JPH01168815A - Manufacture of non-oriented magnetic steel sheet - Google Patents

Manufacture of non-oriented magnetic steel sheet

Info

Publication number
JPH01168815A
JPH01168815A JP62326704A JP32670487A JPH01168815A JP H01168815 A JPH01168815 A JP H01168815A JP 62326704 A JP62326704 A JP 62326704A JP 32670487 A JP32670487 A JP 32670487A JP H01168815 A JPH01168815 A JP H01168815A
Authority
JP
Japan
Prior art keywords
less
hot
rolled
steel sheet
annealing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP62326704A
Other languages
Japanese (ja)
Other versions
JP2501219B2 (en
Inventor
Shigeru Sato
繁 佐藤
Yoshio Obata
小畑 良夫
Takehiko Minato
港 武彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP62326704A priority Critical patent/JP2501219B2/en
Publication of JPH01168815A publication Critical patent/JPH01168815A/en
Application granted granted Critical
Publication of JP2501219B2 publication Critical patent/JP2501219B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Manufacturing Of Steel Electrode Plates (AREA)
  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain the title non-oriented magnetic steel sheet having low iron loss and excellent magnetic flux density by hot-rolling, annealing, cold-rolling, and then again annealing a steel having specified contents of C, Si, Mn, P, S, Al, N, and Fe under specified conditions. CONSTITUTION:A steel contg., by weight, 0.005-0.010% C, <=1.5% Si, 0.1-1.0% Mn, <=0.15% P, <=0.01% S, <=0.3% Al, <=0.007% N, the balance Fe, and inevitable impurity elements is refined into a slab. The slab is heated, hot-rolled, and then further hot-rolled in the temp. range from the median of the Ar3 and Ar1 to 750 deg.C. The obtained hot-rolled band steel is briefly annealed for <=5 min in the temp. range from Ar1 to (Ar3+50 deg.C), pickled, and then cold-rolled to a finishing thickness. The cold-rolled steel sheet is briefly decarburizing- annealed for 10sec to 5min in the temp. range below Ar3 to reduce the C content to <0.005%. By this method, a non-oriented magnetic steel sheet having low iron loss and excellent magnetic flux density is easily obtained.

Description

【発明の詳細な説明】 〈産業上の利用分野〉 この発明は、小型変圧器やモーター等の鉄心材料に適し
た鉄損が低く、かつ磁束密度に優れた無方向性電磁鋼板
の製造方法に関するものである。
[Detailed Description of the Invention] <Industrial Application Field> The present invention relates to a method for producing a non-oriented electrical steel sheet that has low core loss and excellent magnetic flux density and is suitable as core material for small transformers, motors, etc. It is something.

〈従来の技術〉 近年の省エネルギーの要請から電気機器の小型化もしく
は高効率化が強く望まれるようになってきた。そのため
小型変圧器あるいはモーター等の鉄心材料に広く利用さ
れている無方向検電MIm Fiに対してはより一層の
高磁束密度および低鉄損が要求されている。
<Background Art> Due to the recent demand for energy conservation, there has been a strong desire for electrical equipment to be smaller and more efficient. Therefore, even higher magnetic flux density and lower iron loss are required for omnidirectional voltage detection MIm Fi, which is widely used as iron core material for small transformers, motors, and the like.

従来の無方向性電磁鋼板では、鉄損を低くする手段とし
て、−aには固有抵抗増加による渦流損低下の観点から
SiあるいはM等の含有量を高める方法が用いられてい
るが、この方法では磁束密度が低下するという問題があ
った。
In conventional non-oriented electrical steel sheets, a method of increasing the content of Si or M, etc. is used for -a from the viewpoint of reducing eddy current loss due to increased specific resistance, as a means to lower iron loss. However, there was a problem that the magnetic flux density decreased.

このような問題を解決するために特開昭62−1771
23号には、Cj 0.04〜0.10%、Si:1.
5%以下、 B :  0.008%以下、 N : 
 0.007%以下でBZN比が0.5以上含んだ熱延
調板を700〜780℃にて脱炭焼鈍を行いCを0.0
05%以下にすることにより、優れた磁性を得る方法が
開示されている。
In order to solve such problems, Japanese Patent Application Laid-Open No. 62-1771
No. 23 contains Cj 0.04 to 0.10%, Si: 1.
5% or less, B: 0.008% or less, N:
A hot rolled conditioned plate containing 0.007% or less and a BZN ratio of 0.5 or more is decarburized and annealed at 700 to 780°C to reduce C to 0.0.
A method for obtaining excellent magnetism by reducing the amount to 0.5% or less is disclosed.

しかしながらこの方法は、Cを0.04〜0.10%と
多く含ませて、熱間圧延した鋼を脱炭焼鈍してCを0.
005%以下とする点に特徴がある方法であるが、この
焼鈍はオープンコイル脱炭焼鈍によるため、数日間を要
する長時間の焼鈍が必要であり、生産能率が悪く、コス
ト的にも不利であった。
However, in this method, hot-rolled steel containing as much as 0.04 to 0.10% of C is decarburized and annealed to reduce the C content to 0.04 to 0.10%.
This method is characterized by the fact that it is less than 0.005%, but since this annealing is an open coil decarburization annealing, it requires a long time of annealing that takes several days, which has poor production efficiency and is disadvantageous in terms of cost. there were.

また熱延仕上温度をA3変態点以上としその後熱延綱帯
をA3変態点以下で短時間焼鈍する方法も一般的に採用
されているが、熱延鋼帯の焼鈍後粒径が余りに粗大化す
るために、最終冷間圧延後、鋼板表面に肉眼で見える程
の凹凸を生じ外観を損ね、またこのような凹凸を出さな
いように、最適条件を選ぼうとするとコイルの全幅全長
にわたって均一な磁性を得ることができなかった。
In addition, a method is generally adopted in which the finishing temperature of the hot rolled steel strip is set above the A3 transformation point and then the hot rolled steel strip is annealed for a short time below the A3 transformation point, but the grain size of the hot rolled steel strip after annealing becomes too coarse. Therefore, after the final cold rolling, the surface of the steel sheet becomes uneven which is visible to the naked eye and spoils the appearance.In addition, when trying to select the optimum conditions to avoid such unevenness, it is necessary to ensure uniformity over the entire width of the coil. Could not obtain magnetism.

〈発明が解決しようとする問題点〉 この発明は上述のような製造上の問題のないより簡単な
方法により、鉄損および磁束密度において従来のものと
勝るとも劣らない無方向性電磁鋼板の製造方法を提供す
るものである。
<Problems to be Solved by the Invention> The present invention is directed to the production of non-oriented electrical steel sheets that are superior to conventional ones in terms of iron loss and magnetic flux density, using a simpler method that does not have the above-mentioned manufacturing problems. The present invention provides a method.

く問題点を解決するための手段〉 この発明は重量%で、C:  0.005〜0.010
%。
Means for Solving Problems〉 This invention has C: 0.005 to 0.010 in weight%
%.

Si:1.5%以下、 Mn:  0.1=1.0%+
P:Q、15%以下、s:o、o1%以下t A1:0
.3%以下、N:0.007%以下を含み、残部が実質
的にFe及び不可避的不純物元素より成る鋼を溶製し、
続いてスラブとし、加熱後熱間圧延により熱延鋼帯とす
る隙に、熱間圧延終了温度をArsとArlの中央値と
750℃の温度範囲とし、次いでこの鋼帯を^r+から
^r−s+50℃の温度範囲で5分以下の短時間焼鈍を
行い、酸洗後、冷間圧延により仕上厚みとした後、Ar
2以下の温度範囲で10秒以上5分以下の短時間脱炭焼
鈍を行いC含有量を0.005%未満にすることを特徴
とする無方向性電磁鋼板の製造方法である。
Si: 1.5% or less, Mn: 0.1=1.0%+
P:Q, 15% or less, s:o, o1% or lesst A1:0
.. 3% or less, N: 0.007% or less, and the remainder substantially consists of Fe and unavoidable impurity elements,
Subsequently, the slab is made into a hot rolled steel strip by heating and hot rolling.The hot rolling end temperature is set to the median value of Ars and Arl and a temperature range of 750°C, and then this steel strip is heated from ^r+ to ^r. -S
This is a method for producing a non-oriented electrical steel sheet, characterized by carrying out short-time decarburization annealing for 10 seconds or more and 5 minutes or less in a temperature range of 2 or less to reduce the C content to less than 0.005%.

く作 用〉 本発明者らはフルプロセス品として磁気特性、特に磁束
密度が高い製造方法を鋭意研究した。
Effects> The present inventors have diligently researched a manufacturing method that has magnetic properties, particularly high magnetic flux density, as a full-process product.

その結果、C,Si量を低くし、熱間仕上温度とそれに
続く熱延鋼帯の焼鈍条件及び最終仕上焼鈍の組み合わせ
が磁性の向上に有効であることを見出した。
As a result, it was found that a combination of lowering the amount of C and Si, the hot finishing temperature, the subsequent annealing conditions for the hot rolled steel strip, and the final finishing annealing is effective for improving magnetism.

また、セミプロセス品の用途のような場合でも従来のも
のより優れた特性が得られる。
Furthermore, even in applications such as semi-processed products, properties superior to those of conventional products can be obtained.

以下、本発明の鋼成分および処理条件について説明する
The steel components and processing conditions of the present invention will be explained below.

Cは鉄損を高める有害な成分であり、時効による磁性劣
化の原因となる。また、Cが高くなると、脱炭焼鈍する
際に長時′間を要するため0.010%(wt%以下同
じ)以下とする。一方0.005%以下となると熱延板
焼鈍時の結晶粒成長が抑制され磁気特性を悪化させるの
で0.005%以上は必要である。
C is a harmful component that increases iron loss and causes magnetic deterioration due to aging. In addition, when C becomes high, it takes a long time to decarburize and annealing, so it is set to 0.010% (wt% or less) or less. On the other hand, if it is less than 0.005%, grain growth during annealing of the hot rolled sheet will be suppressed and the magnetic properties will deteriorate, so it is necessary to have more than 0.005%.

Siは周知の通り鉄損改善の目的で添加されるが磁束密
度を低下させる。近年特に鉄心材料の小型化のためには
特に磁束密度の高いことが要求される。また変態点を利
用して、結晶組織および集合組織の改善をはかり、より
磁束密度を向上するためにSiとしては変態点の生じる
1、5%以下に限定される。
As is well known, Si is added for the purpose of improving core loss, but it also lowers magnetic flux density. In recent years, particularly in order to downsize iron core materials, a particularly high magnetic flux density is required. Further, in order to improve the crystal structure and texture by utilizing the transformation point and further improve the magnetic flux density, Si is limited to 1.5% or less where the transformation point occurs.

Mnは鉄損を若干向上させる。また硬さも若干増し、打
抜性も改善されるが1.0%を超すとコスト高となり、
一方0.1%未満では熱間圧延時において、表面疵を発
生させるので0.1〜1.0%に限定される。
Mn slightly improves iron loss. In addition, the hardness increases slightly and the punching property is improved, but if it exceeds 1.0%, the cost will increase.
On the other hand, if it is less than 0.1%, surface flaws will occur during hot rolling, so it is limited to 0.1 to 1.0%.

Pは硬さを高くし、打抜性を改善するため添加するが、
0.15%を超すと脆化現象を起こすので0.15%以
下に限定される。
P is added to increase hardness and improve punchability, but
If it exceeds 0.15%, embrittlement occurs, so it is limited to 0.15% or less.

Sは磁性向上に有害な、非金属介在物であるMnSを生
成させるため低いほうが望ましく  0.005%以下
に限定される。
Since S generates MnS, which is a non-metallic inclusion that is harmful to improving magnetism, it is preferable to have a low content and is limited to 0.005% or less.

Mは脱酸のために必要な成分である。また、Siと同様
に鉄損を下げる効果があるが0.3%を超すと磁束密度
が低下するので、0.3%以下に限定される。
M is a component necessary for deoxidation. Further, like Si, it has the effect of lowering iron loss, but if it exceeds 0.3%, the magnetic flux density decreases, so it is limited to 0.3% or less.

Nは磁性に有害なAZNを生成し、粒成長を阻害するの
で特性向上のためには0.007%以下に限定する必要
がある。
Since N generates AZN which is harmful to magnetism and inhibits grain growth, it is necessary to limit it to 0.007% or less in order to improve properties.

このように組成を調整した鋼をスラブとした後熱間圧延
により中間板厚とするが、熱間圧延の仕上温度はAr3
とAr、の中央値と750℃の温度が必要である。  
Ar3以上では、続く熱延鋼帯の焼鈍時にあまりに結晶
粒が粗大化し、外観および硬さにおいても不十分となる
。他方Ar3とArlの中央値より高い仕上温度では、
続く熱延鋼帯の連続焼鈍時部分的に粗大粒が生じて、最
終製品で凹凸が残存し、磁気特性も不均一となる。一方
750℃以下では、磁気特性、特に磁束密度が向上しな
い。
After the steel whose composition has been adjusted in this way is made into a slab, it is hot rolled to an intermediate thickness.The finishing temperature of the hot rolling is Ar3.
A median value of and Ar and a temperature of 750°C are required.
If Ar is 3 or more, the crystal grains become too coarse during subsequent annealing of the hot rolled steel strip, resulting in insufficient appearance and hardness. On the other hand, at a finishing temperature higher than the median value of Ar3 and Arl,
During the subsequent continuous annealing of the hot-rolled steel strip, coarse grains are formed locally, leaving unevenness in the final product and resulting in non-uniform magnetic properties. On the other hand, at temperatures below 750° C., magnetic properties, particularly magnetic flux density, do not improve.

750℃以上でArlとArsの中央値の間で、特性が
向上する理由は、Ar+以下のフェライトとArj以上
のオーステナイトが共存しく110) (100)等の
容易磁化軸を含む結晶粒が熱延中の変態加工を受けて多
(なるためと考えられる。
The reason why the properties improve between the median values of Arl and Ars at temperatures above 750°C is that ferrite below Ar+ and austenite above Arj coexist and crystal grains containing easy magnetization axes such as (110) (100) are hot-rolled. It is thought that this is due to the transformation of the inside.

次に上述のように熱間圧延した熱延鋼帯はAr+からA
r3 + 50℃の温度範囲で5分以下の短時間焼鈍が
必要である。熱延仕上温度を上記範囲に制御して最終製
品で好ましい磁性を得るためにはAr+温度以上、^r
s+50℃以下の温度が最適である。
Next, the hot-rolled steel strip hot-rolled as described above changes from Ar+ to A
Short-time annealing of 5 minutes or less in the temperature range r3 + 50°C is required. In order to control the hot rolling finishing temperature within the above range and obtain desirable magnetism in the final product, the temperature must be higher than Ar + temperature, ^r
Temperatures below s+50°C are optimal.

Ar3温度以下では、鉄損が劣化しAri+50℃以上
では鉄損も磁束密度も劣化する。また、焼鈍時間が長す
ぎると表層のスケールの問題が生じて、引き続く酸洗工
程等の表面酸化層除去工程において脱スケール性が悪く
なるため経済的でない上に磁束密度の劣化が生じる。こ
の温度範囲が好ましいのは、熱延中に制御された(10
0)、 (110)方位の結晶粒が熱延鋼帯の短時間焼
鈍を通じて、最終製品で凹凸を生じない適正な結晶粒と
なるためと考えられる。
At temperatures below Ar3, the iron loss deteriorates, and at temperatures above Ari+50°C, both the iron loss and the magnetic flux density deteriorate. Furthermore, if the annealing time is too long, a problem of scale on the surface layer will occur, and descaling performance will be poor in the subsequent surface oxidation layer removal process such as pickling process, which is not economical and causes deterioration of magnetic flux density. This temperature range is preferably controlled during hot rolling (10
This is thought to be because the crystal grains with the 0) and (110) orientations become proper crystal grains that do not cause unevenness in the final product through short-time annealing of the hot-rolled steel strip.

次に酸洗による脱スケール後、冷間圧延にて仕上厚まで
冷間圧延される。一般にこのときの加工率は圧下量で6
0〜80%程度が好ましい。
Next, after descaling by pickling, it is cold rolled to the final thickness. Generally, the processing rate at this time is 6 in terms of rolling reduction.
About 0 to 80% is preferable.

次いで冷間圧延後必要に応じて圧延油を脱脂した後、^
r3変態温度以下で10秒以上5分以下の短時間脱炭焼
鈍する。10秒未満だと脱炭効果がなく、5分をこえる
と酸化膜が生じ打抜性が劣化する。
Next, after degreasing the rolling oil as necessary after cold rolling,
Decarburization annealing is performed for a short time of 10 seconds or more and 5 minutes or less at a temperature below the r3 transformation temperature. If it is less than 10 seconds, there will be no decarburization effect, and if it is more than 5 minutes, an oxide film will form and the punching performance will deteriorate.

Ars温度を越えると、磁性は極端に劣化するのでAr
3以下に限定される。
If the Ar temperature is exceeded, the magnetism deteriorates extremely, so Ar
Limited to 3 or less.

脱炭焼純雰囲気は、いわゆる脱炭雰囲気であればよく、
水素を含む湿性雰囲気で行って−よい、目的はC含有量
を0.005%未満に脱炭することであり、その目的が
達成可能な限り制限はない、脱炭後のC含有量が0.0
05%以上では磁性改善効果が不十分であり、0.00
5%未満に限定される。
The pure atmosphere for decarburization sintering only needs to be a so-called decarburization atmosphere.
The purpose is to decarburize the C content to less than 0.005%, and there is no restriction as long as the purpose can be achieved.The C content after decarburization is 0. .0
0.05% or more, the magnetic improvement effect is insufficient, and 0.00% or more
Limited to less than 5%.

〈実施例〉 第1表に示した鋼を第2表に示す処理条件にて製造しエ
プスタイン試料に剪断し、磁気特性を測定した。その測
定結果もあわせて第2表に示した。
<Example> The steel shown in Table 1 was manufactured under the processing conditions shown in Table 2, and sheared into an Epstein sample, and the magnetic properties were measured. The measurement results are also shown in Table 2.

なお比較として製鋼時に真空脱ガスとして極低C化した
ものも含んでいる0本発明により著しく磁束密度が高く
かつ鉄損が低い、無方向性電磁銅板の製造が可能である
ことがわかる。
For comparison, it is seen that the present invention, which also includes those made with extremely low C through vacuum degassing during steel manufacturing, makes it possible to manufacture non-oriented electromagnetic copper sheets with extremely high magnetic flux density and low iron loss.

なお、本発明のセミプロセス用への適用効果を知るため
に、上の試料をニブスフィン試片に剪断後、750℃×
2Hrの歪取焼鈍を行い磁気特性を測定した。その測定
結果も第2表に示した0本発明によりセミプロセス材と
しても鉄損が著しく低く、かつ磁束密度の高い無方向性
電磁銅板の製造が可能であることがわかる。
In addition, in order to understand the effect of applying the present invention to semi-processing, the above sample was sheared into a nib fin specimen, and then heated at 750°C
Strain relief annealing was performed for 2 hours and magnetic properties were measured. The measurement results are also shown in Table 2. It can be seen that the present invention makes it possible to manufacture non-oriented electromagnetic copper plates, which have extremely low iron loss and high magnetic flux density even as semi-processed materials.

〈発明の効果〉 本発明によれば、鉄損が低く、かつ磁束密度が優れた無
方向性電磁鋼板が得られるので、小型変圧器あるいはモ
ーター等の小型化あるいは高効率化へのニーズに十分応
えることができ、また、安定した能率的生産が可能であ
り、その工業的効果は大きい。
<Effects of the Invention> According to the present invention, a non-oriented electrical steel sheet with low core loss and excellent magnetic flux density can be obtained, which is sufficient to meet the needs for downsizing and increasing efficiency of small transformers, motors, etc. In addition, stable and efficient production is possible, and its industrial effects are large.

特許出願人   川崎製鉄株式会社Patent applicant: Kawasaki Steel Corporation

Claims (1)

【特許請求の範囲】[Claims] 重量%で、C:0.005〜0.010%、Si:1.
5%以下、Mn:0.1〜1.0%、P:0.15%以
下、S:0.01%以下、Al:0.3%以下、N:0
.007%以下を含み、残部が実質的にFe及び不可避
的不純物元素より成る鋼を溶製し、続いてスラブとし、
加熱後熱間圧延により熱延鋼帯とする際に、熱間圧延終
了温度をAr_3とAr_1の中央値と750℃の温度
範囲とし、次いでこの鋼帯をAr_1からAr_3+5
0℃の温度範囲で5分以下の短時間焼鈍を行い、酸洗後
、冷間圧延により仕上厚みとした後、Ar_3以下の温
度範囲で10秒以上5分以下の短時間脱炭焼鈍を行いC
含有量を0.005%未満にすることを特徴とする無方
向性電磁鋼板の製造方法。
In weight%, C: 0.005 to 0.010%, Si: 1.
5% or less, Mn: 0.1 to 1.0%, P: 0.15% or less, S: 0.01% or less, Al: 0.3% or less, N: 0
.. 0.007% or less, with the remainder substantially consisting of Fe and unavoidable impurity elements, and then made into a slab,
When making a hot rolled steel strip by hot rolling after heating, the hot rolling end temperature is set to the median value of Ar_3 and Ar_1 and a temperature range of 750°C, and then this steel strip is rolled from Ar_1 to Ar_3+5.
Short-time annealing for 5 minutes or less in a temperature range of 0°C, pickling, and cold rolling to the final thickness, followed by short-time decarburization annealing for 10 seconds or more and 5 minutes or less in a temperature range of Ar_3 or less. C
A method for producing a non-oriented electrical steel sheet, characterized in that the content is less than 0.005%.
JP62326704A 1987-12-25 1987-12-25 Non-oriented electrical steel sheet manufacturing method Expired - Fee Related JP2501219B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62326704A JP2501219B2 (en) 1987-12-25 1987-12-25 Non-oriented electrical steel sheet manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62326704A JP2501219B2 (en) 1987-12-25 1987-12-25 Non-oriented electrical steel sheet manufacturing method

Publications (2)

Publication Number Publication Date
JPH01168815A true JPH01168815A (en) 1989-07-04
JP2501219B2 JP2501219B2 (en) 1996-05-29

Family

ID=18190740

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62326704A Expired - Fee Related JP2501219B2 (en) 1987-12-25 1987-12-25 Non-oriented electrical steel sheet manufacturing method

Country Status (1)

Country Link
JP (1) JP2501219B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2665181A1 (en) * 1990-07-30 1992-01-31 Ugine Aciers PROCESS FOR MANUFACTURING MAGNETIC STEEL SHEET WITH NON - ORIENT GRAINS AND THE SAME OBTAINED BY THIS METHOD.
WO2001002610A1 (en) * 1999-07-05 2001-01-11 Thyssen Krupp Stahl Ag Method for producing non-grain oriented electric sheet steel

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6773514B1 (en) 1909-07-05 2004-08-10 Thyssen Krupp Stahl Ag Method for producing non-grain oriented electric sheet steel
FR2665181A1 (en) * 1990-07-30 1992-01-31 Ugine Aciers PROCESS FOR MANUFACTURING MAGNETIC STEEL SHEET WITH NON - ORIENT GRAINS AND THE SAME OBTAINED BY THIS METHOD.
WO2001002610A1 (en) * 1999-07-05 2001-01-11 Thyssen Krupp Stahl Ag Method for producing non-grain oriented electric sheet steel

Also Published As

Publication number Publication date
JP2501219B2 (en) 1996-05-29

Similar Documents

Publication Publication Date Title
KR101683693B1 (en) Method for producing grain-oriented electrical steel sheet
KR100345706B1 (en) Non oriented electrical steel sheet having superior magnetic properties and manufacturing process thereof
EP0315948B1 (en) Process for preparation of thin grain oriented electrical steel sheet having excellent iron loss and high flux density
JPS6056403B2 (en) Method for manufacturing semi-processed non-oriented electrical steel sheet with extremely excellent magnetic properties
JPH0753886B2 (en) Manufacturing method of thin high magnetic flux density unidirectional electrical steel sheet with excellent iron loss
JP4422220B2 (en) Non-oriented electrical steel sheet with high magnetic flux density and low iron loss and method for producing the same
JPH055126A (en) Production of nonoriented silicon steel sheet
JP3357602B2 (en) Manufacturing method of grain-oriented electrical steel sheet with excellent magnetic properties
JP2501219B2 (en) Non-oriented electrical steel sheet manufacturing method
KR100359752B1 (en) Non-oriented magnetic steel sheet with a low watt loss and method of manufacturing the same
KR100268853B1 (en) The manufacturing method of non oriented electric steel sheet with excellent magnetic properties
JPH0273919A (en) Manufacture of nonoriented electrical steel sheet having excellent magnetic characteristics
KR102483634B1 (en) Non-oriented electrical steel sheet and method of manufactruing the same
JPH0657332A (en) Manufacture of non-oriented silicon steel sheet having high magnetic flux density and low iron loss
JPH04346621A (en) Manufacture of nonoriented magnetic steel sheet excellent in magnetic characteristic and surface appearance
KR100321035B1 (en) Method for manufacturing non-oriented electrical steel sheet with superior magnetic properties after heat treatment
JPS5831367B2 (en) Method for manufacturing non-oriented electrical steel strip with excellent magnetic properties
JPS5855209B2 (en) Method for manufacturing non-oriented silicon steel sheet with little aging deterioration and good surface quality
JPH02149622A (en) Manufacture of nonoriented silicon steel sheet having superior magnetic property
JPS63186823A (en) Production of electromagnetic steel plate having excellent magnetic characteristic
JPH046220A (en) Production of nonoriented silicon steel sheet having high magnetic flux density and reduced in iron loss
JP2758915B2 (en) Manufacturing method of non-oriented electrical steel sheet with excellent magnetic properties
KR100501000B1 (en) Non-oriented electrical steel sheet with low iron loss after stress relief annealing and its manufacturing method
KR930004848B1 (en) Process for making non-oriented electrical steel sheet
KR20030053154A (en) Method for manufacturing non-oriented electrical steel sheet with superior magnetic property

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees