8 μm, manufactured by Inco Limited) was used as the conductive substance. Filament-like chain Ni powder was added to vinylidene at a ratio of 30 parts by weight, kneaded with a lab plast mill, pressed into a sheet having a thickness of 0.7 mm, and then subjected to a crosslinking treatment.

【0046】さらに、この成形品の両面に電極としてN
i箔を圧着し直径10mmの円板状に打ち抜いてサンプ
ルとした。
Further, on both surfaces of this molded product, N
The i-foil was pressed and punched out into a disk having a diameter of 10 mm to obtain a sample.

【0047】次に、このサンプルについてPTC特性を
測定した。この測定に当たっては、前記サンプルを恒温
槽内で温度上昇及び下降を行い、各所定温度における抵
抗値を測定し、温度と抵抗値の関係を求めた。この測定
結果を図6に示す。
Next, the PTC characteristics of this sample were measured. In this measurement, the temperature of the sample was raised and lowered in a thermostat, the resistance at each predetermined temperature was measured, and the relationship between the temperature and the resistance was obtained. FIG. 6 shows the measurement results.

【0048】図6に示す測定結果から、常温での抵抗値
は0.5Ωと非常に低い値でありながら、転移温度では
抵抗値が急激に上昇して、最大抵抗値は2×107 Ωに
なり、抵抗変化率は108 以上の高い値になっているこ
とが分かる。
From the measurement results shown in FIG. 6, the resistance value at room temperature is a very low value of 0.5Ω, but at the transition temperature, the resistance value rises sharply and the maximum resistance value is 2 × 10 7 Ω. It can be seen that the resistance change rate is a high value of 10 8 or more.

【0049】また、最大抵抗値を呈する176℃以上の
温度においても抵抗値の低下はなく、サンプルの熱によ
る変形は生じなかった。
The resistance did not decrease even at a temperature of 176 ° C. or higher where the maximum resistance was exhibited, and the sample did not deform due to heat.

【0050】このように本実施例の有機質正特性サーミ
スタは、常温での抵抗値が低く、かつ、急峻なPTC特
性を持つものである。
As described above, the organic positive temperature coefficient thermistor of this embodiment has a low resistance value at room temperature and has a steep PTC characteristic.

【0051】実施例5 フィラメント状鎖状Niパウダーの含有量を20重量部
とした他は、実施例4と同様にして円板状のサンプルを
形成した。
Example 5 A disk-shaped sample was formed in the same manner as in Example 4, except that the content of the filamentous chain Ni powder was changed to 20 parts by weight.

【0052】このサンプルに対し、実施例1と同様にし
てPTC特性を測定し、図7に示す測定結果を得た。図
7から明らかなように、常温での抵抗値は1.2Ωと低
い値でありながら、転移温度では抵抗値が急激に上昇し
て、最大抵抗値は4×107Ωになり、変化率は107
以上の高い値になった。
The PTC characteristics of this sample were measured in the same manner as in Example 1, and the measurement results shown in FIG. 7 were obtained. As is clear from FIG. 7, the resistance value at room temperature is as low as 1.2Ω, but at the transition temperature, the resistance value rises rapidly, the maximum resistance value becomes 4 × 10 7 Ω, and the rate of change is Is 10 7
It was higher than the above.

【0053】実施例6 フィラメント状鎖状Niパウダーの含有量を60重量部
とした他は、実施例4と同様にして円板状のサンプルを
形成した。
Example 6 A disk-shaped sample was formed in the same manner as in Example 4, except that the content of the filamentous chain Ni powder was changed to 60 parts by weight.

【0054】このサンプルに対し、実施例1と同様にし
てPTC特性を測定し、図8に示す測定結果を得た。図
8から明らかなように、常温での抵抗値は0.05Ωと
非常に低い値でありながら、転移温度では抵抗値が急激
に上昇して、最大抵抗値は2×106 Ω・cmになり、
その変化率は108 以上の高い値になった。
The PTC characteristics of this sample were measured in the same manner as in Example 1, and the measurement results shown in FIG. 8 were obtained. As is clear from FIG. 8, the resistance value at room temperature is a very low value of 0.05Ω, but at the transition temperature, the resistance value rises sharply, and the maximum resistance value becomes 2 × 10 6 Ω · cm. Become
The rate of change was as high as 10 8 or more.

【0055】比較例1 導電性物質をカーボンブラックとして含有量を40重量
部とした他は、実施例3と同様にして比較サンプルを作
成した。この比較サンプルの測定結果を図9に示す。図
9から明らかなように、常温での抵抗値は0.2Ω程
度、最大抵抗値は4×104 Ω・cmであり、変化率は
105 程度であった。
Comparative Example 1 A comparative sample was prepared in the same manner as in Example 3 except that the conductive substance was carbon black and the content was 40 parts by weight. FIG. 9 shows the measurement results of this comparative sample. As is clear from FIG. 9, the resistance at room temperature was about 0.2 Ω, the maximum resistance was 4 × 10 4 Ω · cm, and the rate of change was about 10 5 .

【0056】比較例2 導電性物質を真球状Niパウダー(平均粒径3μm、イ
ンコ・リミテッド製)としたほかは、実施例1と同様に
して比較サンプルを作成した。この比較サンプルの測定
結果を図10に示す。図10から明らかなように、この
比較サンプルの常温での抵抗値は9×104 Ω程度、最
大抵抗値は4×108 Ωであり、変化率は103 程度で
あった。
Comparative Example 2 A comparative sample was prepared in the same manner as in Example 1 except that the conductive substance was a spherical Ni powder (average particle size: 3 μm, manufactured by Inco Limited). FIG. 10 shows the measurement results of this comparative sample. As is clear from FIG. 10, the resistance value of this comparative sample at room temperature was about 9 × 10 4 Ω, the maximum resistance value was 4 × 10 8 Ω, and the rate of change was about 10 3 .

【0057】以上詳述したように、本実施例の有機質正
特性サーミスタは、導電性物質としての多数の突起を有
する球状Niパウダー又はフィラメント状鎖状Niパウ
ダーの充填量が比較的少ないにもかかわらず、常温での
低い抵抗値と、急峻なPTC特性の両方を併せ持ち、ヒ
ータ等に適用して好適である。
As described in detail above, the organic positive temperature coefficient thermistor of the present embodiment has a relatively small amount of spherical Ni powder or filamentary chain Ni powder having a large number of protrusions as a conductive substance. Instead, it has both low resistance at room temperature and steep PTC characteristics, and is suitable for application to heaters and the like.

【0058】本発明は、上述した実施例に限定されるも
のではなく、その要旨の範囲内で種々の変形が可能であ
る。
The present invention is not limited to the embodiments described above, and various modifications are possible within the scope of the invention.

【0059】[0059]

【発明の効果】以上詳述した本発明によれば、上述した
構成としたことにより、以下の効果を奏する。
According to the present invention described in detail above, the following effects can be obtained by employing the above-described configuration.

【0060】請求項1記載の発明によれば、充填材とし
て真球状の導電性物質を用いた場合に比べ、多数の突起
を有する球状Niパウダーでは、トンネル電流が流れや
すいので導電性が良好となって、常温での初期抵抗値が
小さく、導電性粒子同士の間隔が比較的大きいので容易
に導電路が寸断されPTC特性の立ち上がりが急峻で大
きな抵抗値変化を呈する有機質正特性サーミスタを得る
ことができる製造方法を提供することができる。
According to the first aspect of the present invention, a spherical Ni powder having a large number of protrusions has a good conductivity since tunnel current flows easily in the spherical Ni powder having a large number of protrusions as compared with a case where a spherical conductive material is used as a filler. As a result, an organic positive temperature coefficient thermistor having a small initial resistance value at normal temperature and a relatively large spacing between conductive particles, easily breaking a conductive path, sharply rising a PTC characteristic and exhibiting a large resistance value change. The manufacturing method which can do it can be provided.

【0061】請求項4記載の発明によれば、充填材とし
て真球状の導電性物質を用いた場合に比べ、多数の突起
を有する球状Niパウダーが連結された形状の導電性物
質の場合、突起を有するのでトンネル電流が流れ易く、
導電性が良好となって、常温での初期抵抗値が小さく、
また、導電性粒子間隔が比較的大きいため、導電路が寸
断され易く、PTC特性の立ち上がりが急峻で大きな抵
抗値変化を呈する有機質正特性サーミスタを得ることが
できる製造方法を提供することができる。
According to the fourth aspect of the present invention, in the case of a conductive material having a shape in which spherical Ni powders having a large number of protrusions are connected, the protrusions can be compared with a case where a spherical conductive material is used as the filler. The tunnel current easily flows,
Good conductivity, low initial resistance at room temperature,
In addition, since the distance between the conductive particles is relatively large, the conductive path is easily broken, and the manufacturing method can provide an organic positive temperature coefficient thermistor in which the rise of the PTC characteristic is steep and a large change in resistance is exhibited.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施の形態の有機質正特性サー
ミスタの組織を示す顕微鏡写真
FIG. 1 is a micrograph showing the structure of an organic positive temperature coefficient thermistor according to a first embodiment of the present invention.

【図2】本発明の第2の実施の形態の有機質正特性サー
ミスタの組織を示す顕微鏡写真
FIG. 2 is a micrograph showing the structure of an organic positive temperature coefficient thermistor according to a second embodiment of the present invention.

【図3】実施例1の有機質正特性サーミスタの抵抗温度
特性を示すグラフ
FIG. 3 is a graph showing resistance temperature characteristics of the organic positive temperature coefficient thermistor of Example 1.

【図4】実施例2の有機質正特性サーミスタの抵抗温度
特性を示すグラフ
FIG. 4 is a graph showing resistance temperature characteristics of the organic positive temperature coefficient thermistor of Example 2.

【図5】実施例3の有機質正特性サーミスタの抵抗温度
特性を示すグラフ
FIG. 5 is a graph showing resistance-temperature characteristics of the organic positive temperature coefficient thermistor of Example 3.

【図6】実施例4の有機質正特性サーミスタの抵抗温度
特性を示すグラフ
FIG. 6 is a graph showing resistance temperature characteristics of the organic positive temperature coefficient thermistor of Example 4.

【図7】実施例5の有機質正特性サーミスタの抵抗温度
特性を示すグラフ
FIG. 7 is a graph showing resistance temperature characteristics of the organic positive temperature coefficient thermistor of Example 5.

【図8】実施例6の有機質正特性サーミスタの抵抗温度
特性を示すグラフ
FIG. 8 is a graph showing resistance temperature characteristics of the organic positive temperature coefficient thermistor of Example 6.

【図9】比較例1の有機質正特性サーミスタの抵抗温度
特性を示すグラフ
FIG. 9 is a graph showing resistance-temperature characteristics of the organic positive temperature coefficient thermistor of Comparative Example 1.

【図10】比較例2の有機質正特性サーミスタの抵抗温
度特性を示すグラフ
FIG. 10 is a graph showing the resistance temperature characteristics of the organic positive temperature coefficient thermistor of Comparative Example 2.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 結晶性重合体に導電性物質が分散された
サーミスタ素体を有する有機質正特性サーミスタの製造
方法において、前記導電性物質として、多数の突起が形
成された球状のNiパウダーを用意し、これを結晶性重
合体に混練してサーミスタ素体を得る工程を含むことを
特徴とする有機質正特性サーミスタの製造方法。
1. A method for producing an organic positive temperature coefficient thermistor having a thermistor element in which a conductive substance is dispersed in a crystalline polymer, wherein a spherical Ni powder having a large number of projections is prepared as the conductive substance. And kneading the mixture with a crystalline polymer to obtain a thermistor body. A method for producing an organic positive temperature coefficient thermistor, comprising:
【請求項2】 前記Niパウダーは見掛け密度が1.8
〜2.7g/ccの範囲内にあることを特徴とする請求
項1記載の有機質正特性サーミスタの製造方法。
2. The Ni powder has an apparent density of 1.8.
The method for producing an organic positive temperature coefficient thermistor according to claim 1 , wherein the temperature is in the range of -2.7 g / cc.
【請求項3】 前記Niパウダーは、比表面積が0.3
〜0.44(m2/g)の範囲内であることを特徴とす
る請求項1又は2記載の有機質正特性サーミスタの製造
方法。
3. The Ni powder has a specific surface area of 0.3.
3. The method for producing an organic positive temperature coefficient thermistor according to claim 1, wherein the temperature is within a range of 0.44 (m 2 / g). 4.
【請求項4】 結晶性重合体に導電性物質が分散された
サーミスタ素体を有する有機質正特性サーミスタの製造
方法において、前記導電性物質として、多数の突起が形
成された球状のNiパウダーが鎖状に連結された鎖状N
iパウダーを用意し、これを結晶性重合体に混練してサ
ーミスタ素体を得る工程を含むことを特徴とする有機質
正特性サーミスタの製造方法。
4. A method for producing an organic positive temperature coefficient thermistor having a thermistor body in which a conductive substance is dispersed in a crystalline polymer, wherein the conductive substance comprises a chain of spherical Ni powder having a large number of projections formed thereon. Chain N linked in a circle
A method for producing an organic positive temperature coefficient thermistor, comprising a step of preparing i powder and kneading it with a crystalline polymer to obtain a thermistor body.
【請求項5】 前記鎖状Niパウダーは、見掛け密度
が、0.5〜0.95(g/cc)の範囲内であること
を特徴とする請求項4記載の有機質正特性サーミスタの
製造方法。
5. The method for producing an organic positive temperature coefficient thermistor according to claim 4, wherein said chain Ni powder has an apparent density in a range of 0.5 to 0.95 (g / cc). .
【請求項6】 前記鎖状Niパウダーは、比表面積が
0.58〜0.63(m2/g)の範囲内であることを
特徴とする請求項4又は5記載の有機質正特性サーミス
タの製造方法。
6. The organic positive temperature coefficient thermistor according to claim 4, wherein the chain Ni powder has a specific surface area in a range of 0.58 to 0.63 (m 2 / g). Production method.
JP31754299A 1999-11-08 1999-11-08 Manufacture of organic positive temperature coefficient thermistor Pending JP2000133503A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31754299A JP2000133503A (en) 1999-11-08 1999-11-08 Manufacture of organic positive temperature coefficient thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31754299A JP2000133503A (en) 1999-11-08 1999-11-08 Manufacture of organic positive temperature coefficient thermistor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP3225065A Division JP3022644B2 (en) 1991-08-09 1991-08-09 Organic positive temperature coefficient thermistor

Publications (1)

Publication Number Publication Date
JP2000133503A true JP2000133503A (en) 2000-05-12

Family

ID=18089425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31754299A Pending JP2000133503A (en) 1999-11-08 1999-11-08 Manufacture of organic positive temperature coefficient thermistor

Country Status (1)

Country Link
JP (1) JP2000133503A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1376623A2 (en) * 2002-06-24 2004-01-02 TDK Corporation PTC Thermistor Body, PTC Thermistor, Method of Making PTC Thermistor Body, and Method of Making PTC Thermistor
WO2005098876A1 (en) * 2004-04-03 2005-10-20 Daimlerchrysler Ag Electrical component
US7368069B2 (en) 2002-02-08 2008-05-06 Tdk Corporation PTC thermistor

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7368069B2 (en) 2002-02-08 2008-05-06 Tdk Corporation PTC thermistor
EP1376623A2 (en) * 2002-06-24 2004-01-02 TDK Corporation PTC Thermistor Body, PTC Thermistor, Method of Making PTC Thermistor Body, and Method of Making PTC Thermistor
EP1376623A3 (en) * 2002-06-24 2004-11-03 TDK Corporation PTC Thermistor Body, PTC Thermistor, Method of Making PTC Thermistor Body, and Method of Making PTC Thermistor
US7019613B2 (en) 2002-06-24 2006-03-28 Tdk Corporation PTC thermistor body, PTC thermistor, method of making PTC thermistor body, and method of making PTC thermistor
EP1752993A3 (en) * 2002-06-24 2008-04-23 TDK Corporation PTC thermistor body and PTC thermistor
WO2005098876A1 (en) * 2004-04-03 2005-10-20 Daimlerchrysler Ag Electrical component

Similar Documents

Publication Publication Date Title
JP3022644B2 (en) Organic positive temperature coefficient thermistor
JP3701113B2 (en) Organic positive temperature coefficient thermistor
JPH0777161B2 (en) PTC composition, method for producing the same and PTC element
JP2000133503A (en) Manufacture of organic positive temperature coefficient thermistor
JP2007531217A (en) Conductive composition for producing flexible carbon heating structure, flexible carbon heating structure using the same, and method for producing the same
JP2000133502A (en) Organic positive temperature coefficient thermistor
JP3914899B2 (en) PTC thermistor body, PTC thermistor, method for manufacturing PTC thermistor body, and method for manufacturing PTC thermistor
JP3022645B2 (en) Organic positive temperature coefficient thermistor
CN107967973A (en) Positive temperature coefficient resistor body composition, paste, the manufacture method of resistive element and resistive element
JP2003133103A (en) Method of manufacturing organic positive characteristic thermistor
JP2810351B2 (en) Organic positive temperature coefficient thermistor
JP2876125B2 (en) Low resistance PTC element
JP3028979B2 (en) Organic positive temperature coefficient thermistor
JPS63184303A (en) Manufacture of ptc compound
JP4623778B2 (en) Method for producing carbon-based heating element
US6602438B2 (en) Structure for polymeric thermistor and method of making the same
JP2734253B2 (en) Positive resistance temperature coefficient heating element
CN115386194B (en) Recoverable thermal protector plate and preparation method thereof
JPH01169901A (en) Positive resistance temperature characteristic resistor
JP2007036045A (en) Ptc element and method for manufacturing the same
JP2734250B2 (en) Positive resistance temperature coefficient heating element
JPS5910553B2 (en) heating element
JPH05234707A (en) Resistance material with positive temperature coefficient
JP4170980B2 (en) POLYMER PTC ELEMENT AND POLYMER PTC ELEMENT
JPH0547502A (en) Organic positive temperature coefficient thermistor

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20020924