JPH01169307A - Gap measuring apparatus - Google Patents

Gap measuring apparatus

Info

Publication number
JPH01169307A
JPH01169307A JP32693287A JP32693287A JPH01169307A JP H01169307 A JPH01169307 A JP H01169307A JP 32693287 A JP32693287 A JP 32693287A JP 32693287 A JP32693287 A JP 32693287A JP H01169307 A JPH01169307 A JP H01169307A
Authority
JP
Japan
Prior art keywords
component
mirror surface
laser diode
objective lens
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32693287A
Other languages
Japanese (ja)
Inventor
Naoki Takahashi
直紀 高橋
Shizuo Yamazaki
山崎 静男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP32693287A priority Critical patent/JPH01169307A/en
Publication of JPH01169307A publication Critical patent/JPH01169307A/en
Pending legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)

Abstract

PURPOSE:To obtain a gap measuring apparatus characterized by a simple structure and less measuring errors, by forming a mirror surface of one of two parts, whose gap is to be measured, using a transparent body for the other part, vibrating the transparent body, and detecting the reflected light of laser light. CONSTITUTION:Of two parts, whose gap DELTAL is to be measured, a first part 1 is provided so as to have a mirror surface, and a second part 2 is provided as a transparent body. A laser diode 4 and an objective lens 3 are provided so that laser light can be projected on the first part 1 through the second part 2. A photodetector 5 which detects the reflected light is provided. A coil 6, a magnet 7 and an AC power source 9 are provided so as to impact vibration to the objective lens 3. The change of the reflected light when the objective lens 3 is vibrated is detected with the photodetector 5 and a current measuring device 8. The DELTAL is detected based on the detected value.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、サブミクロンからミクロンオーダの微小間隙
を測定するのに好適な間隙測定装置に関するものである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a gap measuring device suitable for measuring minute gaps on the order of submicrons to microns.

〔従来の技術〕[Conventional technology]

間隙測定装置としては、従来、光の干渉を用いたものと
して特開昭61−150807号がある。
A conventional gap measuring device using optical interference is disclosed in Japanese Patent Application Laid-open No. 150807/1983.

上記発明は、2つ以上の波長によシ生じる光干渉を独立
に検出し、その検出信号をA/DK換したのち、演算制
御装置によシ干渉光強度を規格し、干渉次数を得て微小
すきま分布を求めものである。
The above invention independently detects optical interference caused by two or more wavelengths, converts the detected signal into A/DK, and then uses an arithmetic and control unit to standardize the interference light intensity and obtain the interference order. This is to find the minute gap distribution.

また、レーザ光の合焦点を検出して被測定物の厚みを測
定するものとしては、特開昭60−55804号があ)
、光ピツクアップの出力光を基準面および基準面上に置
く被測定物に照射することによって、両者の焦点制御信
号の差を得て、被測定物の厚みを測定するものである。
Additionally, Japanese Patent Application Laid-Open No. 60-55804 is a device that measures the thickness of an object by detecting the focal point of a laser beam.
By irradiating the output light of the optical pickup onto the reference plane and the object to be measured placed on the reference surface, the difference in focus control signals between the two is obtained, and the thickness of the object to be measured is measured.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来技術のうち、光干渉を用いるものは、干渉縞の
次数を求めるために複数波長の光を用いなければならず
、光照射系の構造および検出信号の処理が複雑になる。
Among the above-mentioned conventional techniques, those using optical interference must use light of multiple wavelengths to determine the order of interference fringes, which complicates the structure of the light irradiation system and the processing of detection signals.

また、レーザ光の合焦点を検出するものは、照射側と受
光側との光学系が異なるため、受光器を正確に発光器の
共役位置に置く必要があり、装置の調整や取扱いに十分
な注意を必要とし、受光器位置誤差が測定誤差に影響を
及ぼすことがあった。
In addition, in devices that detect the focal point of laser light, the optical systems on the irradiation side and the light receiving side are different, so it is necessary to place the receiver accurately at the conjugate position of the emitter, making it difficult to adjust and handle the device. Caution was required, and receiver position errors could affect measurement errors.

本発明の目的は、構成が簡単で、かつ測定誤差が少ない
間隙測定装置を得ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to obtain a gap measuring device that has a simple configuration and has few measurement errors.

〔問題点を解決するための手段〕[Means for solving problems]

上記目的は、間隙を構成する2つの部品のうち、−万を
鏡面、他方を透明体とし、上記透明体を通して鏡面にレ
ーザ光が照射されるように1 レーザダイオードとレン
ズとを配置し、上記レンズを光軸方向に振動させるため
のコイルと磁石と交流電源とを設け、さらに上記レーザ
ダイオードの近くに上記レーザダイオードの光出力をモ
ニタするための受光素子を置き、上記受光素子の出力を
検知する測定器を設けることKよって達成される。
The above purpose is to arrange one laser diode and a lens so that the mirror surface is irradiated with laser light through the transparent body, one of the two parts constituting the gap is a mirror surface, and the other is a transparent body. A coil, a magnet, and an AC power source are provided to vibrate the lens in the optical axis direction, and a light receiving element is placed near the laser diode to monitor the optical output of the laser diode, and the output of the light receiving element is detected. This is achieved by providing a measuring device that

〔作用〕[Effect]

上記のように構成された間隙測定装置では、第1の部品
の鏡面に照射されたレーザ光がレンズの振動によって上
記境面に焦点が合う瞬間と、第2の部品である透明体の
鏡面側の面に焦点が合う瞬間とが生じ、いずれの場合に
おいても、反射光がレーザダイオードに戻ってきてレー
ザダイオードの位置で再び焦点を結ぶ0上記のように、
発振中のレーザダイオードに振動数が等しいレーザ光が
戻ってくると、上記発振に乱れを生じ、このため、レー
ザ光をモニタしている受光素子の出力が変動する。した
がりて、第1の部品である鏡面からの反射光に起因する
受光素子の出力変動と、第2の部品である透明体の鏡面
側からの反射光に起因する出力変動との時間差を観察し
、あらかじめ求めておいたレンズの振動速度との積を求
めることによ)、上記第1の部品と第2の部品の鏡面側
表面との間隙を測定することができる。
In the gap measuring device configured as described above, the moment when the laser beam irradiated onto the mirror surface of the first component is focused on the boundary surface due to the vibration of the lens, and the moment when the laser beam irradiated on the mirror surface of the first component is focused on the boundary surface, In each case, the reflected light returns to the laser diode and refocuses at the position of the laser diode 0, as described above.
When laser light with the same frequency returns to the oscillating laser diode, the oscillation is disturbed, and as a result, the output of the light receiving element that monitors the laser light fluctuates. Therefore, the time difference between the output fluctuation of the light receiving element caused by the reflected light from the mirror surface of the first component and the output fluctuation caused by the reflected light from the mirror surface of the transparent body, which is the second component, is observed. By calculating the product of the vibration velocity and the vibration velocity of the lens determined in advance), it is possible to measure the gap between the mirror-side surfaces of the first component and the second component.

〔実施例〕〔Example〕

つぎに本発明の実施例を図面とともに説明する。 Next, embodiments of the present invention will be described with reference to the drawings.

第1図は本発明による間隙測定装置の一実施例を示す構
成図、第2図は上記実施例におけるオシロスコープの画
面を示す図である。第1図において、第10部品1の鏡
面1aに、ハーフミラ−面2aを対向した透明体からな
る第2の部品2を対置し、上記第2の部品2を透過して
第1の部品1の鏡面1aに垂直にレーザ光を照射できる
ように、レーザダイオード4、コリメートレンズ12、
対物レンズ6を設けている。さらに1上記レーザダイオ
ード4の近傍に受光素子5を、レーザダイオード4と同
一パッケージ内に設け、上記受光素子5の出力を測定す
る電流測定器8として、増幅器14およヒオシロスコー
プ15を設けている0また、上記対物レンズ5を振動さ
せるために、対物レンズ3に固定したコイル6およびフ
レーム(図示せず)に固定した永久磁石7を設け、上記
コイル6に電流を流すための交流電源9と上記レーザダ
イオード4に電流を流すための直流電源10とを備えて
いる。
FIG. 1 is a block diagram showing an embodiment of a gap measuring device according to the present invention, and FIG. 2 is a diagram showing a screen of an oscilloscope in the above embodiment. In FIG. 1, a second component 2 made of a transparent body with a half-mirror surface 2a facing the mirror surface 1a of the tenth component 1 is placed oppositely, and the second component 2 is transmitted through the second component 2 to form the first component 1. A laser diode 4, a collimating lens 12,
An objective lens 6 is provided. Furthermore, a light receiving element 5 is provided near the laser diode 4 in the same package as the laser diode 4, and an amplifier 14 and a hyoscilloscope 15 are provided as a current measuring device 8 for measuring the output of the light receiving element 5. 0 In addition, in order to vibrate the objective lens 5, a coil 6 fixed to the objective lens 3 and a permanent magnet 7 fixed to a frame (not shown) are provided, and an AC power source 9 and an AC power source 9 for passing a current through the coil 6 are provided. The laser diode 4 is provided with a DC power supply 10 for supplying current to the laser diode 4.

上記構成において、レーザダイオード4に電流を流して
発光させ、さらに上記コイル6に交流を流して対物レン
ズ3を光軸方向に振動させると、上記第1の部品の鏡面
1aにレーザ光の焦点が合ったときには、鏡面1aの反
射光が入射光と同一径路を通ってレーザダイオード4K
Mる0また、レーザ光の焦点が第2部品2のハーフミラ
−面2aに会ったときにも、上記ノ・−7ミラ一面2a
における反射光が、入射光と同一径路を通ってレーザダ
イオード4に戻る。上記2つの場合で、反射光がレーザ
ダイオード4に戻ったときに、上記レーザダイオード4
の発振状態が変化する。上記発振状態の変化を受光素子
5でとらえ、増幅器14で増幅したのちオシロスコープ
で観測する(上記戻シ光による発振状態の変化をとらえ
た信号を、−般にスクープ信号と呼んでいる)。
In the above configuration, when a current is applied to the laser diode 4 to cause it to emit light, and an alternating current is applied to the coil 6 to vibrate the objective lens 3 in the optical axis direction, the focus of the laser beam is focused on the mirror surface 1a of the first component. When the reflected light from the mirror surface 1a passes through the same path as the incident light, it reaches the laser diode 4K.
Also, when the focus of the laser beam meets the half mirror surface 2a of the second component 2, the above-mentioned half mirror surface 2a
The reflected light returns to the laser diode 4 through the same path as the incident light. In the above two cases, when the reflected light returns to the laser diode 4, the laser diode 4
The oscillation state of changes. The change in the oscillation state is captured by the light receiving element 5, amplified by the amplifier 14, and then observed with an oscilloscope (the signal capturing the change in the oscillation state due to the returned light is generally called a scoop signal).

第2図は第1図におけるオシロスコープ15の画面を示
す図で、対物レンズ3の畿動の片道に対して受光素子5
の出力信号16は、2回の変化(スクープ信号)を示す
。上記2回の変化は、それぞれ第1の部品1の鏡面1a
からの反射によるスクープ信号17と、第2部品2のハ
ーフミラ−面2aからの反射によるスクープ信号18と
である。上記2つのスクープ信号17. 18の時間差
Δtを測定し、上記Δtに、あらかじめ測定しておいた
対物レンズ5の振動速度を掛は合わせることによシ、微
小間医ΔLを正確に測定することができる。
FIG. 2 is a diagram showing the screen of the oscilloscope 15 in FIG.
The output signal 16 of shows two changes (scoop signal). The above two changes are caused by the mirror surface 1a of the first component 1.
a scoop signal 17 due to reflection from the mirror surface 2a of the second component 2, and a scoop signal 18 due to reflection from the half mirror surface 2a of the second component 2. The above two scoop signals 17. By measuring the time difference Δt of 18 and multiplying the above Δt by the pre-measured vibration speed of the objective lens 5, it is possible to accurately measure the microscopic distance ΔL.

なお、上記微小間隙JLに液体や接庸剤などが介在し、
第2の部品の透明体2との屈折率が近い場合は、上記透
明体2の第1の部品に対向する面2aをハーフミラ−と
することにより、艮好な反射光を得ることができる。
In addition, if a liquid or adhesive is present in the micro gap JL,
When the refractive index of the second component is close to that of the transparent body 2, excellent reflected light can be obtained by forming the surface 2a of the transparent body 2 facing the first component into a half mirror.

また、本発明は上記のような間隙の測定だけではなく、
膜厚の測定にも使用できることはいうまでもない。
In addition, the present invention is not limited to the measurement of gaps as described above.
Needless to say, it can also be used to measure film thickness.

〔発明の効果〕〔Effect of the invention〕

上記のように本発明による間隙測定装置は、鏡面を有す
る第1の部品と、該第1の部品の鏡面に対置さ九た透明
体からなる第2の部品と、該第2の部品を透過して第1
の部品の鏡面に光を照射できるように配置したレーザダ
イオードおよび対物レンズと、上記レーザダイオードの
近くに設けた受光素子と、該受光素子の出力を測定する
測定器と、上記対物レンズを振動させるために一方を上
記対物レンズに固定したコイルおよび磁石と、上記コイ
ルに電流を供給する交流電源とを有することによシ、単
色光を使用してレンズや透明体等での色収差を考慮する
必要がなく、また、照射光と反射光とが全く同一の光学
系を通プ、投光用のレーザダイオードで上記反射光を直
接検出するため、従来のように投光器と受光器とを共役
の位置に正確に位置合わせする必要がなく、単純な光学
系で調整を要せず、しかも取扱いが容易な間隙測定装置
を得ることができる。
As described above, the gap measuring device according to the present invention includes a first component having a mirror surface, a second component made of a transparent body placed opposite to the mirror surface of the first component, and a second component that transmits light through the second component. first
a laser diode and an objective lens arranged so as to irradiate light onto the mirror surface of the component, a light receiving element provided near the laser diode, a measuring device for measuring the output of the light receiving element, and vibrating the objective lens. Therefore, by having a coil and a magnet, one of which is fixed to the objective lens, and an AC power source that supplies current to the coil, it is necessary to use monochromatic light and take into account chromatic aberration in the lens, transparent body, etc. In addition, the irradiated light and the reflected light pass through the same optical system, and the reflected light is directly detected by the emitter laser diode, so the emitter and receiver cannot be placed at conjugate positions like in the past. It is possible to obtain a gap measuring device that does not require accurate positioning, has a simple optical system, does not require adjustment, and is easy to handle.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明による間隙測定装置の一実施例を示す構
成図、第2図は上記実施例におけるオシロスコープの画
面を示す図である。 1・・・第1の部品、2・・・第2の部品、3・・・対
物レンズ、4・・・レーザダイオード、5・・・受光素
子、6・・・コイル、7・・・磁石、8・・・電流測定
器% 9・・・交流電源。
FIG. 1 is a block diagram showing an embodiment of a gap measuring device according to the present invention, and FIG. 2 is a diagram showing a screen of an oscilloscope in the above embodiment. DESCRIPTION OF SYMBOLS 1... First component, 2... Second component, 3... Objective lens, 4... Laser diode, 5... Light receiving element, 6... Coil, 7... Magnet , 8... Current measuring device % 9... AC power supply.

Claims (1)

【特許請求の範囲】[Claims] 1、鏡面を有する第1の部品と、該第1の部品の鏡面に
対置された透明体からなる第2の部品と、該第2の部品
を透過して第1の部品の鏡面に光を照射できるように配
置したレーザダイオードおよび対物レンズと、上記レー
ザダイオードの近くに設けた受光素子と、該受光素子の
出力を測定する測定器と、上記対物レンズを振動させる
ために一方を上記対物レンズに固定したコイルおよび磁
石と、上記コイルに電流を供給する交流電源とを有する
間隙測定装置。
1. A first component having a mirror surface, a second component made of a transparent body placed opposite to the mirror surface of the first component, and light passing through the second component to the mirror surface of the first component. A laser diode and an objective lens arranged so as to be able to irradiate the laser diode, a light receiving element provided near the laser diode, a measuring device for measuring the output of the light receiving element, and one of which is connected to the objective lens in order to vibrate the objective lens. A gap measuring device having a coil and a magnet fixed to the coil, and an alternating current power source supplying current to the coil.
JP32693287A 1987-12-25 1987-12-25 Gap measuring apparatus Pending JPH01169307A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32693287A JPH01169307A (en) 1987-12-25 1987-12-25 Gap measuring apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32693287A JPH01169307A (en) 1987-12-25 1987-12-25 Gap measuring apparatus

Publications (1)

Publication Number Publication Date
JPH01169307A true JPH01169307A (en) 1989-07-04

Family

ID=18193376

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32693287A Pending JPH01169307A (en) 1987-12-25 1987-12-25 Gap measuring apparatus

Country Status (1)

Country Link
JP (1) JPH01169307A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001147107A (en) * 1999-11-08 2001-05-29 Leica Microsystems Wetzlar Gmbh Film thickness measuring method and device of transparent film

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001147107A (en) * 1999-11-08 2001-05-29 Leica Microsystems Wetzlar Gmbh Film thickness measuring method and device of transparent film

Similar Documents

Publication Publication Date Title
US6628408B1 (en) Amplitude measurement for an ultrasonic horn
EP0091826B1 (en) Improved fiber optic sensor for detecting very small displacements of a surface
JPS6371674A (en) Laser distance measuring instrument
JPH116719A (en) Interference measuring apparatus
JP3300803B2 (en) Displacement gauge, displacement measurement method, thickness gauge
JPH01169307A (en) Gap measuring apparatus
US6867863B1 (en) Integrated diagnostic for photoelastic modulator
JP2003194518A (en) Laser distance measuring apparatus
JPH063128A (en) Optical type surface shape measuring apparatus
EP1166064A1 (en) Integrated diagnostic system for photoelastic modulator
JPH0875433A (en) Surface form measuring device
JP4130599B2 (en) Laser beam irradiation device
JPS62501988A (en) measuring device
JP2003097911A (en) Displacement measuring device and displacement measuring method using the same
JP3967058B2 (en) Method and apparatus for measuring surface shape and thickness of plate-like workpiece
Paone et al. Advances in self-mixing vibrometry
JP2629319B2 (en) Film thickness monitor
JPS61223604A (en) Gap measuring instrument
JPS61240103A (en) Optical minute displacement meter
Ueha et al. Research note: Vibration amplitude measurement using a fringe-counting technique
JPH05264516A (en) Noncontact detection method and device for ultrasonic wave
JPH074496Y2 (en) Non-contact displacement meter
JPS62212508A (en) Method for measuring surface deflection
JP3566392B2 (en) Displacement information measuring device
RU1796901C (en) Device for contact-free measuring items profile