JP3022644B2 - Organic positive temperature coefficient thermistor - Google Patents

Organic positive temperature coefficient thermistor

Info

Publication number
JP3022644B2
JP3022644B2 JP3225065A JP22506591A JP3022644B2 JP 3022644 B2 JP3022644 B2 JP 3022644B2 JP 3225065 A JP3225065 A JP 3225065A JP 22506591 A JP22506591 A JP 22506591A JP 3022644 B2 JP3022644 B2 JP 3022644B2
Authority
JP
Japan
Prior art keywords
temperature coefficient
coefficient thermistor
positive temperature
organic positive
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3225065A
Other languages
Japanese (ja)
Other versions
JPH0547503A (en
Inventor
洋志 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=16823489&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JP3022644(B2) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP3225065A priority Critical patent/JP3022644B2/en
Publication of JPH0547503A publication Critical patent/JPH0547503A/en
Application granted granted Critical
Publication of JP3022644B2 publication Critical patent/JP3022644B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Thermistors And Varistors (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、有機質正特性サーミス
タに関し、より詳しくは、昇温時特定の温度領域で急激
に抵抗値が増大する特性、即ち、PTC(Positive Tem
perature Coefficient)特性を有する有機質正特性サー
ミスタに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an organic positive temperature coefficient thermistor.
The present invention relates to an organic positive temperature coefficient thermistor having characteristics (perature Coefficient).

【0002】[0002]

【従来の技術】従来、ポリエチレン又はポリプロピレン
等の結晶性重合体に、金属微粉末やカーボンブラック等
を分散させたPTC特性を有する有機質正特性サーミス
タはこの技術分野では公知である。例えば、米国特許第
3591526号明細書及び同第3673121 号明細書などに開示
されている。
2. Description of the Related Art Conventionally, an organic positive temperature coefficient thermistor having PTC characteristics in which a fine metal powder, carbon black or the like is dispersed in a crystalline polymer such as polyethylene or polypropylene is known in the art. For example, U.S. Patent No.
It is disclosed in the specifications of No. 3591526 and No. 3673121.

【0003】ところで、PTC特性は結晶性重合体がそ
の融点において、結晶質から非晶質に変化する際に急激
な体積膨脹を示すため、その中に分散された導電性微粉
末の粒子同士の間隔が押し広げられて粒子間の接触抵抗
が急激に増大するために生ずる。
[0003] By the way, the PTC characteristic shows a sharp volume expansion when the crystalline polymer changes from crystalline to amorphous at the melting point, so that the particles of the conductive fine powder dispersed in the crystalline polymer are dispersed. This occurs because the spacing is expanded and the contact resistance between the particles increases rapidly.

【0004】このような有機質正特性サーミスタは、例
えば、温度検出器あるいは自己制御型ヒーター等として
利用し得るが、この有機質正特性サーミスタに要求され
る性能はPTC特性の立ち上がりが急峻で大きな抵抗値
変化を示し、しかも室温での初期抵抗値が小さいことが
必要である。
Such an organic positive temperature coefficient thermistor can be used, for example, as a temperature detector or a self-control type heater. However, the performance required of the organic positive temperature coefficient thermistor is such that the rise of the PTC characteristic is steep and a large resistance value is obtained. It is necessary to show a change and to have a small initial resistance value at room temperature.

【0005】[0005]

【発明が解決しようとする課題】しかし、従来の有機質
正特性サーミスタにおいては、カーボンブラックを導電
性物質として充填することが多く、この場合初期抵抗値
を小さくするためにはその充填量を大きくする必要があ
った。このような場合には抵抗変化率が小さくなりヒー
ター等への適用は困難になるという問題があった。
However, conventional organic positive temperature coefficient thermistors are often filled with carbon black as a conductive substance. In this case, the filling amount is increased to reduce the initial resistance value. Needed. In such a case, there has been a problem that the rate of change in resistance becomes small and application to a heater or the like becomes difficult.

【0006】また、一般の金属微粉末粒子を導電性物質
として充填したものも知られているが、この場合にも、
同様に初期抵抗値を小さくするためにその充填量を大き
くする必要があり、また、このような場合に大きく変化
率が得られないため、実用化に至っていない。
[0006] In addition, there is also known one in which general metal fine powder particles are filled as a conductive substance.
Similarly, in order to reduce the initial resistance value, it is necessary to increase the filling amount, and in such a case, a large change rate cannot be obtained, so that it has not been practically used.

【0007】そこで、本発明は、室温での初期抵抗値が
小さく、PTC特性の立ち上がりが急峻で大きな抵抗値
変化を示す有機質正特性サーミスタを提供することを目
的とするものである。
Accordingly, an object of the present invention is to provide an organic positive temperature coefficient thermistor having a small initial resistance value at room temperature, a sharp rise in PTC characteristics and a large change in resistance value.

【0008】[0008]

【課題を解決するための手段】請求項1記載の有機質正
特性サーミスタは、サーミスタ素体として結晶性重合体
に充填剤としての導電性粒子を含む有機質正特性サーミ
スタにおいて、前記導電性粒子は、多数の突起が形成さ
れた球状のNiパウダーからなることを特徴とするもの
である。
The organic positive temperature coefficient thermistor according to claim 1 is a crystalline polymer as a thermistor body.
Organic positive temperature coefficient thermistor containing conductive particles as filler
In the star, the conductive particles have a large number of protrusions formed.
Characterized in that it is formed of a spherical Ni powder .

【0009】請求項2記載の有機質正特性サーミスタ
は、サーミスタ素体として結晶性重合体に充填剤として
の導電性粒子を含む有機質正特性サーミスタにおいて、
前記導電性粒子として多数の突起が形成された球状のN
iパウダーを有し、該Niパウダーは鎖状に連結されて
いることを特徴とするものである。
[0009] The organic positive temperature coefficient thermistor according to claim 2 is used as a thermistor element as a filler in a crystalline polymer.
An organic positive temperature coefficient thermistor containing conductive particles of
Spherical N on which a large number of protrusions are formed as the conductive particles
i powder, wherein the Ni powder is linked in a chain.
It is characterized by having.

【0010】[0010]

【作用】請求項1記載の有機質正特性サーミスタによれ
ば、結晶性重合体に、多数の突起を有する球状Niパウ
ダー充填したものであるから、真球状の導電性粒子を
充填した場合に比べ、多数の突起を有する球状Niパウ
ダー同士では、その形状故にトンネル電流が流れやす
く、これにより、導電性が良好となって、常温での初期
抵抗値が小さく、また、導電性粒子同士の間隔が球状の
ものに比べて大きいのでPTC特性の立ち上がりが急峻
で大きな抵抗値変化を呈する。
According to the organic positive temperature coefficient thermistor according to claim 1, a spherical Ni powder having a large number of projections on a crystalline polymer is provided.
Since those filled with loaders, compared with a case filled with conductive spherical particles, spherical Ni Pau with multiple projections
Since the tunnel current flows easily due to the shape of the particles, the conductivity becomes good, the initial resistance value at room temperature is small, and the distance between the conductive particles is larger than that of the spherical particles. The rise of the PTC characteristic is steep and exhibits a large change in resistance value.

【0011】請求項2記載の有機質正特性サーミスタに
よれば、結晶性重合体に、多数の突起を有する球状Ni
パウダーが鎖状に連結された形状の導電性物質を充填
たものであるから、真球状の導電性粒子を充填した場合
に比べ、多数の突起を有しかつ、鎖状につながっている
ので、トンネル電流がより多く流れ、これにより、導電
性が良好となって、常温での初期抵抗値が小さく、ま
た、導電性粒子同士の間隔が球状のものに比べて大き
いのでPTC特性の立ち上がりが急峻で大きな抵抗値変
化を呈する。
According to the organic positive temperature coefficient thermistor of the second aspect, the crystalline polymer has a spherical Ni having a large number of protrusions.
Since the powder is filled with a conductive material having a shape linked in a chain, the powder has a large number of protrusions and has a chain shape as compared with the case where the powder is filled with spherical conductive particles. Since they are connected, a larger amount of tunnel current flows, thereby improving the conductivity, reducing the initial resistance value at room temperature, and increasing the spacing between the conductive particles as compared to a true spherical particle. The rise of the PTC characteristic is steep and exhibits a large change in resistance value.

【0012】[0012]

【実施例】以下に本発明の実施例を詳細に説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail.

【0013】第1の実施例の有機質正特性サーミスタ
は、結晶性重合体と、この結晶性重合体に導電性物質と
して混練した多数の突起を有する所定量の球状Niパウ
ダーからなるものである。この有機質正特性サーミスタ
の顕微鏡写真を図1に示す。
An organic positive temperature coefficient thermistor according to a first embodiment comprises a crystalline polymer and a predetermined amount of spherical Ni powder having a large number of projections kneaded as a conductive substance with the crystalline polymer.
It consists of dar . A micrograph of this organic positive temperature coefficient thermistor is shown in FIG.

【0014】図1に示す写真から明らかなように、本実
施例の有機質正特性サーミスタによれば、多数の導電性
粒子のスパイク状の突起があるが故にトンネル電流が流
れやすく、これにより、導電性が良好となって、常温で
の初期抵抗値が小さく、導電性粒子同士の間隔が球状の
ものに比べて大きいので接触点が容易に切れてPTC特
性の立ち上がりが急峻で大きな抵抗値変化を得ることが
できる。
As is apparent from the photograph shown in FIG. 1, according to the organic positive temperature coefficient thermistor of this embodiment, a tunnel current easily flows due to the presence of a large number of spike-like projections of conductive particles. The resistance is good, the initial resistance at room temperature is small, and the distance between conductive particles is large compared to spherical ones. Obtainable.

【0015】前記結晶性重合体としては、ポリフッ化ビ
ニリデンを用いる。
As the crystalline polymer, polyvinylidene fluoride is used.

【0016】結晶性重合体としては、ポリフッ化ビニリ
デンの他、ポリエチレン,ポリエチレンオキシド、t−
4−ポリプタジエン,ポリエチレンアクリレート,エチ
レン−エチルアクリレート共重合体,エチレン−アクリ
ル酸共重合体,ポリエステル,ポリアミド,ポリエーテ
ル,ポリカブロラクタム,フッ素化エチレン−プロピレ
ン共重合体,塩素化ポリエチレン,クロロスルホン化エ
チレン,エチレン−酢酸ビニル共重合体,ポリプロピレ
ン,ポリスチレン,スチレン−アクリロニトリル共重合
体,ポリ塩化ビニル,ポリカーボネート,ポリアセター
ル,ポリアルキレンオキシド,ポリフェニレンオキシ
ド,ポリスルホン,フッ素樹脂等がある。
Examples of the crystalline polymer include polyvinylidene fluoride, polyethylene, polyethylene oxide, t-
4-polybutadiene, polyethylene acrylate, ethylene-ethyl acrylate copolymer, ethylene-acrylic acid copolymer, polyester, polyamide, polyether, polycaprolactam, fluorinated ethylene-propylene copolymer, chlorinated polyethylene, chlorosulfonated Examples include ethylene, ethylene-vinyl acetate copolymer, polypropylene, polystyrene, styrene-acrylonitrile copolymer, polyvinyl chloride, polycarbonate, polyacetal, polyalkylene oxide, polyphenylene oxide, polysulfone, and fluororesin.

【0017】結晶性重合体の種類は所望の性能,用途等
に応じて適宜選択することができる。
The type of the crystalline polymer can be appropriately selected according to the desired performance, application and the like.

【0018】前記スパイク状の突起を有する導電性粒子
としては、多数の突起を有する球状Niパウダー(イン
コ・リミテッド製)を用いる。
As the conductive particles having spike-like projections, spherical Ni powder (manufactured by Inco Limited) having many projections is used.

【0019】このNiパウダーは、例えばカーボニル法
により製造されるものであり、99.99%の純度のニ
ッケルカーボニルに対し下記化学式に示す変換を行った
ものである。
The Ni powder is produced, for example, by the carbonyl method, and is obtained by converting nickel carbonyl having a purity of 99.99% by the following chemical formula.

【0020】Ni(CO)4 →Ni+4CO その平均粒径は3乃至7μm(フィッシュー・サブシー
ブ法で測定)、見掛け密度は1.8乃至2.7(g/c
c)、比表面積は0.34乃至0.44(m2 /g)の
各物理的特性を有する。
Ni (CO) 4 → Ni + 4CO The average particle size is 3 to 7 μm (measured by fish-sub-sieve method), and the apparent density is 1.8 to 2.7 (g / c).
c) The specific surface area has physical properties of 0.34 to 0.44 (m 2 / g).

【0021】次に、第2の実施例について説明する。Next, a second embodiment will be described.

【0022】第2の実施例の有機質正特性サーミスタ
は、結晶性重合体と、この結晶性重合体に、導電性物質
として多数の突起を有する球状Niパウダーが連結した
形状をのものを充填して得られるものである。
The organic positive temperature coefficient thermistor of the second embodiment is filled with a crystalline polymer and a conductive polymer having a shape in which a spherical Ni powder having a large number of projections is connected as a conductive substance. It can be obtained by

【0023】この有機質正特性サーミスタの顕微鏡写真
を図2に示す。
FIG. 2 shows a micrograph of the organic positive temperature coefficient thermistor.

【0024】図2に示す写真から明らかなように、本実
施例の有機質正特性サーミスタによれば、導電性物質の
各々のスパイク状の突起がトンネル電流を流し易くし、
これにより、導電性が良好となって、常温での初期抵抗
値が小さく、導電性粒子同士の間隔が大きいので、容易
に導電経路が寸断されるのでPTC特性の立ち上がりが
急峻で大きな抵抗値変化を得ることができる。
As is clear from the photograph shown in FIG. 2, according to the organic positive temperature coefficient thermistor of the present embodiment, each spike-like projection of the conductive material facilitates the flow of tunnel current,
As a result, the conductivity becomes good, the initial resistance value at room temperature is small, and the distance between the conductive particles is large, so that the conductive path is easily cut off. Can be obtained.

【0025】前記結晶性重合体としては、ポリフッ化ビ
ニリデンを用いることは第1の実施例の場合と同様であ
る。
The use of polyvinylidene fluoride as the crystalline polymer is the same as in the first embodiment.

【0026】前記各導電性物質としては、フィラメント
状鎖状Niパウダー(インコ・リミテッド製)を用い
る。
As each of the conductive materials, a filament-like chain Ni powder (manufactured by Inco Limited) is used.

【0027】このフィラメント状鎖状Niパウダーの平
均粒径は2.2乃至2.8μm(フィッシュー・サブシ
ーブ法で測定)、見掛け密度は0.5乃至0.95(g
/cc)、比表面積は0.58乃至0.63(m2
g)の各物理的特性を有する。
The average particle size of the filamentous chain Ni powder is 2.2 to 2.8 μm (measured by a fish-sub-sieve method), and the apparent density is 0.5 to 0.95 (g).
/ Cc), and the specific surface area is 0.58 to 0.63 (m 2 /
g) each physical property.

【0028】以下、さらに詳細に説明する。The details will be described below.

【0029】実施例1 結晶性重合体としてポリフッ化ビニリデンを用い、導電
性物質として多数の突起を有する球状Niパウダー(平
均粒径3.0乃至7.0μm、インコ・リミテッド製)
を用い、該ポリフッ化ビニリデンに対して前記Niパウ
ダーを30重量部の割合で加え、ラボプラストミル(東
洋精機製作所製)で混練後、厚さ0.7mmのシートに
プレス成形し、その後架橋処理を施した。
Example 1 Spherical Ni powder having a large number of protrusions as a conductive substance using polyvinylidene fluoride as a crystalline polymer (average particle size: 3.0 to 7.0 μm, manufactured by Inco Limited)
The above-mentioned Ni powder was added to the polyvinylidene fluoride at a ratio of 30 parts by weight, kneaded with a Labo Plastomill (manufactured by Toyo Seiki Seisaku-sho, Ltd.), and then pressed into a 0.7 mm-thick sheet, followed by a crosslinking treatment. Was given.

【0030】さらに、この成形品の両面に電極としてN
i箔を圧着し直径10mmの円板状に打ち抜いてサンプ
ルとした。
Further, N electrodes are formed on both sides of the molded product as electrodes.
The i-foil was pressed and punched out into a disk having a diameter of 10 mm to obtain a sample.

【0031】次に、このサンプルについてPTC特性を
測定した。この測定に当たっては、前記サンプルを恒温
槽内で温度上昇及び下降を行い、各所定温度における抵
抗値を測定し、温度と抵抗値の関係を求めた。この測定
結果を図3に示す。
Next, the PTC characteristics of this sample were measured. In this measurement, the temperature of the sample was raised and lowered in a thermostat, the resistance at each predetermined temperature was measured, and the relationship between the temperature and the resistance was obtained. FIG. 3 shows the measurement results.

【0032】図3に示す測定結果から、常温での抵抗値
は0.6Ωと非常に低い値でありながら、転移温度では
抵抗値が急激に上昇して、最大抵抗値は3×107 Ωに
なり、変化率は108 以上の高い値になっていることが
分かる。
From the measurement results shown in FIG. 3, the resistance value at room temperature is a very low value of 0.6Ω, but at the transition temperature, the resistance value rises sharply and the maximum resistance value is 3 × 10 7 Ω. It can be seen that the rate of change is a high value of 10 8 or more.

【0033】また、最大抵抗値を呈する176℃以上の
温度においても抵抗値の低下はなく、サンプルの熱によ
る変形は生じなかった。
Further, even at a temperature of 176 ° C. or higher where the maximum resistance was exhibited, the resistance did not decrease and the sample did not deform due to heat.

【0034】このように本実施例の有機質正特性サーミ
スタは、常温での抵抗値が低く、かつ、急峻なPTC特
性を持つものである。
As described above, the organic positive temperature coefficient thermistor of this embodiment has a low resistance value at room temperature and has a steep PTC characteristic.

【0035】実施例2多数の 突起を有する球状Niパウダーの含有量を20重
量部とした他は、実施例1と同様にして円板状のサンプ
ルを形成した。
Example 2 A disk-shaped sample was formed in the same manner as in Example 1, except that the content of the spherical Ni powder having many projections was changed to 20 parts by weight.

【0036】このサンプルに対し、実施例1と同様にし
てPTC特性を測定し、図4に示す測定結果を得た。図
4から明らかなように、常温での抵抗値は1.4Ωと低
い値でありながら、転移温度では抵抗値が急激に上昇し
て、最大抵抗値は5×107 Ωになり、変化率は107
以上の高い値になった。
The PTC characteristics of this sample were measured in the same manner as in Example 1, and the measurement results shown in FIG. 4 were obtained. As is clear from FIG. 4, the resistance value at room temperature is as low as 1.4Ω, but at the transition temperature, the resistance value rises rapidly, the maximum resistance value becomes 5 × 10 7 Ω, and the rate of change is Is 10 7
It was higher than the above.

【0037】実施例3多数の 突起を有する球状Niパウダーの含有量を60重
量部とした他は、実施例1と同様にして円板状のサンプ
ルを形成した。
Example 3 A disk-shaped sample was formed in the same manner as in Example 1 except that the content of the spherical Ni powder having many projections was changed to 60 parts by weight.

【0038】このサンプルに対し、実施例1と同様にし
てPTC特性を測定し、図5に示す測定結果を得た。図
5から明らかなように、常温での抵抗値は0.07Ωと
非常に低い値でありながら、転移温度では抵抗値が急激
に上昇して、最大抵抗値は3×106 Ω・cmになり、
その変化率は108 以上の高い値になった。
The PTC characteristics of this sample were measured in the same manner as in Example 1, and the measurement results shown in FIG. 5 were obtained. As is clear from FIG. 5, the resistance value at room temperature is a very low value of 0.07Ω, but at the transition temperature, the resistance value rises sharply, and the maximum resistance value becomes 3 × 10 6 Ω · cm. Become
The rate of change was as high as 10 8 or more.

【0039】実施例4 結晶性重合体としてポリフッ化ビニリデンを用い、導電
性物質としてフェラメント状鎖状Niパウダー(平均粒
径2.2乃至2.8μm、インコ・リミテッド製)を用
い、該ポリフッ化ビニリデンに対してフィラメント状鎖
状Niパウダーを30重量部の割合で加え、ラボプラス
トミルで混練後、厚さ0.7mmのシートにプレス成形
し、その後架橋処理を施した。
Example 4 Polyvinylidene fluoride was used as the crystalline polymer, and a fermented chain Ni powder (average particle size of 2.2 to 2.8 μm, manufactured by Inco Limited) was used as the conductive material. Filamentary chain Ni powder was added to vinylidene fluoride at a ratio of 30 parts by weight, kneaded with a Labo Plastomill, press-formed into a sheet having a thickness of 0.7 mm, and then subjected to a crosslinking treatment.

【0040】さらに、この成形品の両面に電極としてN
i箔を圧着し直径10mmの円板状に打ち抜いてサンプ
ルとした。
Further, N electrodes were formed on both surfaces of this molded product as electrodes.
The i-foil was pressed and punched out into a disk having a diameter of 10 mm to obtain a sample.

【0041】次に、このサンプルについてPTC特性を
測定した。この測定に当たっては、前記サンプルを恒温
槽内で温度上昇及び下降を行い、各所定温度における抵
抗値を測定し、温度と抵抗値の関係を求めた。この測定
結果を図6に示す。
Next, the PTC characteristics of this sample were measured. In this measurement, the temperature of the sample was raised and lowered in a thermostat, the resistance at each predetermined temperature was measured, and the relationship between the temperature and the resistance was obtained. FIG. 6 shows the measurement results.

【0042】図6に示す測定結果から、常温での抵抗値
は0.5Ωと非常に低い値でありながら、転移温度では
抵抗値が急激に上昇して、最大抵抗値は2×107 Ωに
なり、抵抗変化率は108 以上の高い値になっているこ
とが分かる。
From the measurement results shown in FIG. 6, the resistance value at room temperature is a very low value of 0.5Ω, but at the transition temperature, the resistance value rises sharply and the maximum resistance value is 2 × 10 7 Ω. It can be seen that the resistance change rate is a high value of 10 8 or more.

【0043】また、最大抵抗値を呈する176℃以上の
温度においても抵抗値の低下はなく、サンプルの熱によ
る変形は生じなかった。
The resistance did not decrease even at a temperature of 176 ° C. or higher where the maximum resistance was exhibited, and the sample did not deform due to heat.

【0044】このように本実施例の有機質正特性サーミ
スタは、常温での抵抗値が低く、かつ、急峻なPTC特
性を持つものである。
As described above, the organic positive temperature coefficient thermistor of this embodiment has a low resistance value at room temperature and a steep PTC characteristic.

【0045】実施例5 フェラメント状鎖状Niパウダーの含有量を20重量部
とした他は、実施例4と同様にして円板状のサンプルを
形成した。
Example 5 A disk-shaped sample was formed in the same manner as in Example 4, except that the content of the fermented chain Ni powder was changed to 20 parts by weight.

【0046】このサンプルに対し、実施例1と同様にし
てPTC特性を測定し、図7に示す測定結果を得た。図
7から明らかなように、常温での抵抗値は1.2Ωと低
い値でありながら、転移温度では抵抗値が急激に上昇し
て、最大抵抗値は4×107 Ωになり、変化率は107
以上の高い値になった。
The PTC characteristics of this sample were measured in the same manner as in Example 1, and the measurement results shown in FIG. 7 were obtained. As is clear from FIG. 7, the resistance value at room temperature is as low as 1.2Ω, but the resistance value rises rapidly at the transition temperature, the maximum resistance value becomes 4 × 10 7 Ω, and the rate of change is Is 10 7
It was higher than the above.

【0047】実施例6 フェラメント状鎖状Niパウダーの含有量を60重量部
とした他は、実施例4と同様にして円板状のサンプルを
形成した。
Example 6 A disk-shaped sample was formed in the same manner as in Example 4, except that the content of the fermented chain Ni powder was changed to 60 parts by weight.

【0048】このサンプルに対し、実施例1と同様にし
てPTC特性を測定し、図8に示す測定結果を得た。図
8から明らかなように、常温での抵抗値は0.05Ωと
非常に低い値でありながら、転移温度では抵抗値が急激
に上昇して、最大抵抗値は2×106 Ω・cmになり、
その変化率は108 以上の高い値になった。
The PTC characteristics of this sample were measured in the same manner as in Example 1, and the measurement results shown in FIG. 8 were obtained. As is clear from FIG. 8, the resistance value at room temperature is a very low value of 0.05Ω, but at the transition temperature, the resistance value rises sharply, and the maximum resistance value becomes 2 × 10 6 Ω · cm. Become
The rate of change was as high as 10 8 or more.

【0049】比較例1 導電性物質をカーボンブラックとして含有量を40重量
部とした他は、実施例3と同様にして比較サンプルを作
成した。この比較サンプルの測定結果を図9に示す。図
9から明らかなように、常温での抵抗値は0.2Ω程
度、最大抵抗値は4×104 Ω・cmであり、変化率は
105 程度であった。
Comparative Example 1 A comparative sample was prepared in the same manner as in Example 3, except that the conductive substance was carbon black and the content was 40 parts by weight. FIG. 9 shows the measurement results of this comparative sample. As is clear from FIG. 9, the resistance at room temperature was about 0.2 Ω, the maximum resistance was 4 × 10 4 Ω · cm, and the rate of change was about 10 5 .

【0050】比較例2 導電性物質を球状Niパウダー(平均粒径3μm、イ
ンコ・リミテッド製)としたほかは、実施例1と同様に
して比較サンプルを作成した。この比較サンプルの測定
結果を図10に示す。図10から明らかなように、この
比較サンプルの常温での抵抗値は9×104 Ω程度、最
大抵抗値は4×108 Ωであり、変化率は103 程度で
あった。
[0050] Comparative Example 2 conductive material spherical Ni powder (average particle size 3 [mu] m, manufactured by Inco Ltd.) and the other is created a comparative sample as described in Example 1. FIG. 10 shows the measurement results of this comparative sample. As is clear from FIG. 10, the resistance value of this comparative sample at room temperature was about 9 × 10 4 Ω, the maximum resistance value was 4 × 10 8 Ω, and the rate of change was about 10 3 .

【0051】以上詳述したように、本実施例の有機質正
特性サーミスタは、導電性物質としての多数の突起を有
する球状Niパウダー又はフィラメント状鎖状Niパウ
ダーの充填量が比較的少ないにもかかわらず、常温での
低い抵抗値と、急峻なPTC特性の両方を併せ持ち、ヒ
ータ等に適用して好適である。
As described in detail above, the organic positive temperature coefficient thermistor of this embodiment has a large number of protrusions as a conductive substance.
Despite having a relatively small amount of spherical Ni powder or filamentary chain Ni powder to be filled, it has both low resistance at room temperature and steep PTC characteristics and is suitable for application to heaters and the like.

【0052】本発明は、上述した実施例に限定されるも
のではなく、その要旨の範囲内で種々の変形が可能であ
る。
The present invention is not limited to the embodiments described above, and various modifications are possible within the scope of the invention.

【0053】[0053]

【発明の効果】以上詳述した本発明によれば、上述した
構成としたことにより、以下の効果を奏する。
According to the present invention described in detail above, the following effects can be obtained by employing the above-described configuration.

【0054】請求項1記載の発明によれば、充填材とし
て真球状の導電性物質を用いた場合に比べ、多数の突起
を有する球状Niパウダーでは、トンネル電流が流れや
すいので導電性が良好となって、常温での初期抵抗値が
小さく、導電性粒子同士の間隔が比較的大きいので容易
に導電路が寸断されPTC特性の立ち上がりが急峻で大
きな抵抗値変化を呈する有機質正特性サーミスタを提供
することができる。
According to the first aspect of the present invention, a spherical Ni powder having a large number of projections has a good conductivity since tunnel current flows easily in the spherical Ni powder having a large number of projections as compared with a case where a spherical conductive material is used as the filler. Accordingly, the present invention provides an organic positive temperature coefficient thermistor having a small initial resistance value at normal temperature and a relatively large distance between conductive particles, so that a conductive path is easily cut off, a rise in PTC characteristics is steep, and a large change in resistance value is exhibited. be able to.

【0055】請求項2記載の発明によれば、充填材とし
て真球状の導電性物質を用いた場合に比べ、多数の突起
を有する球状Niパウダーが連結された形状の導電性物
質の場合、突起を有するのでトンネル電流が流れ易く、
導電性が良好となって、常温での初期抵抗値が小さく、
また、導電性粒子間隔が比較的大きいため、導電路が寸
断され易く、PTC特性の立ち上がりが急峻で大きな抵
抗値変化を呈する有機質正特性サーミスタを提供するこ
とができる。
According to the second aspect of the present invention, as compared with the case where a spherical conductive material is used as the filler, the conductive material having the shape in which the spherical Ni powder having a large number of protrusions is connected has the protrusion. The tunnel current easily flows,
Good conductivity, low initial resistance at room temperature,
In addition, since the distance between the conductive particles is relatively large, the conductive path is easily broken, and the PTC characteristic rises steeply, and an organic positive temperature coefficient thermistor exhibiting a large change in resistance value can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の第1の実施例の有機質正特性サーミス
タの組織を示す顕微鏡写真
FIG. 1 is a micrograph showing the structure of an organic positive temperature coefficient thermistor according to a first embodiment of the present invention.

【図2】本発明の第2の実施例の有機質正特性サーミス
タの組織を示す顕微鏡写真
FIG. 2 is a micrograph showing the structure of an organic positive temperature coefficient thermistor according to a second embodiment of the present invention.

【図3】実施例1の有機質正特性サーミスタの抵抗温度
特性を示すグラフ
FIG. 3 is a graph showing resistance temperature characteristics of the organic positive temperature coefficient thermistor of Example 1.

【図4】実施例2の有機質正特性サーミスタの抵抗温度
特性を示すグラフ
FIG. 4 is a graph showing resistance temperature characteristics of the organic positive temperature coefficient thermistor of Example 2.

【図5】実施例3の有機質正特性サーミスタの抵抗温度
特性を示すグラフ
FIG. 5 is a graph showing resistance-temperature characteristics of the organic positive temperature coefficient thermistor of Example 3.

【図6】実施例4の有機質正特性サーミスタの抵抗温度
特性を示すグラフ
FIG. 6 is a graph showing resistance temperature characteristics of the organic positive temperature coefficient thermistor of Example 4.

【図7】実施例5の有機質正特性サーミスタの抵抗温度
特性を示すグラフ
FIG. 7 is a graph showing resistance temperature characteristics of the organic positive temperature coefficient thermistor of Example 5.

【図8】実施例6の有機質正特性サーミスタの抵抗温度
特性を示すグラフ
FIG. 8 is a graph showing resistance temperature characteristics of the organic positive temperature coefficient thermistor of Example 6.

【図9】比較例1の有機質正特性サーミスタの抵抗温度
特性を示すグラフ
FIG. 9 is a graph showing resistance-temperature characteristics of the organic positive temperature coefficient thermistor of Comparative Example 1.

【図10】比較例2の有機質正特性サーミスタの抵抗温
度特性を示すグラフ
FIG. 10 is a graph showing the resistance temperature characteristics of the organic positive temperature coefficient thermistor of Comparative Example 2.

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 サーミスタ素体として結晶性重合体に充
填剤としての導電性粒子を含む有機質正特性サーミスタ
において、 前記導電性粒子は、多数の突起が形成された球状のNi
パウダー からなることを特徴とする有機質正特性サーミ
スタ。
1. A crystalline polymer which is charged as a thermistor body.
Organic positive temperature coefficient thermistor containing conductive particles as filler
In the above, the conductive particles are formed of a spherical Ni on which a large number of protrusions are formed.
An organic positive temperature coefficient thermistor characterized by being made of powder .
【請求項2】 サーミスタ素体として結晶性重合体に充
填剤としての導電性粒子を含む有機質正特性サーミスタ
において、 前記導電性粒子として多数の突起が形成された球状のN
iパウダーを有し、該Niパウダーは鎖状に連結されて
いる ことを特徴とする有機質正特性サーミスタ。
2. The crystalline polymer is charged as a thermistor body.
Organic positive temperature coefficient thermistor containing conductive particles as filler
In, N spherical large number of projections as the conductive particles are formed
i powder, wherein the Ni powder is linked in a chain.
Organic PTC thermistor which is characterized in that there.
JP3225065A 1991-08-09 1991-08-09 Organic positive temperature coefficient thermistor Expired - Fee Related JP3022644B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3225065A JP3022644B2 (en) 1991-08-09 1991-08-09 Organic positive temperature coefficient thermistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3225065A JP3022644B2 (en) 1991-08-09 1991-08-09 Organic positive temperature coefficient thermistor

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP31754299A Division JP2000133503A (en) 1999-11-08 1999-11-08 Manufacture of organic positive temperature coefficient thermistor
JP11317540A Division JP2000133502A (en) 1999-11-08 1999-11-08 Organic positive temperature coefficient thermistor

Publications (2)

Publication Number Publication Date
JPH0547503A JPH0547503A (en) 1993-02-26
JP3022644B2 true JP3022644B2 (en) 2000-03-21

Family

ID=16823489

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3225065A Expired - Fee Related JP3022644B2 (en) 1991-08-09 1991-08-09 Organic positive temperature coefficient thermistor

Country Status (1)

Country Link
JP (1) JP3022644B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW298653B (en) * 1995-02-28 1997-02-21 Yunichica Kk
US5982271A (en) * 1996-11-28 1999-11-09 Tdk Corporation Organic positive temperature coefficient thermistor
JP3701113B2 (en) * 1997-12-04 2005-09-28 Tdk株式会社 Organic positive temperature coefficient thermistor
JP3911345B2 (en) * 1998-06-18 2007-05-09 Tdk株式会社 Organic positive temperature coefficient thermistor
US6143206A (en) * 1998-06-24 2000-11-07 Tdk Corporation Organic positive temperature coefficient thermistor and manufacturing method therefor
US6299801B1 (en) 1998-11-02 2001-10-09 Tdk Corporation Organic positive temperature coefficient thermistor
JP3683113B2 (en) * 1998-11-02 2005-08-17 Tdk株式会社 Organic positive temperature coefficient thermistor
KR200287112Y1 (en) 1999-05-25 2002-08-30 동아연필 주식회사 Ball pressure structure of knock style tip for property of water ball pen
EP1058277B1 (en) * 1999-06-02 2006-08-09 TDK Corporation Organic positive temperature coefficient thermistor
JP3896232B2 (en) 1999-10-01 2007-03-22 Tdk株式会社 Organic positive temperature coefficient thermistor and manufacturing method thereof
TWI267530B (en) * 2001-11-15 2006-12-01 Tdk Corp Organic PTC thermistor and making method
JP3914899B2 (en) 2002-06-24 2007-05-16 Tdk株式会社 PTC thermistor body, PTC thermistor, method for manufacturing PTC thermistor body, and method for manufacturing PTC thermistor
WO2004080497A1 (en) 2003-03-10 2004-09-23 Mitsubishi Paper Mills Limited Heat regenerative deodorizing filter
JP4734593B2 (en) 2004-06-08 2011-07-27 タイコエレクトロニクスジャパン合同会社 Polymer PTC element
CN112242520A (en) * 2019-07-17 2021-01-19 珠海冠宇电池股份有限公司 PTC material of graphene microsphere based on multi-branch structure and preparation method and application thereof

Also Published As

Publication number Publication date
JPH0547503A (en) 1993-02-26

Similar Documents

Publication Publication Date Title
JP3022644B2 (en) Organic positive temperature coefficient thermistor
US4910389A (en) Conductive polymer compositions
JP3701113B2 (en) Organic positive temperature coefficient thermistor
WO2001009905A2 (en) Electrically conductive polymer composition
CN108806904B (en) Hybrid device structure including negative/positive temperature coefficient device
JP2000133502A (en) Organic positive temperature coefficient thermistor
JP2000133503A (en) Manufacture of organic positive temperature coefficient thermistor
JP3911345B2 (en) Organic positive temperature coefficient thermistor
JP3022645B2 (en) Organic positive temperature coefficient thermistor
JP3914899B2 (en) PTC thermistor body, PTC thermistor, method for manufacturing PTC thermistor body, and method for manufacturing PTC thermistor
JP2003133103A (en) Method of manufacturing organic positive characteristic thermistor
US5982271A (en) Organic positive temperature coefficient thermistor
JPH0969416A (en) Organic resistor with positive temperature characteristics
JP2876125B2 (en) Low resistance PTC element
JP3101047B2 (en) Organic positive temperature coefficient thermistor
JP2734253B2 (en) Positive resistance temperature coefficient heating element
JP2734250B2 (en) Positive resistance temperature coefficient heating element
JPS5963688A (en) Panel heater and method of producing same
JPH0967462A (en) Organic resistor having positive temperature characteristic
JP3001889B2 (en) Polymer PTC element
JPH01169901A (en) Positive resistance temperature characteristic resistor
JP2001052901A (en) Chip organic positive temperature coefficient thermistor and manufacturing method therefor
JPH05234707A (en) Resistance material with positive temperature coefficient
JPS63184303A (en) Manufacture of ptc compound
JPS61208769A (en) Positive resistance temperature coefficient resistor

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19991130

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090114

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100114

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110114

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees