JPH0116889Y2 - - Google Patents

Info

Publication number
JPH0116889Y2
JPH0116889Y2 JP1982139782U JP13978282U JPH0116889Y2 JP H0116889 Y2 JPH0116889 Y2 JP H0116889Y2 JP 1982139782 U JP1982139782 U JP 1982139782U JP 13978282 U JP13978282 U JP 13978282U JP H0116889 Y2 JPH0116889 Y2 JP H0116889Y2
Authority
JP
Japan
Prior art keywords
furnace
rice
silica sand
incinerator
fluidized bed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP1982139782U
Other languages
Japanese (ja)
Other versions
JPS5948409U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP13978282U priority Critical patent/JPS5948409U/en
Publication of JPS5948409U publication Critical patent/JPS5948409U/en
Application granted granted Critical
Publication of JPH0116889Y2 publication Critical patent/JPH0116889Y2/ja
Granted legal-status Critical Current

Links

Landscapes

  • Fluidized-Bed Combustion And Resonant Combustion (AREA)

Description

【考案の詳細な説明】 本考案は流動床式焼却炉を用いたもみがらの焼
却装置の改良に関するものである。
[Detailed Description of the Invention] The present invention relates to an improvement of a rice husk incinerator using a fluidized bed incinerator.

従来米の収穫後に大量に発生するもみがらは筒
状燃焼室の底部に火床を設けた簡単な焼却炉によ
つて焼却処理されていたが焼却炉の耐久性に難が
あるばかりでなく処理期間が長くまた焼却による
煤煙からの二次公害等の問題をかかえていた。
Traditionally, rice husks generated in large quantities after rice harvest were incinerated in a simple incinerator with a fire bed at the bottom of a cylindrical combustion chamber, but the incinerator not only had problems with its durability, but also The period was long and there were problems such as secondary pollution from soot and smoke caused by incineration.

そこでこれを解決するため出願人は砂床を用い
た流動床式焼却炉で焼却し、焼却灰を燃焼ガスと
ともに熱交換器を介して排ガスサイクロンに送つ
て焼却灰を取出し、熱交換器で得た熱をもみ乾燥
器の熱源に用いるようにしたもみがらの焼却装置
を開発した(実願昭55−112473号)。
In order to solve this problem, the applicant incinerated the incinerator in a fluidized bed incinerator using a sand bed, sent the incinerated ash along with the combustion gas to an exhaust gas cyclone through a heat exchanger, extracted the incinerated ash, and collected the incinerator using the heat exchanger. He developed a rice husk incineration device that uses the heat from the rice husks as a heat source for a dryer (Utility Application No. 112473, 1983).

この概要を第1図で説明すると流動床式の燃焼
炉1の側壁部にもみがら供給機2とバーナ3が設
けられ、下部には分散板4および空気室5が、ま
た上部には安全弁6、排気口7が設けられてい
る。
To explain this outline with reference to FIG. 1, a fluidized bed type combustion furnace 1 is provided with a rice hull feeder 2 and a burner 3 on the side wall, a dispersion plate 4 and an air chamber 5 in the lower part, and a safety valve 6 in the upper part. , an exhaust port 7 is provided.

もみがらを燃焼させる場合は送風機8から燃焼
用空気を空気室5へ送り、分散板4を通して炉1
内へ流入させ、炉1内に適量充填した珪砂9を流
動化させるとともに燃料タンク10内の燃料をポ
ンプ11、ソレノイドバルブ12を介してバーナ
3から燃焼ガスとして送りもみがらの着火温度で
ある450℃以上に炉内全体を加熱する。そしても
みがらをもみがら供給機2によつて連続的に炉内
に供給し燃焼させる。
When burning rice husk, combustion air is sent from the blower 8 to the air chamber 5 and then passed through the distribution plate 4 to the furnace 1.
The silica sand 9 filled in an appropriate amount in the furnace 1 is fluidized, and the fuel in the fuel tank 10 is sent as a combustion gas from the burner 3 via the pump 11 and the solenoid valve 12, which is the ignition temperature of rice husks at 450°C. Heat the entire furnace to above ℃. Then, the rice husks are continuously fed into the furnace by the rice husks feeder 2 and burned.

焼却された灰は排ガスとともに排気口7から熱
交換器13へ運ばれ、ここで送風機14からの新
鮮空気を暖め熱風化し排ガスサイクロン15へ運
ばれる。排ガスサイクロン15では灰とガスに分
離され灰は下部から取出され、ガスは調整ダンパ
16、送風機17を介して煙突18より外気に排
出される。そして熱交換器13で得られる熱風空
気は風量調整ダンパ19を介してもみ乾燥器20
の熱源に供される。
The incinerated ash is carried along with the exhaust gas from the exhaust port 7 to the heat exchanger 13, where the fresh air from the blower 14 is warmed and turned into hot air, and then carried to the exhaust gas cyclone 15. The exhaust gas is separated into ash and gas in the exhaust gas cyclone 15, and the ash is taken out from the lower part, and the gas is discharged to the outside air from the chimney 18 via the adjustment damper 16 and the blower 17. Then, the hot air obtained from the heat exchanger 13 is passed through the air volume adjustment damper 19 to the kneading dryer 20.
heat source.

このもみがら焼却装置によれば短期間にもみが
らを完全燃焼でき、人手も少くて済み二次公害も
なくさらには排熱を有効に利用できることから注
目されライスセンターやカントリエレベータで利
用が進められている。さてこの流動式焼却炉では
分散板4下部からの流入空気量を珪砂を適宜に流
動させかつもみがらを燃焼させるに充分な量にし
なければならない。流入空気量が少いと珪砂の流
動が悪いのみならずもみがらの発熱量が
3600Kcal/Kgと高いので炉内温度が特に炉内上
部から排出口7廻りにおいて高くなり炉壁の損傷
を早める。また流入空気量が多いと炉内温度は低
くなるが珪砂9が灰とともに排出口7から飛散す
る量が増加する。
This rice husk incineration device can completely burn rice husks in a short period of time, requires less manpower, does not cause secondary pollution, and can effectively utilize waste heat, so it has attracted attention and is being used at rice centers and country elevators. ing. In this fluidized incinerator, the amount of air flowing in from the lower part of the dispersion plate 4 must be sufficient to appropriately fluidize the silica sand and burn the rice husks. If the amount of inflowing air is small, not only will the flow of silica sand be poor, but the calorific value of rice husks will also increase.
Since the temperature is as high as 3600 Kcal/Kg, the temperature inside the furnace becomes high especially from the upper part of the furnace to the area around the discharge port 7, which accelerates damage to the furnace wall. Furthermore, when the amount of incoming air is large, the temperature inside the furnace becomes low, but the amount of silica sand 9 scattered from the discharge port 7 together with the ash increases.

これを第2図で説明すると縦軸に炉内温度、横
軸に炉内風速(空塔速度)をとると、もみがら焼
却の場合は炉内風速が0.8〜1.2m/S程度が最も
安定した流動層となるがこのとき炉内の上部にお
ける温度は1300℃〜1600℃と高温になるので好し
くない。したがつて実際上は炉内風速を炉内の上
部における温度が1000℃以下になる1.5〜1.8m/
Sで使用されている。この値は珪砂が落下せずに
排出口7から飛び出してしまう空塔速度(終末速
度と称し珪砂5号では約2.0m/Sである。)に近
いため珪砂9の飛散する量が多い。この飛散した
珪砂は熱交換器13の下部に堆積するばかりでな
く排ガスサイクロン15で分離される灰にまで混
入する。このため安定した流動層を形成する空塔
速度を選定し、かつ炉内上部の温度が1000℃を超
えないようにもみがらの供給量を制限して焼却し
なければならなかつた。
To explain this with Figure 2, if we take the temperature inside the furnace on the vertical axis and the wind speed inside the furnace (superficial velocity) on the horizontal axis, in the case of rice husk incineration, the most stable wind speed inside the furnace is about 0.8 to 1.2 m/S. However, at this time, the temperature in the upper part of the furnace becomes as high as 1300°C to 1600°C, which is not preferable. Therefore, in practice, the wind speed inside the furnace should be set at 1.5 to 1.8 m/cm, at which the temperature at the upper part of the furnace is below 1000℃.
It is used in S. This value is close to the sky velocity (referred to as terminal velocity, which is approximately 2.0 m/S for silica sand No. 5) at which the silica sand flies out of the discharge port 7 without falling, so a large amount of silica sand 9 is scattered. This scattered silica sand not only accumulates in the lower part of the heat exchanger 13, but also mixes into the ash separated by the exhaust gas cyclone 15. For this reason, it was necessary to select a superficial velocity that would form a stable fluidized bed, and to limit the amount of rice husk supplied so that the temperature at the upper part of the furnace did not exceed 1000°C.

本考案は上記の点に鑑み考案されたもので、珪
砂の飛散の少ない安定した流動層を形成させつつ
炉内上部の温度を1000℃以下で多量のもみがらを
焼却しうるもみがらの焼却装置を得ることを目的
とするもので、その特徴とするところは分散板下
部から送風する空気量を空塔速度1.5〜1.8m/S
の砂床の流動層に最適なものとし、炉内温度を低
下させるため炉体側壁上部から二次空気を供給
し、さらにこの二次空気には熱交換器で回収した
飛散珪砂を含有させたものである。
The present invention was devised in view of the above points, and is a rice husk incineration device that can incinerate a large amount of rice husks at a temperature of 1000°C or less at the upper part of the furnace while forming a stable fluidized bed with little scattering of silica sand. The purpose of this is to increase the amount of air blown from the bottom of the dispersion plate to a superficial velocity of 1.5 to 1.8 m/s.
In order to reduce the temperature inside the furnace, secondary air is supplied from the upper side wall of the furnace body, and this secondary air contains scattered silica sand recovered by a heat exchanger. It is something.

以下本考案の実施例の図面第3図および第4図
に基づいて説明する。尚付号1乃至20は第1図
の場合と同様である。
Embodiments of the present invention will be described below with reference to FIGS. 3 and 4. Note that numbers 1 to 20 are the same as in the case of FIG.

炉1の側壁上部に二次空気取入口21が設けら
れ、送風機22と配管23で連結されている。
A secondary air intake 21 is provided in the upper part of the side wall of the furnace 1 and is connected to a blower 22 by a pipe 23.

また熱交換器13の下部には飛散した珪砂9を
取出すためのスクリユコンベア24が設けられ、
熱交換器13の下部排出口25は定量供給器26
を介して上記配管23と連結されている。なお配
管23に備えられた調整ダンパ27によつて二次
空気量の調整が可能である。
Further, a screw conveyor 24 is provided at the bottom of the heat exchanger 13 to take out the scattered silica sand 9.
The lower discharge port 25 of the heat exchanger 13 is connected to a fixed quantity feeder 26
It is connected to the piping 23 via. Note that the amount of secondary air can be adjusted by an adjustment damper 27 provided in the piping 23.

このように構成されたもみがら焼却装置の作用
について次に説明する。まず燃焼用空気を送風機
8で炉内風速が0.8〜1.2m/Sになるように送り
最適な流動層とする。そしてバーナ3から燃焼ガ
スを送り炉内温度を450℃以上にしてもみがらを
供給する。
Next, the operation of the rice husk incineration apparatus configured as described above will be explained. First, combustion air is sent using a blower 8 so that the air velocity in the furnace is 0.8 to 1.2 m/s to form an optimal fluidized bed. Then, combustion gas is sent from the burner 3 to raise the temperature inside the furnace to 450°C or higher, and the rice husks are supplied.

もみがらが燃焼すると炉内温度がどんどん高く
なるが1000℃を超えた頃送風機22を駆動し新鮮
な空気を二次空気取入口21から吹込む。この場
合炉1の冷却効果を高めるため炉体内壁に沿うよ
うに吹込むのがよい。炉内の温度はもみがらの供
給状態や燃焼状態によつて変化するが、二次空気
は常に一定量送込み炉内温度の制御(900〜1000
℃に)は一次空気(送風機8の風量)の風量制御
によつて行われる。燃焼した灰は排ガスとともに
排出口7から熱交換器13へ運ばれ、ここで送風
機14からの新鮮空気を暖めて熱風化し灰と燃焼
ガスは排ガスサイクロン15へ運ばれる。排ガス
サイクロン15では灰とガスを分離し灰は下部か
ら取出されガスは煙突18を通して外気に排出さ
れる。
As the rice husks burn, the temperature inside the furnace becomes higher and higher, and when it exceeds 1000°C, the blower 22 is activated to blow fresh air through the secondary air intake port 21. In this case, in order to enhance the cooling effect of the furnace 1, it is preferable to blow it along the inner wall of the furnace. The temperature inside the furnace changes depending on the supply state of rice husk and the combustion state, but a constant amount of secondary air is always fed to control the temperature inside the furnace (900 to 1000
℃) is performed by controlling the air volume of the primary air (the air volume of the blower 8). The combusted ash and exhaust gas are transported from the exhaust port 7 to the heat exchanger 13, where the fresh air from the blower 14 is warmed and turned into hot air, and the ash and combustion gas are transported to the exhaust gas cyclone 15. The exhaust gas cyclone 15 separates ash and gas, the ash is taken out from the bottom, and the gas is discharged to the outside air through the chimney 18.

ここで排出口7から流出する灰には二次空気に
より炉内上部の空搭載速度が高くなるので、小径
の珪砂が少量含まれており、この珪砂は熱交換器
13の下方に堆積される。そしてこの珪砂はスク
リユコンベア24によつて排出口25へ移送され
定量供給器26によつて定量ずつ二次空気送風用
の配管23へ流入し、二次空気とともに二次空気
取入口21より炉1内に送り込まれる。
Here, the ash flowing out from the discharge port 7 contains a small amount of small-diameter silica sand because the empty loading speed in the upper part of the furnace increases due to secondary air, and this silica sand is deposited below the heat exchanger 13. . Then, this silica sand is transferred to the discharge port 25 by the screw conveyor 24, flows into the secondary air blowing pipe 23 in fixed quantities by the quantitative feeder 26, and flows into the furnace together with the secondary air from the secondary air intake port 21. sent into 1.

本考案によるもみがら燃焼装置は上記説明した
ように炉体下部から送風する空気量を空塔速度
0.8〜1.2m/Sの砂床流動層に最適なものとし、
炉側壁上部から熱交換器で回収した珪砂とともに
二次空気を供給するようにしたので、従来に比べ
多量のもみがらを炉内温度が1000℃以下で最適な
燃焼を行うことができる。又炉中から飛散する珪
砂も少なく、かつ飛散した珪砂も熱交換器から炉
内へ回収されるので珪砂を補充する必要はほとん
どない。また実験したところによると従来に比べ
て炉内に供給する空気量を二次空気量を含めても
1割以上減少でき省エネルギ的である。さらに灰
ガスサイクロンでの灰の回収においても、珪砂の
混入がないので純度のよい灰が得られ、これの有
効利用が図れる等実用上の効果多大である。
As explained above, the rice husk combustion device according to the present invention reduces the amount of air blown from the bottom of the furnace body to the superficial velocity.
Optimal for sand bed fluidized bed of 0.8 to 1.2m/S,
Since secondary air is supplied from the upper part of the furnace side wall together with the silica sand recovered by a heat exchanger, a larger amount of rice husks than before can be optimally combusted at a furnace temperature of 1000°C or less. In addition, there is little silica sand scattered from the furnace, and the scattered silica sand is recovered from the heat exchanger into the furnace, so there is almost no need to replenish silica sand. Additionally, experiments have shown that the amount of air supplied into the furnace, including the amount of secondary air, can be reduced by more than 10% compared to the conventional method, resulting in energy savings. Furthermore, even when ash is recovered using an ash gas cyclone, ash of good purity can be obtained since there is no silica sand mixed in, and this has great practical effects, such as being able to utilize it effectively.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は流動床式焼却炉を用いた従来のもみが
ら焼却装置の系統図、第2図は第1図の装置の空
塔速度と炉内温度の関係を示す図、第3図は本考
案に係る流動床式焼却炉を用いたもみがら焼却装
置の系統図、第4図は第3図装置の空塔速度と炉
内温度の関係を示す図である。 1は燃焼炉、2はもみがら供給機、3はバー
ナ、4は分散板、5は空気室、7は排気口、8は
送風機、9は珪砂、13は熱交換器、14は送風
機、15は排ガスサイクロン、21は二次空気取
入口、22は送風機、23は配管、24はスクリ
ユコンベア、25は排出口、26は定量供給器、
27は調整ダンパである。
Figure 1 is a system diagram of a conventional rice husk incinerator using a fluidized bed incinerator, Figure 2 is a diagram showing the relationship between superficial velocity and furnace temperature in the equipment shown in Figure 1, and Figure 3 is a diagram of the present invention. FIG. 4 is a system diagram of a rice husk incinerator using the fluidized bed incinerator according to the invention, and FIG. 4 is a diagram showing the relationship between superficial velocity and furnace temperature of the device shown in FIG. 3. 1 is a combustion furnace, 2 is a rice husk feeder, 3 is a burner, 4 is a distribution plate, 5 is an air chamber, 7 is an exhaust port, 8 is a blower, 9 is silica sand, 13 is a heat exchanger, 14 is a blower, 15 is an exhaust gas cyclone, 21 is a secondary air intake port, 22 is a blower, 23 is piping, 24 is a screw conveyor, 25 is an outlet, 26 is a quantitative feeder,
27 is an adjustment damper.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 炉体側部にもみがらの供給口を有し、下部の分
散板上に充填した珪砂を炉体下方から送る燃焼空
気によつて流動化させてもみがらを焼却する流動
床炉に、焼却したもみがらの灰および排ガスを利
用してもみ乾燥などの熱源を得るための熱交換器
と焼却灰を収集するサイクロンとを順次連通した
もみがらの焼却装置において、炉内上部の温度を
低下させるため上記流動床炉側壁上部に送風機と
配管で連通する二次空気供給口を設け、かつ前記
熱交換器下部の珪砂の排出口と該二次空気供給口
への配管とを連通し、流動床炉から飛散して堆積
した珪砂を二次空気によつて炉内へ戻すようにし
たことを特徴とする流動床式焼却炉を用いたもみ
がらの焼却装置。
The incinerated rice is placed in a fluidized bed furnace, which has a supply port for rice husks on the side of the furnace body, and incinerates the rice husks by fluidizing the silica sand filled on the lower dispersion plate with combustion air sent from below the furnace body. In a rice husk incinerator that sequentially communicates a heat exchanger for obtaining a heat source for rice kneading and drying using rice husk ash and exhaust gas, and a cyclone for collecting incinerated ash, the above method is used to lower the temperature in the upper part of the furnace. A secondary air supply port is provided at the upper part of the side wall of the fluidized bed furnace and communicates with the blower through piping, and the silica sand discharge port at the bottom of the heat exchanger is connected to the piping to the secondary air supply port, and the fluidized bed furnace is connected to the secondary air supply port. A rice husk incinerator using a fluidized bed incinerator, characterized in that scattered and accumulated silica sand is returned to the incinerator using secondary air.
JP13978282U 1982-09-14 1982-09-14 Rice husk incineration equipment using a fluidized bed incinerator Granted JPS5948409U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13978282U JPS5948409U (en) 1982-09-14 1982-09-14 Rice husk incineration equipment using a fluidized bed incinerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13978282U JPS5948409U (en) 1982-09-14 1982-09-14 Rice husk incineration equipment using a fluidized bed incinerator

Publications (2)

Publication Number Publication Date
JPS5948409U JPS5948409U (en) 1984-03-30
JPH0116889Y2 true JPH0116889Y2 (en) 1989-05-17

Family

ID=30313189

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13978282U Granted JPS5948409U (en) 1982-09-14 1982-09-14 Rice husk incineration equipment using a fluidized bed incinerator

Country Status (1)

Country Link
JP (1) JPS5948409U (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339670A (en) * 1976-09-22 1978-04-11 Ahlstroem Oy Material treatment method at fluidized bed incinerator

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5339670A (en) * 1976-09-22 1978-04-11 Ahlstroem Oy Material treatment method at fluidized bed incinerator

Also Published As

Publication number Publication date
JPS5948409U (en) 1984-03-30

Similar Documents

Publication Publication Date Title
JPS62169921A (en) Stable combustion of fluidized bed furnace
CN105864748A (en) Combined combustion system of chain boiler
CN100432532C (en) Combined incineration treatment method for refuse and special vertical oxygen-enriched continuous incinerator
CN102042602B (en) Processing method and device for incinerating toxic waste liquid by smoke concentration and gasification
CN109631044A (en) A kind of refuse incinerator of circulating fluid bed and its incinerating method
CN201672523U (en) Bubbling bed sludge incineration boiler
CN203757694U (en) Energy reservation, emission reduction and efficient combustion biomass boiler
JPH0116889Y2 (en)
CA1290988C (en) Method of combustion for fluidized bed incinerators
CN105698182A (en) Combustion system for treating garbage
CN102818265B (en) Application of heat-accumulating high-temperature air burning method in burner and burning furnace
CN206846724U (en) A kind of horizontal incinerator
CN2350637Y (en) Backfire type continuous burning domestic refuse incinerator
KR20000002871A (en) Incinerator drying facilitating device using recirculation of ignition gas
JPS6326719Y2 (en)
CN219036699U (en) Air preheating system based on garbage incinerator
CN218154218U (en) Middle-size and small-size waste incinerator
CN208042146U (en) Secondary exhaust gas combustion room during a kind of offal treatment
JPH0130050B2 (en)
CN106642132A (en) Small efficient household garbage incinerator
JPH01203815A (en) Method and device for burning high moisture content-contained waste and the like
JPS605206Y2 (en) combustion device
KR20020046401A (en) Boiler powered by chaff and sawdust
SU1392310A1 (en) Apparatus for returning fly fines
JPS5837418A (en) Soot and dust-free combustion and furnace therefore