JPH01169397A - Building foundation structure of nuclear power generation plant - Google Patents

Building foundation structure of nuclear power generation plant

Info

Publication number
JPH01169397A
JPH01169397A JP62327025A JP32702587A JPH01169397A JP H01169397 A JPH01169397 A JP H01169397A JP 62327025 A JP62327025 A JP 62327025A JP 32702587 A JP32702587 A JP 32702587A JP H01169397 A JPH01169397 A JP H01169397A
Authority
JP
Japan
Prior art keywords
building
foundation
weight
construction
power plant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62327025A
Other languages
Japanese (ja)
Other versions
JP2539473B2 (en
Inventor
Kanehiro Ochiai
落合 兼寛
Yasuyuki Esashi
江刺 靖行
Ryoichi Kashima
鹿島 遼一
Shizuka Hirako
静 平子
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Engineering Co Ltd
Central Research Institute of Electric Power Industry
Hitachi Ltd
Original Assignee
Hitachi Engineering Co Ltd
Central Research Institute of Electric Power Industry
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Engineering Co Ltd, Central Research Institute of Electric Power Industry, Hitachi Ltd filed Critical Hitachi Engineering Co Ltd
Priority to JP62327025A priority Critical patent/JP2539473B2/en
Publication of JPH01169397A publication Critical patent/JPH01169397A/en
Application granted granted Critical
Publication of JP2539473B2 publication Critical patent/JP2539473B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Foundations (AREA)

Abstract

PURPOSE:To facilitate setting/anchoring work of a building, by providing a hollow section on a building foundation integrated with a float caison. CONSTITUTION:A foundation base 5 with a hollow section 7 set to reduce the weight thereof carries a nuclear reactor primary containment vessel 8, a reactor pressure vessel pedestal 11, a temporarily built steel frame 10 and the like and is introduced to a building stalling position within a site 2 of a power plant via marine transport from a dock. Here, sea water is injected into a foundation hollow section 7 to increase the overall weight of a building, which is settled and anchored. After the completion of a main construction, the periphery of the building is filled with a filling soil 12 so as to act as a counter weight of the foundation base. This makes the building foundation base concurrently serve as a float caison, thereby facilitating the settling and anchoring work of the building in construction on site with a reduction in the weight of a building body itself during the transportation thereof.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は洋上式原子力発電所建屋基礎構造に係り、特に
、建屋基礎とコンクリートケーソンを一体化し、建屋基
礎に中空部を設置することにより建屋曳航・据付けを容
易とし、供用期間後廃炉時移送を容易にした建屋基礎構
造に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to the foundation structure of an offshore nuclear power plant building, and in particular, the building foundation is constructed by integrating a building foundation and a concrete caisson and installing a hollow part in the building foundation. This article relates to a building foundation structure that facilitates towing and installation, and facilitates transportation during decommissioning after the in-service period.

〔従来の技術〕[Conventional technology]

原子力発電プラントでは、敷地造成等の土木工事が完了
した段階で、建屋の掘削および建築工事が開始され、建
築工事がある段階に達した時点、一般には、建屋基礎工
事が完了した時点でプラント設備の据付けが開始される
At a nuclear power plant, excavation and construction work for the building begins once the civil engineering work such as site preparation is completed, and once the construction work reaches a certain stage, generally, the plant equipment is removed once the building foundation work is completed. Installation begins.

この建設工事の短縮化を図るためには、敷地造成工事等
の現地工事とプラント設備工事とを並行して実施するこ
とが一つの有効な手段となる。
In order to shorten this construction work, one effective means is to carry out on-site work such as site preparation work and plant equipment work in parallel.

第3図は従来技術における建設工事の短縮化を目的とし
た原子力発電所の建設方法を示す。1は機器設備を搭載
した原子力発電所建屋、2は発電所敷地、3は基礎岩盤
、4は1及び建屋基礎板5を搭載し、浮力を与えるため
の中空となった浮体ケーソンを示す。第4図は同様に建
屋基礎板5の巾を拡大することにより、建屋の洋上輸送
時に浮力を与える方法を示す。
FIG. 3 shows a conventional method for constructing a nuclear power plant aimed at shortening construction work. 1 is a nuclear power plant building carrying equipment, 2 is a power plant site, 3 is a foundation rock, and 4 is a hollow floating caisson that carries 1 and a building foundation plate 5 and provides buoyancy. FIG. 4 similarly shows a method of providing buoyancy during offshore transportation of the building by enlarging the width of the building base plate 5.

ここで原子力発電プラントの建屋躯体構造物及び機器設
備1は工場、あるいは、洋上のドックで据付は後、洋上
輸送される。一方、これと並行して発電所敷地2では建
屋躯体構造物設置のための敷地の掘削を行ない、建屋設
置位置まで導くため、水路等を使用して、設置位置を海
水6が満水になる状態にしておく。輸送された建屋は所
定の位置まで導いた後、浮体ケーソンの内部に、又、建
屋基礎板で輸送する方法では、基礎版上に、海水6を注
入した後、コンクリートを充てんする等の方法により発
電所建屋を基礎岩盤上に沈設・固定する。従って、この
浮体ケーソン及び拡張された建屋基礎は建屋の浮力を確
保し、且つ、沈設・固定時には、海水及びコンクリート
注入によるおもりとしての役目を負っている。尚、建屋
を支持する基礎は最終時に岩盤上に固定させるため、耐
震設計上から既設の原子力発電所建屋基礎と同等の強度
、及び、重量となり、又、建屋躯体についても既設の原
子力発電所と同等となる。従って工場、あるいは、洋上
のドックにおけるプラント設備の据付範囲を広げるには
、建屋の平面寸法を広げるか、又は、建屋自体の軽量化
を図り輸送時の浮力対策を行なう必要があるが従来技術
では、この点考慮されていなかった。
Here, the building frame structure and equipment 1 of the nuclear power plant are installed at a factory or at a dock on the ocean, and then transported on the ocean. Meanwhile, at the power plant site 2, excavation is being carried out to install the building frame structure, and in order to guide it to the building installation position, waterways etc. are used to move the installation position to a state where it is filled with seawater 6. Keep it. After the transported building is guided to a predetermined location, it is transported inside a floating caisson, or, in the case of transporting on the building foundation plate, by injecting seawater 6 onto the foundation plate and then filling it with concrete. The power plant building will be sunk and fixed onto the foundation rock. Therefore, this floating caisson and expanded building foundation ensure the buoyancy of the building, and also serve as a weight by pouring seawater and concrete during sinking and fixing. Furthermore, since the foundation supporting the building will be fixed on the bedrock at the final stage, it will have the same strength and weight as the existing nuclear power plant building foundation from an earthquake-resistant design perspective, and the building frame will also be similar to the existing nuclear power plant building foundation. be equivalent. Therefore, in order to expand the installation range of plant equipment in factories or offshore docks, it is necessary to increase the planar dimensions of the building, or to reduce the weight of the building itself and take measures against buoyancy during transportation. , this point was not taken into account.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

従来の原子力発電所建屋構造では、洋上のドックで建設
された建屋躯体及び機器設備を海上輸送するため、体層
下部にコンクリートあるいは鋼製のケーソンを設置する
か又はこのケーソン設置に代えて建屋基礎版自体の寸法
を大きくすることによって海上輸送のための浮力をもた
せ、現地への輸送航路及び発電所建設地点の拡大化を考
慮する必要がある。一方、建設工期短縮の観点からは、
ドックにおける建屋躯体及び機器設備の据付範囲を可能
な限り広げておくことが現地建設期間の短縮化につなが
り、全体としての建設工期の短縮化が図れる。但し、こ
の建屋躯体及び機器設備の据付範囲を広げることは、海
上輸送時の搭載重量を増加させることにつながるため、
従来、ケーソンを設置する方法では、ケーソン寸法が過
大となると共に、後者の建屋基礎版自体の寸法を大きく
する方法では、基礎版寸法が増大することにより基礎版
の応力が増加するため、強度上の対策を行なうため、基
礎版の鉄筋量が増加し、更に、基礎板自体が重くなると
いう矛盾を生じていた。建屋基礎に加わる応力と基礎寸
法Qとの関連式を下式に示す。本式によっても建屋基礎
寸法を小さくすることが応力の低減、且つ、基礎版の軽
量化につながることがわかる。
In the conventional nuclear power plant building structure, in order to transport the building frame and equipment constructed at an offshore dock by sea, a concrete or steel caisson is installed at the bottom of the body layer, or a building foundation is installed in place of the caisson installation. It is necessary to increase the size of the plate itself to give it buoyancy for sea transportation, and to consider expanding the transportation route to the site and the power plant construction site. On the other hand, from the perspective of shortening the construction period,
Expanding the range of installation of building frames and equipment at the dock as much as possible will shorten the on-site construction period, thereby shortening the overall construction period. However, expanding the installation range of the building frame and equipment will lead to an increase in the weight loaded during sea transportation.
The conventional method of installing caissons results in excessive caisson dimensions, and the latter method of enlarging the dimensions of the building foundation slab itself increases the stress on the foundation slab due to the increased dimensions of the foundation slab, resulting in an increase in strength. In order to take measures against this problem, the amount of reinforcing bars in the foundation plate increased, which caused a contradiction in that the foundation plate itself became heavier. The relationship between the stress applied to the building foundation and the foundation dimension Q is shown below. This formula also shows that reducing the building foundation dimensions leads to a reduction in stress and a lighter weight of the foundation plate.

ρ :海水の密度 Mmaス:最大曲げモーメント Qmax:最大せん断力 また、従来の建屋の建設工法では、建屋を岩盤上に沈設
・固定させるため、ケーソン内部、あるいは、建屋基礎
上にコンクリートを注入する等の煩雑な作業を必要とし
、−度固定された建屋は、建設、供用期間中、及び、供
用期間後を通じて既設の原子力発電所と同一の位地条件
となり、建設時点での建屋輸送概念の特徴を生かしてい
ない。
ρ: Density of seawater Mmax: Maximum bending moment Qmax: Maximum shearing force Also, in conventional building construction methods, concrete is poured inside the caisson or onto the building foundation in order to sink and fix the building on the bedrock. The building, which requires complicated work such as It doesn't take advantage of its characteristics.

本発明の目的は、建屋の海上輸送時における建屋躯体も
軽量化を図り、建屋上部への機器設備の据付範囲を広げ
ることによる建設工期のより一層の短縮化が可能となる
原子力発電所建屋基礎構造を提供すると共に、発電所現
地建設工事における好適な建設工事施工法を可能とし、
且つ、供用期間中の建屋安定性、及び、供用期間後の廃
炉時輸送段階でも建設時の建屋輸送概念を生かした原子
力発電所建屋基礎構造を提供することにある。
The purpose of the present invention is to reduce the weight of the building frame when the building is transported by sea, and to further shorten the construction period by expanding the range of equipment installation on the upper part of the building. In addition to providing the structure, it also enables a suitable construction method for the on-site construction of the power plant.
Another object of the present invention is to provide a nuclear power plant building basic structure that maintains the stability of the building during its service life and makes use of the building transportation concept at the time of construction even during the decommissioning transportation stage after its service life.

〔問題点を解決する。ための手段〕[Solve the problem. means for

上記目的は、原子力発電所建屋構造版と建屋輸送時に浮
力を与えるケーソンとを一体構造とし、且つ、建屋基礎
版に中空部を設置することにより、達成される。
The above object is achieved by integrating the nuclear power plant building structural plate and the caisson that provides buoyancy during transportation of the building, and by installing a hollow part in the building foundation plate.

原子力発電所における建屋基礎版は、例えば、原子炉建
屋で5〜7m、タービン建屋で2〜3m厚の内部がコン
クリート、及び鉄筋で充てんされたべた基礎となってい
る。この建屋基礎版厚さは主として地震時の建屋強度か
ら決められているが、従として地震時の建屋転倒モーメ
ントに対するカウンタウェイ(おもり)としての役割も
果している。一方、建屋の海上輸送時には、前述した式
に示されるように、建屋基礎寸法及び海上輸送時の最大
波高に応じた1曲げモーメント、及び、せん断力が加わ
るが、これらの応力に対しては、建屋固定後の地震時に
おける建屋強度を確保するための鉄筋、具体的には建屋
基礎内に設置する上端筋及び下端筋によって受は持つこ
とが出来る。従って、建屋基礎版の主たる目的は、建屋
の耐地震設計によって決められる。基礎版断面力、及び
、鉄筋の引張り強度によって達成することができ、しか
も、建屋輸送時には輸送時の最大波高、及び、建屋基礎
寸法に応じた応力については、耐震設計によって決定さ
れた基礎板構造によって受持つことが出来る。又、従と
しての建屋基礎版の役割は、主として原子力発電所供用
期間中のものであり、これについては、従来使用されて
いるコンクリートに限らず基礎板のカウンタウェイトと
しての効果を高めるものであれば充分である。
Building foundations in nuclear power plants are, for example, 5 to 7 m thick for reactor buildings and 2 to 3 m thick for turbine buildings, and are solid foundations filled with concrete and reinforcing bars. The thickness of this building foundation slab is determined primarily by the strength of the building during an earthquake, but it also serves as a counterweight to the building overturning moment during an earthquake. On the other hand, when a building is transported by sea, a bending moment and shearing force are applied depending on the building foundation dimensions and the maximum wave height during sea transport, as shown in the above formula, but these stresses are After the building is fixed, the bridge can be supported by reinforcing bars to ensure the strength of the building in the event of an earthquake, specifically the upper and lower reinforcing bars installed within the building foundation. Therefore, the main purpose of the building foundation is determined by the earthquake-resistant design of the building. The foundation plate structure can be achieved by the cross-sectional force of the foundation plate and the tensile strength of the reinforcing bars, and when the building is transported, the maximum wave height during transportation and the stress according to the building foundation dimensions are determined by seismic design. It can be handled by In addition, the role of the building foundation plate as a secondary building is mainly during the service life of the nuclear power plant, and in this regard, it is not limited to the conventionally used concrete, but also any material that enhances the effect of the foundation plate as a counterweight. It is sufficient.

〔作用〕[Effect]

建屋の海水輸送を容易にし、又、建屋上に建設工程短縮
の目的から可能な限り、多くの設備を搭載し、且つ、建
屋基礎寸法の増加を極力低減させるためには、建屋躯体
自体の軽量化を図ることが重要となる。このため、建屋
躯体と建屋に浮力を与えるためのケーソンとを一体とし
た建屋基礎構造とし、この建屋基礎部に中空部を設置す
ることにより、建屋基礎自体がバラストとしての役割を
果たすことが出来る。尚、この建屋基礎は既に耐震設計
が施こされているため、建屋建設時に配筋工事等の新た
な施工工事を施こすことはない。又、建屋を建設地点へ
輸送した後の本建屋の沈設・固定作業は、前述した建屋
基礎構造に設置した中空部に海水等を注入することによ
って建屋の重量を浮力以上のものとして容易に建設作業
を進めることが出来る。建屋の沈設・固定後は、工場及
びドックでの据付範囲外にあった建屋躯体及び機器設備
の一部を建設、又は、場合によっては、工場及びドック
ですべての据付が完了しているものについては、試運転
後に商業運転に入る。尚、原子力発電所の供用期間後に
は、建設時と逆の手順によって建屋の輸送が可能となり
、しかも、発電所内には主要構築物である高屈及び基礎
板が残存しない状態となるため、廃炉後の跡地再利用と
して新たな発電設備を構築することができる。
In order to facilitate the transportation of seawater to the building, to mount as many equipment as possible on the building roof for the purpose of shortening the construction process, and to minimize the increase in the building foundation dimensions, it is necessary to reduce the weight of the building frame itself. It is important to aim for For this reason, by creating a building foundation structure that integrates the building frame and a caisson that gives buoyancy to the building, and by installing a hollow section in this building foundation, the building foundation itself can serve as ballast. . Furthermore, since this building's foundation has already been designed to be earthquake resistant, no new construction work such as reinforcement work will be required during building construction. In addition, the work of sinking and fixing the main building after transporting the building to the construction site can be done easily by injecting seawater etc. into the hollow part installed in the building's foundation structure as described above to reduce the weight of the building to more than its buoyancy. You can proceed with your work. After the building has been sunk and fixed, parts of the building frame and equipment that were outside the scope of installation at the factory and dock may be constructed, or in some cases, all installation has been completed at the factory and dock. will enter commercial operation after trial run. After the nuclear power plant is in service, the building will be able to be transported by reversing the procedure used during construction, and the main structures within the power plant, such as the high bends and foundation plates, will not remain, so it will be difficult to decommission the reactor. New power generation facilities can be constructed by reusing the site later.

〔実施例〕〔Example〕

以下、本発明の一実施例として原子炉建屋を例にとり第
1図及び第2図により説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIGS. 1 and 2, taking a nuclear reactor building as an example.

第1図は原子炉建屋輸送時の荷姿を示す。5は原子炉建
屋基礎板、7は基礎瓶中に設置した中空部を9は原子炉
建屋上部構造を示し、第2図は原子炉建屋の沈設・固定
及び建設が完了した段階の断面図を示す。
Figure 1 shows the packaging during transportation to the reactor building. 5 shows the reactor building foundation plate, 7 shows the hollow part installed in the foundation bottle, 9 shows the reactor building upper structure, and Figure 2 shows a cross-sectional view of the reactor building after sinking, fixing, and construction are completed. show.

原子炉建屋基礎板5は発電所敷地2とは別のドック内で
建設する。この際、基礎板5には中空部7を設置し、全
体としての重量軽減策を講じる。
The reactor building foundation plate 5 will be constructed in a dock separate from the power plant site 2. At this time, a hollow portion 7 is installed in the base plate 5 to take measures to reduce the overall weight.

重量を軽減することにより、建設工期短縮及び建設性の
向上が可能となる原子炉−火路納容器8、原子炉圧力容
器ペデスタル11.仮設鉄骨10等が基礎上に搭載可能
となる。これらの設備を搭載した基礎板はドックから洋
上輸送を経て発電所敷地2内の建屋設置位置まで導く。
Reactor-fireway containment vessel 8 and reactor pressure vessel pedestal 11. By reducing weight, it is possible to shorten the construction period and improve constructability. Temporary steel frames 10, etc. can be mounted on the foundation. The base plate carrying these equipment will be transported from the dock by sea to the building installation location within the power plant site 2.

設置位置まで導入された建屋は第2図に示す様に、基礎
中空部7中に海水を注入し、建屋全体の重量を重くして
建屋を沈設・固定する。又、本工事終了後は建屋週辺部
を埋立土口で埋立て、従来の発電所と全く同じ敷地条件
とする。海水は供用期間中も基礎瓶中空部7に満たして
おき、基礎板のカウンタウェイトとしての役割を果させ
る。又、供用期間後の廃炉時には、上部建屋の一部を解
体した後、基礎板中空部7中の海水を排出する等、上述
した建設シーケンスと全く逆の手順により、廃炉時の建
屋輸送が容易に達成される。
As shown in Figure 2, once the building has been brought to the installation position, seawater is injected into the hollow foundation 7 to increase the weight of the entire building, and the building is sunk and fixed. Furthermore, after the completion of this construction work, the central part of the building will be reclaimed using reclaimed earth, leaving the site conditions exactly the same as those of conventional power plants. The hollow portion 7 of the base bottle is kept filled with seawater even during the period of service, and serves as a counterweight for the base plate. In addition, when decommissioning the reactor after the in-service period, a part of the upper building is dismantled and then the seawater in the hollow part 7 of the base plate is discharged. is easily achieved.

本実施例によれば、建屋基礎版と浮体ケーソンとを兼用
するため、建屋輸送時の建屋躯体自身の重量軽減化が可
能となり、基礎版上部には建設工程のより一層の短縮が
可能となる機器設備が搭載出来る。又、現地建設段階に
は、基礎瓶中空部に海水を注入することにより、容易に
建屋の沈設・固定作業が達成され、この基礎板はそのま
ま発電所供用期間中の建屋基礎版として使用出来る。更
に、発電所供用期間後には、建設シーケンスと逆の手順
を踏むことにより供用期間後の廃炉時移送が容易に達成
される。
According to this example, since the building foundation plate and the floating caisson are used together, it is possible to reduce the weight of the building frame itself during building transportation, and the construction process for the upper part of the foundation plate can be further shortened. Equipment can be installed. Furthermore, during the on-site construction stage, the building can be easily sunk and secured by injecting seawater into the hollow part of the foundation bottle, and this foundation plate can be used as it is as the building foundation plate during the power plant's service life. Furthermore, after the power plant has been in service, transportation at the time of decommissioning after the in-service period can be easily accomplished by following the steps in reverse to the construction sequence.

〔発明の効果〕〔Effect of the invention〕

本発明によれば、建屋洋上輸送時の建屋自体の重量が軽
減され、建屋の現地建設において、建屋の沈設・固定作
業が容易となる。
According to the present invention, the weight of the building itself during offshore transportation is reduced, and the work of sinking and fixing the building during on-site construction of the building becomes easier.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図、第2図は本発明の一実施例の建屋断面図、第3
図、第4図は従来技術による建屋の洋上輸送図である。 1・・・原子力発電所建屋。 ≠1の 11−摩チ九−万=ね8でシごテ人り1し1z・ 埋立
り 鰻3 目
Figures 1 and 2 are cross-sectional views of a building according to an embodiment of the present invention;
FIG. 4 is a diagram showing the ocean transportation of a building according to the prior art. 1...Nuclear power plant building. ≠ 1 of 11 - Machi 90,000 = Ne8, Shigote people 1 and 1z・ Landfill eel 3 eyes

Claims (1)

【特許請求の範囲】[Claims] 1、原子力発電所建屋基礎と浮体ケーソンを1体化し、
建屋基礎に中空部を設置した事を特徴とする原子力発電
所建屋基礎構造。
1. Integrate the nuclear power plant building foundation and floating caisson into one,
A nuclear power plant building foundation structure characterized by a hollow section installed in the building foundation.
JP62327025A 1987-12-25 1987-12-25 Nuclear power plant building basic structure Expired - Lifetime JP2539473B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62327025A JP2539473B2 (en) 1987-12-25 1987-12-25 Nuclear power plant building basic structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62327025A JP2539473B2 (en) 1987-12-25 1987-12-25 Nuclear power plant building basic structure

Publications (2)

Publication Number Publication Date
JPH01169397A true JPH01169397A (en) 1989-07-04
JP2539473B2 JP2539473B2 (en) 1996-10-02

Family

ID=18194467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62327025A Expired - Lifetime JP2539473B2 (en) 1987-12-25 1987-12-25 Nuclear power plant building basic structure

Country Status (1)

Country Link
JP (1) JP2539473B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240684A (en) * 1995-03-02 1996-09-17 Ishikawajima Harima Heavy Ind Co Ltd Construction method of nuclear power generation plant
JP2019078149A (en) * 2017-10-24 2019-05-23 敏博 坂上 Full-scale hydraulic power generation method using seawater

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135394A (en) * 1981-02-16 1982-08-20 Hitachi Ltd Floating type reactor joint structure

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57135394A (en) * 1981-02-16 1982-08-20 Hitachi Ltd Floating type reactor joint structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08240684A (en) * 1995-03-02 1996-09-17 Ishikawajima Harima Heavy Ind Co Ltd Construction method of nuclear power generation plant
JP2019078149A (en) * 2017-10-24 2019-05-23 敏博 坂上 Full-scale hydraulic power generation method using seawater

Also Published As

Publication number Publication date
JP2539473B2 (en) 1996-10-02

Similar Documents

Publication Publication Date Title
JP3599431B2 (en) Construction method of temporary deadline
CN114541439B (en) Construction method of double-wall steel cofferdam structure without bottom sealing
US3938342A (en) Method and a device for building immersed foundations
JPH01169397A (en) Building foundation structure of nuclear power generation plant
CN102605801A (en) Suspension semi-reverse-construction method for underground circular water tank
JPS59150810A (en) Coastal structure with caisson and its construction
JP4475116B2 (en) Vertical shaft structure and its construction method
Marchand A DEEP BASEMENT IN ALDERSGATE STREET, LONDON. PART 1: CONTRACTOR'S DESIGN AND PLANNING.
CN110735397A (en) Construction method of large bearing platform on inclined river bed surface
CN210263110U (en) Prefabricated template device of basement cushion cap and grade beam
CN103114594A (en) Supporting structure of adjacent two foundation trenches and construction method thereof
JP2581602B2 (en) Waste treatment method
CN219137701U (en) Two unification structures of support system in cable-stay frame roof beam and foundation ditch
JPS62202125A (en) Underwater foundation work using steel plate shell
JPH0237453B2 (en)
JP2764447B2 (en) Ground structure such as pier support
JPS62244921A (en) Construction work for concrete structure
JPS5936041B2 (en) Road widening using the overhang method
KR970011806B1 (en) Cell block and shore bank protection working method by making use of cell block
LUK et al. The Choice of Structural Forms and Use of Structural Materials of Three Landmark Tall Buildings in Hong Kong: Central Plaza, Two International Finance Centre, International Commerce Centre
JP2022165458A (en) Existing-quay-improved structure and improvement method
JPH01271524A (en) Cylindrical caisson and its installation method
Colwell et al. Gulf Marine Fabricators Graving Dock
JPS634114A (en) Construction of marine structure
JPS59138621A (en) Foundation work for seabed