JPH01167914A - Superconducting complex cable - Google Patents

Superconducting complex cable

Info

Publication number
JPH01167914A
JPH01167914A JP62327747A JP32774787A JPH01167914A JP H01167914 A JPH01167914 A JP H01167914A JP 62327747 A JP62327747 A JP 62327747A JP 32774787 A JP32774787 A JP 32774787A JP H01167914 A JPH01167914 A JP H01167914A
Authority
JP
Japan
Prior art keywords
superconducting
oxygen
cable
ceramic
silver
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62327747A
Other languages
Japanese (ja)
Inventor
Sadaaki Hagino
萩野 貞明
Genichi Suzuki
鈴木 元一
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Metal Corp
Original Assignee
Mitsubishi Metal Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Metal Corp filed Critical Mitsubishi Metal Corp
Priority to JP62327747A priority Critical patent/JPH01167914A/en
Priority to US07/408,502 priority patent/US4983576A/en
Priority to KR1019890701581A priority patent/KR900701018A/en
Priority to DE3853914T priority patent/DE3853914T2/en
Priority to PCT/JP1988/001329 priority patent/WO1989006040A1/en
Priority to EP89900912A priority patent/EP0346499B1/en
Publication of JPH01167914A publication Critical patent/JPH01167914A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductors And Manufacturing Methods Therefor (AREA)

Abstract

PURPOSE:To reduce a quantity of Ag for use, eliminate the necessity of special care in handling a cable and simplify the maintenance inspection of the cable after laid by covering a silver covered superconducting wire with a complex tube. CONSTITUTION:A superconducting wire comprising a superconducting ceramic 3 having a perovskite structure compound composed of rare earth elements containing Y, alkaline earth metals, copper and oxygen, and Ag 4 is covered with a complex tube comprising an Ag portion 2 and a metal portion 1 other than Ag, and so constituted that the Ag portion 2 exists ranging over inner to outer surfaces. A superconducting complex cable is thereby obtained. As a result, it is possible to prevent the swell of the complex tube due to oxygen discharged from the ceramic 3. Also, the application of heat treatment in the atmosphere or oxygen atmosphere makes it possible to diffuse oxygen for penetration from the outside, thereby supplying oxygen to the ceramic 3.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、Yを含む希土類元素(以下、これら元素を
Rで示す)、アルカリ土類金属(以下、Aで示す)、銅
(Cυ)および酸素(0)からなるペロブスカイト構造
を有する化合物(以下、この化合物を超電導セラミック
スという)を充填してなる超電導ワイヤを、複数本束ね
てなる超電導複合ケーブルに関するものである。
[Detailed Description of the Invention] [Industrial Application Field] This invention relates to rare earth elements including Y (hereinafter these elements will be referred to as R), alkaline earth metals (hereinafter referred to as A), and copper (Cυ). The present invention relates to a superconducting composite cable formed by bundling a plurality of superconducting wires filled with a compound having a perovskite structure consisting of and oxygen (0) (hereinafter, this compound is referred to as superconducting ceramics).

〔従来の技術〕[Conventional technology]

超電導の大電流を流すためには、複数本の超電導セラミ
ックス充填ワイヤを束ねた超電導ケーブルが使用される
が、上記超電導ケーブルは、一般に次の方法により製造
されている。
In order to flow a large superconducting current, a superconducting cable made by bundling a plurality of superconducting ceramic-filled wires is used, and the above-mentioned superconducting cable is generally manufactured by the following method.

(a)  原料粉末として、いずれも平均粒径:1〇−
以下のR2O3粉末、Aの炭酸塩粉末、CuO粉末を用
意し、これら原料粉末を所定の配合組成に配合し、混合
して大気中または酸素雰囲気中で温度二850〜950
℃にて焼成し、ペロブスカイト構造を有する超電導セラ
ミックスを作製し、これを平均粒径:10−以下に粉砕
する。
(a) As raw material powder, average particle size: 10-
Prepare the following R2O3 powder, A carbonate powder, and CuO powder, blend these raw material powders to a predetermined composition, mix them, and heat them to a temperature of 2850 to 950 in air or oxygen atmosphere.
C. to produce a superconducting ceramic having a perovskite structure, which is then ground to an average particle size of 10- or less.

(b)  上記粉砕した粉末を銀(Ag)製管内に充填
し、両端を密封し、この充填Ag管材にスェージング加
工や溝ロール加工、あるいはダイス加工等の伸線加工を
施し、直径:5+n+e以下の充填ワイヤとし、第6図
に示される超電導ワイヤを作製する。
(b) The pulverized powder is filled into a silver (Ag) pipe, both ends are sealed, and the filled Ag pipe material is subjected to wire drawing processing such as swaging, groove roll processing, or die processing, and the diameter is 5+n+e or less. A superconducting wire shown in FIG. 6 is manufactured using the filling wire as shown in FIG.

(C)  上記超電導ワイヤを束ねて、Ag製チューブ
により被覆しケーブルとする。上記ケーブルを必要に応
じてダイス加工し、ついで超電導ワイヤに充填されてい
る超電導セラミックス粉末を焼結するために、大気中ま
たは酸素雰囲気中、温度=900〜950°Cにて熱処
理し、超電導ケーブル製品としていた。
(C) The superconducting wires are bundled and covered with an Ag tube to form a cable. The above cable is diced as necessary, and then heat treated at a temperature of 900 to 950°C in air or oxygen atmosphere to sinter the superconducting ceramic powder filled in the superconducting wire. It was a product.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

上記従来の技術(c)の超電導セラミックス粉末を焼結
するに際しては、Agの融点(960,8℃)に近い温
度=900〜950℃で行なわれるために、Agの強度
が弱くなり、熱処理中の超電導ケーブルは曲がりやすく
、不注意な曲げは、充填されている超電導セラミックス
の不連続部分を生成する結果となり、取扱いが困難で、
細い超電導ケーブルは上記熱処理中に断線することもあ
った。
When sintering the superconducting ceramic powder of conventional technique (c) above, the temperature is close to the melting point of Ag (960.8°C) = 900 to 950°C, so the strength of Ag becomes weaker and during heat treatment. Superconducting cables are easy to bend, and careless bending can result in discontinuities in the filled superconducting ceramics, making them difficult to handle.
Thin superconducting cables sometimes broke during the heat treatment.

上記超電導ワイヤを被覆する材料として、Ag以外の金
属、例えばインコネル、ハステロイ等のNi合金、ステ
ンレス鋼など高温強度が優れた材料の使用も考えられる
が、上記高温強度の優れた材料は酸素の拡散浸透および
排出を行なうことができないため、上記高温強度の優れ
た材料により複数本の超電導ワイヤを被覆して超電導ケ
ーブルを作製すると、充填されている超電導セラミック
スから放出される酸素により超電導ケーブル被覆に膨ら
みが生じ、さらに、上記超電導セラミックス粉末を焼結
した後の降温時に酸素を吸収することができない。
As a material for covering the superconducting wire, it is possible to use metals other than Ag, such as Inconel, Ni alloys such as Hastelloy, and materials with excellent high temperature strength such as stainless steel. Therefore, when a superconducting cable is made by covering multiple superconducting wires with the material with excellent high-temperature strength, the superconducting cable coating bulges due to the oxygen released from the filled superconducting ceramics. occurs, and furthermore, the superconducting ceramic powder cannot absorb oxygen when the temperature is lowered after sintering.

したがって、現在のところ超電導ケーブルの最外層被覆
材としてAg以外は考えられないが、超電導ケーブルの
製造には高価なAgを大量に使用しなければならず、高
温強度が十分でないために熱処理の取扱いが難しく、さ
らに室温強度も十分でないという問題点があった。
Therefore, at present, it is difficult to think of anything other than Ag as the outermost covering material for superconducting cables, but manufacturing superconducting cables requires the use of large quantities of expensive Ag, and its high-temperature strength is not sufficient, making it difficult to handle heat treatment. However, there were other problems in that it was difficult to achieve this, and the strength at room temperature was also insufficient.

〔問題点を解決するための手段〕[Means for solving problems]

そこで、本発明者等は、Agの使用を減らし、しかも高
温および室温強度のすぐれた超電導ケーブルを製造すべ
く研究を行なった結果、Ag部分とAg以外の金属部分
からなりかつ上記Ag部分は内面から外面にわたって存
在するように構成された複合チューブを用意し、上記複
合チューブで複数本の超電導ワイヤを被覆してなる超電
導複合ケーブルは、高温および室温強度にすぐれ、超電
導セラミックスから放出される酸素は上記複合チューブ
のAg部分から外部に拡散放出されるので複合チューブ
に膨みを生じせしめることがなく、また上記複合ケーブ
ルに充填されている超電導セラミックスを焼結したのち
に、酸素は上記複合チューブのAg部分を通して超電導
セラミックスに拡散吸収することができるという知見を
得たのである。
Therefore, the present inventors conducted research to reduce the use of Ag and to manufacture a superconducting cable with excellent high-temperature and room-temperature strength.As a result, the present inventors found that the cable consists of an Ag part and a metal part other than Ag, and the above-mentioned Ag part is on the inner surface. A superconducting composite cable made by preparing a composite tube that extends over the outer surface of the superconducting wire and covering a plurality of superconducting wires with the composite tube has excellent high-temperature and room-temperature strength, and the oxygen released from the superconducting ceramics is Oxygen is diffused and released from the Ag part of the composite tube to the outside, so that the composite tube does not swell. Furthermore, after the superconducting ceramics filled in the composite cable is sintered, oxygen is released from the composite tube. They found that it is possible to diffuse and absorb into superconducting ceramics through the Ag part.

この発明は、かかる知見にもとづいてなされたものであ
って、 超電導セラミックスを充填してなる複数本のAg被覆超
電導ワイヤと、 銀部分と銀以外の金属部分からなり、上記銀部分は内面
から外面にわたって存在している複合チューブからなり
、 上記複数本の銀被覆超電導ワイヤを上記複合チューブに
より被覆してなる超電導複合ケーブルに特徴を有するも
のである。
This invention was made based on this knowledge, and consists of a plurality of Ag-coated superconducting wires filled with superconducting ceramics, a silver part and a metal part other than silver, and the silver part is arranged from the inner surface to the outer surface. The present invention is characterized by a superconducting composite cable consisting of a composite tube existing over the entire area, and comprising the plurality of silver-coated superconducting wires covered by the composite tube.

上記超電導複合ケーブルの一部分の切断概略図が第1〜
5図に示されている。第1〜5図において、1はAg以
外の金属部分、2はAg部分、3は超電導セラミックス
、4はAgであり、第6図は超電導セラミックス3とA
g4とからなる超電導ワイヤの一部切断概略図である。
A schematic cutaway diagram of a portion of the above superconducting composite cable is shown in the first to
This is shown in Figure 5. In Figures 1 to 5, 1 is a metal part other than Ag, 2 is an Ag part, 3 is a superconducting ceramic, 4 is Ag, and Figure 6 shows the superconducting ceramic 3 and A
FIG. 3 is a partially cutaway schematic diagram of a superconducting wire made of g4.

上記Ag以外の金属部分1は、高温強度を有する金属、
例えばインコネル、ハステロイ等のNi基合金、5US
304等のオーステナイト系ステンレス鋼などが好まし
い。
The metal portion 1 other than Ag is a metal having high temperature strength,
For example, Ni-based alloys such as Inconel and Hastelloy, 5US
Austenitic stainless steel such as 304 is preferred.

上記Ag部分2は、複合チューブの内面から外面にわた
って存在しており、超電導セラミックス3から放出され
た酸素を拡散放出することができるとともに外部から酸
素を拡散吸収することもできる。したがって、上記Ag
部分2が複合チューブにあるおかげで、超電導セラミッ
クス3から放出された酸素による複合チューブの膨らみ
発生を防止することができ、大気中または酸素雰囲気中
での熱処理により、酸素を外部から拡散浸透せしめて超
電導セラミックス3へ酸素を補給することができるので
ある。
The Ag portion 2 exists from the inner surface to the outer surface of the composite tube, and can diffuse and release oxygen released from the superconducting ceramic 3, and can also diffuse and absorb oxygen from the outside. Therefore, the above Ag
Because the portion 2 is in the composite tube, it is possible to prevent the composite tube from swelling due to oxygen released from the superconducting ceramic 3, and by heat treatment in the air or oxygen atmosphere, oxygen can be diffused and penetrated from the outside. Oxygen can be supplied to the superconducting ceramics 3.

上述のように、上記複合チューブは、Ag以外の金属部
分1とAg部分2とから構成されているが、上記Ag部
分2の形状は、′IB1図のように長円であってもよく
、第2図の如く長方形であってもよく、さらに第3図の
如く真円であってもよいが、第4図および第5図の如く
平行帯またはら腕帯であってもよく、上記形状に限定さ
れるものではない。
As mentioned above, the composite tube is composed of the metal part 1 other than Ag and the Ag part 2, but the shape of the Ag part 2 may be an ellipse as shown in Figure 'IB1, It may be rectangular as shown in Fig. 2, it may be a perfect circle as shown in Fig. 3, it may be a parallel band or diagonal band as shown in Figs. It is not limited to.

さらに、上記第1〜5図の超電導複合ケーブルの断面は
円形であるが、断面形状は円形に限定されることなく、
四角形、六角形等の多角形、長円形その他Hgの断面形
状をとることができる。
Furthermore, although the cross section of the superconducting composite cable shown in FIGS. 1 to 5 above is circular, the cross-sectional shape is not limited to circular.
It can take a polygonal shape such as a quadrangle or a hexagon, an oval shape, or any other Hg cross-sectional shape.

〔実 施 例〕〔Example〕

つぎに、この発明を実施例にもとづいて具体的に説明す
る。
Next, the present invention will be specifically explained based on examples.

原料粉末として、いずれも平均粒径:6ρのYO粉末、
B a COa粉末、およびCuO粉粉 末3用意し、これら粉末をY  O:  15.13%
、B a CO:  52.89%、Cu O:  3
1.98%(以上重量%)の割合で混合し、この混合粉
末を、大気中、温度=910℃、10時間保持の条件で
焼成し、平均粒径;2.5μsに粉砕して、YBa2C
u30γの組成を有するペロブスカイト構造の超電導セ
ラミックス粉末を作製した。
As raw material powder, YO powder with average particle size: 6ρ,
Prepare B a COa powder and CuO powder 3, and mix these powders with Y O: 15.13%
, B a CO: 52.89%, Cu O: 3
YBa2C
A superconducting ceramic powder with a perovskite structure having a composition of u30γ was produced.

上記超電導セラミックス粉末を、内径:5mmX肉厚:
1關×長さ:  200mmの寸法のAg製ケースに充
填し、真空封着した後、冷間にてロータリースェージン
グ加工と溝ロール加工を施し、最終的に溝ロール加工を
施して線径:  2.0mra×長さ81.700mm
の超電導ワイヤを40本作製した。
The above superconducting ceramic powder was heated to an inner diameter of 5 mm x wall thickness:
1 length x length: After filling into an Ag case with dimensions of 200 mm and vacuum sealing, cold rotary swaging and groove roll processing are performed, and finally groove roll processing is applied to wire diameter: 2.0mra x length 81.700mm
Forty superconducting wires were fabricated.

一方、Ag部分とS U S 304オーステナイトス
テンレス鋼からなる内径:10mmX肉厚:  1.5
mmX長さ: 1000mmの寸法の複合チューブを用
意し、上記40本の超電導ワイヤのうち20本を上記チ
ューブに充填し、上記超電導ワイヤ充填複合チューブに
ダイス加工を施して、直径ニアmmの超電導複合ケーブ
ルを作製した。上記超電導複合ケーブルを、酸素雰囲気
中、温度=920°C,15時間保持の条件にて熱処理
を行ない、上記超電導複合ケーブルの特性を測定した結
果、 臨界温度Tc12’に 臨界電流密度J e : 4300A/c/であった。
On the other hand, it is made of Ag part and SUS 304 austenitic stainless steel, inner diameter: 10 mm x wall thickness: 1.5
mm x length: Prepare a composite tube with dimensions of 1000 mm, fill the tube with 20 of the 40 superconducting wires, and dice the superconducting wire-filled composite tube to form a superconducting composite with a diameter of near mm. I made a cable. The superconducting composite cable was heat-treated in an oxygen atmosphere at a temperature of 920°C for 15 hours, and the characteristics of the superconducting composite cable were measured. As a result, the critical temperature Tc12' and the critical current density J e : 4300A It was /c/.

一方、比較のために、残りの20本の超電導ワイヤを、
内径:10mmX肉厚:  1.5mmX長さ: 10
00龍の寸法の純Ag製チューブに充填し、ダイス加工
を施して、直径ニアmmの超電導ケーブルを作製し、上
記超電導複合ケーブルと同一の条件で熱処理を行い、そ
の特性を測定した結果、 臨界温度Tc・92″に 臨界電流密度J c : 4310A/cJであった。
On the other hand, for comparison, the remaining 20 superconducting wires are
Inner diameter: 10mm x Wall thickness: 1.5mm x Length: 10
A superconducting cable with a diameter of about 0.0 mm was prepared by filling a pure Ag tube with dimensions of 0.00 mm and performing die processing, and heat-treated it under the same conditions as the superconducting composite cable described above. As a result of measuring its characteristics, criticality was determined. The critical current density J c was 4310 A/cJ at a temperature Tc·92″.

〔発明の効果〕〔Effect of the invention〕

この発明の超電導複合ケーブルと従来の超電導ケーブル
を比較しても、超電導特性についての差はほとんどなく
、この発明の超電導複合ケーブルは、従来の超電導ケー
ブルよりも高価なAgの使用量を少なくすることかでき
、使用材料が高温強度にすぐれているために最終熱処理
工程における断線等のトラブルもなく歩留りよく製造す
ることができ、さらに室温強度もすぐれていることから
上記超電導複合ケーブルの敷設時における取扱いも特別
な注意をする必要がなく、敷設後の保守点検も簡単なも
のとなるというすぐれた効果を奏するものである。
Comparing the superconducting composite cable of this invention and conventional superconducting cables, there is almost no difference in superconducting properties.The superconducting composite cable of this invention uses less expensive Ag than conventional superconducting cables. Because the materials used have excellent high-temperature strength, they can be manufactured with high yields without problems such as wire breakage during the final heat treatment process, and also have excellent room-temperature strength, which makes it easy to handle when installing the superconducting composite cable. This has the excellent effect that no special precautions are required and maintenance and inspection after installation is simple.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図〜第5図は、この発明の超電導複合ケーブルの一
部切断概略図、 第6図は、Ag被覆超電導ワイヤの一部切断概略図であ
る。 1・・・Ag以外の金属部分 2・・・Ag部分 3・・・超電導セラミックス 4・・・Ag
1 to 5 are partially cutaway schematic diagrams of a superconducting composite cable of the present invention, and FIG. 6 is a partially cutaway schematic diagram of an Ag-coated superconducting wire. 1...Metal part other than Ag 2...Ag part 3...Superconducting ceramics 4...Ag

Claims (1)

【特許請求の範囲】 Yを含む希土類元素、アルカリ土類金属、銅および酸素
からなるペロブスカイト構造を有する化合物を充填して
なる複数本の銀被覆超電導ワイヤと、 銀部分と銀以外の金属部分からなり、上記銀部分は内面
から外面にわたって存在している複合チューブからなり
、 上記複数本の銀被覆超電導ワイヤを上記複合チューブに
より被覆してなることを特徴とする超電導複合ケーブル
[Scope of Claims] A plurality of silver-coated superconducting wires filled with a compound having a perovskite structure consisting of a rare earth element including Y, an alkaline earth metal, copper, and oxygen, and a silver portion and a metal portion other than silver. The superconducting composite cable is characterized in that the silver portion is made of a composite tube extending from the inner surface to the outer surface, and the plurality of silver-coated superconducting wires are covered with the composite tube.
JP62327747A 1987-12-24 1987-12-24 Superconducting complex cable Pending JPH01167914A (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP62327747A JPH01167914A (en) 1987-12-24 1987-12-24 Superconducting complex cable
US07/408,502 US4983576A (en) 1987-12-24 1988-12-24 Superconducting composite wire and cable, processor for fabricating them
KR1019890701581A KR900701018A (en) 1987-12-24 1988-12-24 Superconducting Composite Wires and Cables and Their Manufacturing Method
DE3853914T DE3853914T2 (en) 1987-12-24 1988-12-24 SUPRA-CONDUCTIVE COMPOSITE WIRE AND SUPRAL-CONDUCTIVE COMPOSITE CABLE AND THEIR PRODUCTION METHOD.
PCT/JP1988/001329 WO1989006040A1 (en) 1987-12-24 1988-12-24 Superconductive composite wire and cable and method of producing them
EP89900912A EP0346499B1 (en) 1987-12-24 1988-12-24 Superconductive composite wire and cable and method of producing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62327747A JPH01167914A (en) 1987-12-24 1987-12-24 Superconducting complex cable

Publications (1)

Publication Number Publication Date
JPH01167914A true JPH01167914A (en) 1989-07-03

Family

ID=18202529

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62327747A Pending JPH01167914A (en) 1987-12-24 1987-12-24 Superconducting complex cable

Country Status (1)

Country Link
JP (1) JPH01167914A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2672713A1 (en) * 1991-02-13 1992-08-14 Inst Nat Polytech Grenoble FEEDING COMPONENT OF THE CREDIT CARD TYPE.
JP2000353440A (en) * 1999-05-06 2000-12-19 Alcatel Superconductive strand with high critical temperature and its manufacture

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2672713A1 (en) * 1991-02-13 1992-08-14 Inst Nat Polytech Grenoble FEEDING COMPONENT OF THE CREDIT CARD TYPE.
JP2000353440A (en) * 1999-05-06 2000-12-19 Alcatel Superconductive strand with high critical temperature and its manufacture

Similar Documents

Publication Publication Date Title
WO1989008317A1 (en) High-strength superconductive wire and cable having high current density, and method of producing them
US4983576A (en) Superconducting composite wire and cable, processor for fabricating them
JPS63225409A (en) Compound superconductive wire and its manufacture
EP1187232B1 (en) Oxide high-temperature superconducting wire and method of producing the same
JPH01167914A (en) Superconducting complex cable
JP4013280B2 (en) Structure having wire rod wound in coil, method for manufacturing the same, and spacer
JPH01167911A (en) Superconducting complex wire and manufacture thereof
JPH11312420A (en) High-temperature oxide superconducting wire and its manufacture
KR20090051148A (en) High critical temperature superconducting article with improved mechanical strength
JPH05334921A (en) Ceramic superconductor
JPH01220307A (en) High strength superconductive wire having high critical current density and its manufacture
JPH06349358A (en) Manufacture of oxide high temperature superconductive wire material
JPS63285155A (en) Oxide type superconductive material and production thereof
JPS63289723A (en) Manufacture of superconducting wire
JPS63291311A (en) Superconducting wire
JPH04196015A (en) Ceramic superconductive wire
JPH0353902A (en) Manufacture of oxide superconductive coil
JP2549669B2 (en) Oxide superconducting wire
JP2727565B2 (en) Superconductor manufacturing method
JPS63261629A (en) Manufacture of superconductive cable
JP2891365B2 (en) Manufacturing method of ceramic superconductor
JP3149170B2 (en) Method for producing bismuth-based oxide superconductor
JPH07114836A (en) Superconducting wire material and manufacture thereof
JPH01175116A (en) Oxide superconducting wire
JPH01241717A (en) Manufacture of oxide superconductor wire