JP2629319B2 - Film thickness monitor - Google Patents

Film thickness monitor

Info

Publication number
JP2629319B2
JP2629319B2 JP29116588A JP29116588A JP2629319B2 JP 2629319 B2 JP2629319 B2 JP 2629319B2 JP 29116588 A JP29116588 A JP 29116588A JP 29116588 A JP29116588 A JP 29116588A JP 2629319 B2 JP2629319 B2 JP 2629319B2
Authority
JP
Japan
Prior art keywords
film thickness
light
optical sensor
signal
output
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP29116588A
Other languages
Japanese (ja)
Other versions
JPH02136704A (en
Inventor
達朗 河村
正敏 高尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP29116588A priority Critical patent/JP2629319B2/en
Publication of JPH02136704A publication Critical patent/JPH02136704A/en
Application granted granted Critical
Publication of JP2629319B2 publication Critical patent/JP2629319B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Physical Vapour Deposition (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は真空蒸着装置又はスッパタリング装置などに
備え付けられる膜厚モニターに関するものである。
Description: BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a film thickness monitor provided in a vacuum evaporation apparatus or a sputtering apparatus.

従来の技術 従来の膜厚モニター装置としては、例えば特開昭59−
17139号公報に示されている。
2. Description of the Related Art As a conventional film thickness monitor, for example,
No. 17139.

第4図はこの従来の膜厚モニターのブロック図と光学
系を示すものであり、1は単色の発光源、2は光センサ
ー、3は光源1からの光を略平行光にするレンズ、4は
作成されつつある薄膜、5は光源1を駆動する直流電
源、6は光センサーの出力をモニターするペンレコーダ
である。被測定面4とレンズ3の中心軸は垂直になる様
に設置し、光源1と光センサー2はレンズ3からその焦
点距離だけ離れた同一平面内に、かつ、光源1と光セン
サー2の各々の中心はレンズ3の中心軸に対して点対称
になる様に設置する。
FIG. 4 shows a block diagram and an optical system of this conventional film thickness monitor, wherein 1 is a monochromatic light source, 2 is an optical sensor, 3 is a lens for converting light from the light source 1 into substantially parallel light, Is a thin film being formed, 5 is a DC power supply for driving the light source 1, and 6 is a pen recorder for monitoring the output of the optical sensor. The surface to be measured 4 and the central axis of the lens 3 are set to be perpendicular to each other, and the light source 1 and the optical sensor 2 are in the same plane separated from the lens 3 by the focal length, and each of the light source 1 and the optical sensor 2 Are set so as to be point-symmetric with respect to the central axis of the lens 3.

以上の様に構成された従来の膜厚モニター装置におい
ては、光源1からの光レンズ3によって略平行光になり
薄膜4に入射する。入射した光は、薄膜4の表面と裏面
からやはり略平行光として、反射されレンズ3によって
集光され光センサー2に入射する。
In the conventional film thickness monitoring device configured as described above, the light becomes substantially parallel by the optical lens 3 from the light source 1 and is incident on the thin film 4. The incident light is reflected from the front surface and the back surface of the thin film 4 as substantially parallel light, condensed by the lens 3, and incident on the optical sensor 2.

薄膜4の表面と裏面を反射した光は、それらの光路長
差により、互いに干渉し合う。したがって、膜厚が増加
する時は、反射光量すなわち光センサー2の出力は第5
図の様に山部と谷部を示すように変化する。
The light reflected on the front and back surfaces of the thin film 4 interferes with each other due to the difference in their optical path lengths. Therefore, when the film thickness increases, the amount of reflected light, that is, the output of the optical sensor 2 becomes the fifth.
It changes to show peaks and valleys as shown.

この山部と谷部の間隔は薄膜4の屈折率と光源1の波
長によって決まる。従って、光センサー2の出力をペン
レコーダー6などでモニターすることにより、薄膜4の
膜厚を決定することができる。
The distance between the peak and the valley is determined by the refractive index of the thin film 4 and the wavelength of the light source 1. Therefore, the thickness of the thin film 4 can be determined by monitoring the output of the optical sensor 2 with the pen recorder 6 or the like.

発明が解決しようとする課題 しかしながら上記の様な構成では、膜厚を正確にモニ
ターできないという課題を有していた。その理由を以下
に示す。膜厚を示す光センサー2からの信号が1つしか
なく膜厚の正確な目印となる山部と谷部の数が少ない、
すなわち正確な膜厚を決定する際のデータ数が少ないか
らである。しかも、薄膜の光吸収のため山部と谷部のレ
ベルが膜厚増加に伴って変化するので、膜厚が山部に対
応するのか谷部に対応するのかはそれらを越えてからし
か分からず、膜厚が制御しにくい。
Problems to be Solved by the Invention However, the above-described configuration has a problem that the film thickness cannot be accurately monitored. The reason is shown below. There is only one signal from the optical sensor 2 indicating the film thickness, and the number of peaks and valleys serving as accurate marks of the film thickness is small.
That is, the number of data for determining an accurate film thickness is small. In addition, since the level of the peaks and valleys changes with an increase in the film thickness due to the light absorption of the thin film, it is only possible to determine whether the film thickness corresponds to the peaks or the valleys only after exceeding them. It is difficult to control the film thickness.

また、この従来の膜厚モニターを複数個(光源の波長
は各々異なる)用いてデータ数を増やそうとすると、光
学系の規模が大きくなり設置するのが難しくなる。更
に、各部で反射散乱された光によって各膜厚モニター間
にクロストークが生じ正確なデータが得られない。
Also, if the number of data is increased by using a plurality of the conventional film thickness monitors (the wavelengths of the light sources are different), the scale of the optical system becomes large, and it is difficult to install the optical system. Further, crosstalk occurs between the film thickness monitors due to the light reflected and scattered at each portion, and accurate data cannot be obtained.

そこで、本発明は、簡易に設置でき、膜厚を決定する
際のデータ数を増やしできるだけ正確に膜厚をモニター
できる膜厚モニター装置を提供することを目的とする。
Accordingly, it is an object of the present invention to provide a film thickness monitoring device that can be easily installed and can monitor the film thickness as accurately as possible by increasing the number of data when determining the film thickness.

課題を解決するための手段 本発明は被測定物に光を照射するための、発光波長が
各々異なるN個(N≧2の整数)の半導体レーザ又は発
光ダイオードのどちらかからなる光源と、前記N個の光
源へ発振周波数の信号を供給する発信周波数が各々異な
るN個の発振器と、前記N個の光源へ直流の信号を与え
る直流電源と、前記直流電源と前記N個の発振器の出力
を加算し、前記N個の発光源を駆動するN個の加算器
と、前記被測定物から反射してもどってきた光を受光す
る光センサーと、前記光センサーの出力を増幅するプリ
アンプと、前記N個の発振器の信号を参照信号とし前記
プリアンプの出力を同期検波するN個のロックインアン
プとを備えたことを特徴とする膜厚モニター装置であ
る。
Means for Solving the Problems The present invention provides a light source for irradiating an object to be measured with N (an integer of N ≧ 2) semiconductor lasers or light emitting diodes, each having a different emission wavelength. N oscillators each having a different oscillation frequency for supplying an oscillation frequency signal to the N light sources, a DC power supply for providing a DC signal to the N light sources, and an output of the DC power supply and the N oscillators. N adders that add and drive the N light emitting sources, an optical sensor that receives light reflected back from the device under test, a preamplifier that amplifies the output of the optical sensor, A film thickness monitor apparatus comprising: N lock-in amplifiers that synchronously detect an output of the preamplifier using signals of N oscillators as reference signals.

作用 本発明は前記した構成により、波長が各々異なるN個
の光に、各々異なるN個の周波数で強度変調をかけ、光
センサーの出力をN個のロックインアンプによって分離
し、N個のお互いにクロストークのない膜厚を示す信号
が得られる。このN個の信号から、従来の膜厚モニター
で得られるデータのN倍のデータが得られるので、より
正確な膜厚をモニターできる。
According to the present invention, with the above-described configuration, N light beams having different wavelengths are intensity-modulated at N different frequencies, and the outputs of the optical sensors are separated by N lock-in amplifiers. A signal indicating a film thickness without crosstalk is obtained. From these N signals, data N times as large as the data obtained by the conventional film thickness monitor can be obtained, so that a more accurate film thickness can be monitored.

実施例 第1図は本発明の第1の実施例における膜厚モニター
装置のブロック図と光学系を示すものである。第2図は
第1図に示す各部の波形を表わす波形図である。第2図
の時間軸tは十分小さい時間を表わす。すなわちここに
示す期間において膜厚は変化しないものとする。第3図
は、膜厚増加に伴って変化する第2図の信号S3a、S3bを
示した波形図である。なお、本実施例はN=2の場合で
ある。
Embodiment 1 FIG. 1 shows a block diagram and an optical system of a film thickness monitor according to a first embodiment of the present invention. FIG. 2 is a waveform diagram showing the waveform of each part shown in FIG. The time axis t in FIG. 2 represents a sufficiently small time. That is, it is assumed that the film thickness does not change in the period shown here. FIG. 3 is a waveform diagram showing the signals S3a and S3b of FIG. 2 which change with an increase in film thickness. This embodiment is for the case of N = 2.

第1図において、1a、1bはそれぞれ発光波長λ1、λ
2(≠λ1)の発光ダイオードまたは半導体レーザなど
の発光源、2a,2bはそれぞれ発振周波数がf1,f2(≠f1)
の発振器、3a,3bは直流電源、4aは直流電源3aと発振器2
aの出力を加算し発光源1aを駆動する加算器、4bは直流
電源3bと発振器2bの出力を加算し発光源1bを駆動する加
算器、5は光センサー、6はプリアンプ、7aは発振器2a
の信号を参照信号とし光センサー5の出力を同期検波す
るロックインアンプ、7bは発振器2bの信号を参照信号と
し光センサー5の出力を同期検波するロックインアン
プ、8はロックインアンプ7a,7bの出力を記録するペン
レコーダー、9a,9bはそれぞれ光源1a,1bの光を平行光に
するレンズ、10、11はハーフミラー、12は作成されつつ
ある薄膜である。
In FIG. 1, 1a and 1b denote emission wavelengths λ1 and λ, respectively.
2 (≠ λ1) light emitting diodes or semiconductor lasers and other light emitting sources, 2a and 2b have oscillation frequencies f1 and f2 (≠ f1), respectively
Oscillator, 3a and 3b are DC power supplies, 4a is DC power supply 3a and oscillator 2
adder for adding the output of a to drive the light emitting source 1a; 4b, an adder for adding the output of the DC power supply 3b and the oscillator 2b to drive the light emitting source 1b; 5 for an optical sensor; 6 for a preamplifier; 7a for the oscillator 2a
7b is a lock-in amplifier for synchronously detecting the output of the optical sensor 5 using the reference signal as a reference signal, 7b is a lock-in amplifier for synchronously detecting the output of the optical sensor 5 using the signal of the oscillator 2b as a reference signal, and 8 is a lock-in amplifier 7a, 7b The pen recorders 9a and 9b are lenses for converting the light of the light sources 1a and 1b into parallel light, 10 and 11 are half mirrors, and 12 is a thin film being formed.

以上の様に構成された本実施例の膜厚モニター装置に
ついて、第2、3図を用いてその動作を以下に説明す
る。なを、この第2、3図は、発光源1a,1bとして、λ
1=890nm,λ2=660nmの発光ダイオード、光センサー
5として5mm角のシリコンフォトダイオードを用い、f1
=4.5KHz、f2=3KHz、薄膜の屈折率n=4とした時の波
形図である。
The operation of the film thickness monitoring apparatus of the present embodiment configured as described above will be described below with reference to FIGS. Note that FIGS. 2 and 3 show that the light emitting sources 1a and 1b are λ
1 = 890 nm, λ2 = 660 nm light emitting diode, 5 mm square silicon photodiode as optical sensor 5, f1
= 4.5 KHz, f2 = 3 KHz, and the refractive index n = 4 of the thin film.

S1a,S1bはそれぞれ発光源1a,1bに印可されている信号
で、それぞれの直流電源の出力レベルDCa,DCbに、それ
ぞれの発振器の出力である振幅ACa,ACb、周波数f1,f2の
正弦波が重畳された信号である。発光源が発する光の強
度はこのS1a,S1bに比例する。
S1a and S1b are signals applied to the light-emitting sources 1a and 1b, respectively, and the output levels DCa and DCb of the respective DC power supplies have sine waves of amplitudes ACa and ACb and outputs f1 and f2 of the respective oscillators. This is a superimposed signal. The intensity of light emitted from the light emitting source is proportional to S1a and S1b.

発光源1a,1bを発し薄膜12を反射した光は光センサー
5に入射し、S2に示すようなS1aとS1bを重畳した信号に
なる、ここで図に示したα、βは一定の係数である。
Light emitted from the light emitting sources 1a and 1b and reflected by the thin film 12 enters the optical sensor 5 and becomes a signal obtained by superposing S1a and S1b as shown in S2. Here, α and β shown in the figure are constant coefficients. is there.

S2をロックインアンプ7a、7bにより同期検波する。こ
れによって、S2のf1、f2成分の振幅を分離して取り出す
ことができ、それぞれS3a,S3bになる。このS3a,S3bはそ
れぞれ薄膜12を反射した波長λ1、λ2の光の強度振幅
を示す。
S2 is synchronously detected by lock-in amplifiers 7a and 7b. As a result, the amplitudes of the f1 and f2 components of S2 can be separated and extracted, resulting in S3a and S3b, respectively. S3a and S3b denote the intensity amplitudes of the light of wavelengths λ1 and λ2 reflected by the thin film 12, respectively.

S3a,S3bは膜厚増加に伴って第3図の様に変化するの
で、これらの信号をペンレコーダー8などでモニターす
ることにより膜厚が決定できる。
Since S3a and S3b change as shown in FIG. 3 as the film thickness increases, the film thickness can be determined by monitoring these signals with the pen recorder 8 or the like.

以上の様に構成された本実施例によれば、波長がλ
1、λ2の光に周波数f1、f2で強度変調をかけ、波長が
λ1、λ2の反射光信号が混ざっている光センサーの出
力を2台のロックインアンプで分離することにより、膜
厚を示す2つの信号が得られる。これは従来の膜厚モニ
ターを使用した時よりも2倍のデータ数が得られること
を意味しており、より正確に膜厚をモニターできる。
According to the present embodiment configured as described above, the wavelength is λ
Intensity modulation is performed on the light of wavelengths 1 and 2 at frequencies f1 and f2, and the output of the optical sensor in which the reflected light signals of wavelengths λ1 and λ2 are mixed is separated by two lock-in amplifiers to indicate the film thickness. Two signals are obtained. This means that twice the number of data can be obtained than when a conventional film thickness monitor is used, and the film thickness can be monitored more accurately.

さらに、本実施例はロックインアンプで同期検波する
ことにより、ごく狭い帯域の信号を取り出している。し
たがって、各種ドリフト、輻射ノイズなどの影響を受け
にくく、S/Nの良い信号から膜厚が決定できるので、そ
の精度は高い。
Further, in this embodiment, a signal in a very narrow band is extracted by performing synchronous detection with a lock-in amplifier. Therefore, the film thickness is hardly affected by various drifts, radiation noise, and the like, and the film thickness can be determined from a signal having a good S / N, so that the accuracy is high.

発明の効果 以上説明した様に、本発明によれば、膜厚をより正確
にモニターすることができる。しかも、水晶振動子式膜
厚計とは異なり、被測定面そのものの膜厚をモニターし
ていることなる。したがって、本発明は薄膜作成時の膜
厚制御などに大きな実用的効果をもたらす。
Effect of the Invention As described above, according to the present invention, the film thickness can be monitored more accurately. In addition, unlike the crystal resonator type film thickness meter, the film thickness of the surface to be measured itself is monitored. Therefore, the present invention has a great practical effect in controlling the film thickness when forming a thin film.

【図面の簡単な説明】[Brief description of the drawings]

第1図は本発明における一実施例の膜厚モニター装置の
ブロック図、第2図、第3図は本実施例の動作波形図、
第4図は従来の膜厚モニター装置のブロック図、第5図
は従来の膜厚モニター装置の動作波形図である。 1a,1b……発光源、2a,2b……発振器、3a,3b……直流電
源、4a,4b……加算器、5……光センサー、6……プリ
アンプ、7a,7b……ロックインアンプ、8……ペンレコ
ーダー、9a,9b……レンズ、10、11……ハーフミラー、1
2……被測定面、1……発光源、2……光センサー、3
……レンズ、4……被測定面、5……直流電源、6……
ペンレコーダー
FIG. 1 is a block diagram of a film thickness monitor according to one embodiment of the present invention, FIG. 2 and FIG. 3 are operation waveform diagrams of the present embodiment,
FIG. 4 is a block diagram of a conventional film thickness monitor, and FIG. 5 is an operation waveform diagram of the conventional film thickness monitor. 1a, 1b: Light-emitting source, 2a, 2b: Oscillator, 3a, 3b: DC power supply, 4a, 4b: Adder, 5: Optical sensor, 6: Preamplifier, 7a, 7b: Lock-in amplifier , 8 ... pen recorder, 9a, 9b ... lens, 10,11 ... half mirror, 1
2 ... surface to be measured, 1 ... light emission source, 2 ... light sensor, 3
... Lens, 4 ... Measurement surface, 5 ... DC power supply, 6 ...
Pen recorder

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】被測定物に光を照射するための、発光波長
が各々異なるN個(N≧2の整数)の半導体レーザ又は
発光ダイオードのどちらかからなる光源と、前記N個の
光源へ発振周波数の信号を供給する発信周波数が各々異
なるN個の発振器と、前記N個の光源へ直流の信号を与
える直流電源と、前記直流電源と前記N個の発振器の出
力を加算し、前記N個の発光源を駆動するN個の加算器
と、前記被測定物から反射してもどってきた光を受光す
る光センサーと、前記光センサーの出力を増幅するプリ
アンプと、前記N個の発振器の信号を参照信号とし前記
プリアンプの出力を同期検波するN個のロックインアン
プとを備えたことを特徴とする膜厚モニター装置。
1. A light source for irradiating an object to be measured with one of N (an integer of N ≧ 2) semiconductor lasers or light-emitting diodes, each having a different emission wavelength, and the N light sources. N oscillators each having a different oscillation frequency for supplying an oscillation frequency signal, a DC power supply for providing a DC signal to the N light sources, and adding the outputs of the DC power supply and the N oscillators, N adders for driving the light-emitting sources, an optical sensor for receiving light reflected back from the device under test, a preamplifier for amplifying the output of the optical sensor, and N oscillators A film thickness monitor device comprising: N lock-in amplifiers for synchronously detecting an output of the preamplifier using a signal as a reference signal.
JP29116588A 1988-11-17 1988-11-17 Film thickness monitor Expired - Fee Related JP2629319B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP29116588A JP2629319B2 (en) 1988-11-17 1988-11-17 Film thickness monitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP29116588A JP2629319B2 (en) 1988-11-17 1988-11-17 Film thickness monitor

Publications (2)

Publication Number Publication Date
JPH02136704A JPH02136704A (en) 1990-05-25
JP2629319B2 true JP2629319B2 (en) 1997-07-09

Family

ID=17765287

Family Applications (1)

Application Number Title Priority Date Filing Date
JP29116588A Expired - Fee Related JP2629319B2 (en) 1988-11-17 1988-11-17 Film thickness monitor

Country Status (1)

Country Link
JP (1) JP2629319B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153415A (en) * 1997-11-20 1999-06-08 Denso Corp Semiconductor thickness measuring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11153415A (en) * 1997-11-20 1999-06-08 Denso Corp Semiconductor thickness measuring device

Also Published As

Publication number Publication date
JPH02136704A (en) 1990-05-25

Similar Documents

Publication Publication Date Title
US4948254A (en) Light wave interference length-measuring apparatus
KR920016823A (en) Optical instrumentation for determining surface properties
JP2015526707A5 (en)
KR100721783B1 (en) Process and device for measuring the thickness of a transparent material
JPH06148072A (en) Method and instrument for measuring concentration of gas
JPH04326005A (en) Straightness measuring apparatus
JP2629319B2 (en) Film thickness monitor
JPH06174844A (en) Laser distance measuring apparatus
JPS6338102A (en) Method and device for measuring fine displacement
JPH04326041A (en) Gas concentration measuring method and device
JP2696366B2 (en) Micro clearance measuring device
JP2000121318A (en) Interference phase detecting system for optical interferometer
JPH05256768A (en) Method and apparatus for measuring gas concentration
JPS5866881A (en) Surveying equipment by light wave
JPS6355035B2 (en)
JPH06294777A (en) Measuring method for ultrasonic vibration
JPS6371675A (en) Laser distance measuring instrument
JPH05288720A (en) Evaluating method of sample by ultrasonic vibration measurement
SU1026010A1 (en) Device for measuring small slow changes of interferometer measuring arm optical length
JPH074909A (en) Laser sensor apparatus
JPH05264687A (en) Optical magnetic field sensor
JP2592211B2 (en) Interference film thickness measuring device
JPH10170340A (en) Measuring apparatus for interference efficiency of interferometer for ft
JPH1163913A (en) Optical frequency region reflected light distribution measuring equipment
JP2022163283A (en) Electronic distance meter and optical comb distance meter

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees