JPH01166082A - Surface state checking device - Google Patents

Surface state checking device

Info

Publication number
JPH01166082A
JPH01166082A JP32432887A JP32432887A JPH01166082A JP H01166082 A JPH01166082 A JP H01166082A JP 32432887 A JP32432887 A JP 32432887A JP 32432887 A JP32432887 A JP 32432887A JP H01166082 A JPH01166082 A JP H01166082A
Authority
JP
Japan
Prior art keywords
light
reticle
optical waveguide
surface condition
photodetector
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32432887A
Other languages
Japanese (ja)
Inventor
Michio Kono
道生 河野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP32432887A priority Critical patent/JPH01166082A/en
Publication of JPH01166082A publication Critical patent/JPH01166082A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To check the whole of the surface of a substrate like a mask, a reticle, or a pellicle with a certain detection sensitivity by arranging an optical waveguide having a refracting power in a part of a photodetecting system. CONSTITUTION:A convex lens 13 is adhered to the luminous flux emission exit side of an optical waveguide 10 to constitute a device. Consequently, the angle of divergence of the emitted luminous flux is reduced by the refracting action of the convex lens 13, and the luminous flux is received at an angle approximating the perpendicular by a photodetector 8. With respect to the shape of the convex lens 13, the curvature in the scan section of the beam must have a positive power, but the curvature in the section orthogonal to said section must not have a positive power and this section may be plane. Thus, the state of the surface to be measured of a mask, a reticle, or the like is checked with a certain detection sensitivity, and this check is not affected by the variance in sensitivity of the light receiving face of the photodetector, and a surface state checking device is obtained which can defect foreign matters or the like with a high precision.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は表面状態検査装置に関し、特に半導体製造装置
で使用されるマスク、レチクル、ウェハー面上の欠陥や
異物を高精度に検出する光検出系を有する表面状態検査
装置に関するものである。
Detailed Description of the Invention (Industrial Field of Application) The present invention relates to a surface condition inspection device, and in particular to a photodetector for detecting defects and foreign matter on a mask, reticle, or wafer surface with high precision used in semiconductor manufacturing equipment. The present invention relates to a surface condition inspection device having a system.

(従来の技術) 半導体焼付は装置により、レチクル又はマスクからウェ
ハー面上にパターンを転写する際、ゴミ等の欠陥がレチ
クル、マスクの上に付いていると、本来のレチクル、マ
スクのパターン以外の欠陥の形も焼きつけることになる
。したかつて、前記レチクル、マスク上のゴミを検出し
、除去しなければならない。その為、近年該ゴミの有無
の判別だけでなくゴミがレチクル、マスクのどの面に付
着しているかを迅速かつ正確に知ることが要求されてい
る。
(Prior Art) In semiconductor printing, when a pattern is transferred from a reticle or mask onto a wafer surface using a device, if there are defects such as dust on the reticle or mask, patterns other than the original reticle or mask pattern may be The shape of the defect will also be imprinted. Once that happens, dust on the reticle and mask must be detected and removed. Therefore, in recent years, it has become necessary not only to determine the presence or absence of the dust, but also to quickly and accurately know which surface of the reticle or mask the dust is attached to.

第5図は従来のペリクル付レチクルの検査方式の一例を
示す概略図である。
FIG. 5 is a schematic diagram showing an example of a conventional inspection method for a reticle with a pellicle.

本構成例はレチクル及びペリクル面に対し、斜め上方か
らレーザービームを入射した場合を示している。同図に
おいて、1はレーザービーム、2はレチクルで該レチク
ル2に対してペリクル3゜4を装着している。5a、5
b、5c、5dはセルフォックレンズ、6a、6b、6
c、6dは視野絞り、7a、7b、7c、7dはファイ
バーから成るライトガイド、8a、8b、8c、8dは
受光素子である。添字a、b、c、dを付加した部材の
内、同じ添字の部材で一つの光検出系を構成している。
This configuration example shows a case where a laser beam is incident on the reticle and pellicle surfaces obliquely from above. In the figure, 1 is a laser beam, 2 is a reticle, and a pellicle 3.4 is attached to the reticle 2. 5a, 5
b, 5c, 5d are SELFOC lenses, 6a, 6b, 6
c and 6d are field stops; 7a, 7b, 7c, and 7d are light guides made of fibers; and 8a, 8b, 8c, and 8d are light receiving elements. Among the members with subscripts a, b, c, and d, the members with the same subscript constitute one photodetection system.

該光検出系は6−1.6−2.6−3.6−4の4つ有
り、夫々ペリクル上面3、レチクル裏面2−1、レチク
ルパターン面2−2、ペリクル下面4の検査を行なう。
There are four photodetection systems, 6-1.6-2.6-3.6-4, which inspect the pellicle top surface 3, reticle back surface 2-1, reticle pattern surface 2-2, and pellicle bottom surface 4, respectively. .

レーザービームはポリゴンミラーあるいはガルバノミラ
−等の振動素子で、レチクル2やペリクル3,4の面上
を紙面と直交する方向に走査している。
The laser beam is scanned by a vibrating element such as a polygon mirror or a galvano mirror over the surfaces of the reticle 2 and pellicles 3 and 4 in a direction perpendicular to the plane of the paper.

このときの光学系の調整としては各面上においてセルフ
ォックレンズ5a等によってできるレーザービームの走
査線の像が視野絞り6a等の開口(矩形状)の長手方向
と一致する様に、そして視野絞り6a等を通過した欠陥
や異物からの散乱光束がケラレることなく受光素子8a
に伝わる様にライトガイド7aの入射端面な視野絞り6
a等の開口にアライメントする必要がある。
At this time, the optical system must be adjusted so that the image of the scanning line of the laser beam formed by the SELFOC lens 5a on each surface matches the longitudinal direction of the aperture (rectangular shape) of the field diaphragm 6a, etc., and the field diaphragm 6a etc., the scattered light beams from defects and foreign objects are not eclipsed and are transmitted to the light receiving element 8a.
The field diaphragm 6, which is the incident end face of the light guide 7a,
It is necessary to align with the aperture such as a.

又、同図に示す構成において、例えばレチクル裏面2−
1上の異物等の散乱光は光検出系6−2だけて受光され
、他の光検出系6−1.6−3゜6−4においては各視
野絞り6a、6c、6dによってケラレる為、受光され
ない。
In addition, in the configuration shown in the figure, for example, the back surface 2-
Scattered light from foreign objects, etc. on 1 is received only by the light detection system 6-2, and the other light detection systems 6-1, 6-3, 6-4 are vignetted by the field stops 6a, 6c, and 6d. , no light is received.

このように各検出面毎に光検出系を配置することにより
、異物等の装着している面を判別できる。
By arranging a photodetection system for each detection surface in this manner, it is possible to determine which surface a foreign object or the like is attached to.

第6図は従来の表面状態検査装置の他の例を示す概略図
である。同図において、第5図と同じ要素には同一番号
を付している。
FIG. 6 is a schematic diagram showing another example of a conventional surface condition inspection device. In this figure, the same elements as in FIG. 5 are given the same numbers.

本構成例はレチクル2及びペリクル3,4に対して垂直
にビームを入射した場合であり、原理は第5図の場合と
同じである。
In this configuration example, the beam is incident perpendicularly to the reticle 2 and pellicles 3 and 4, and the principle is the same as the case shown in FIG.

第5図及び第6図の例においては、何れもセルフォック
レンズを用いているがこれをシリンドリカルレンズ、或
はバーレンズに置き換えても良い。又、ライトガイドで
直接受光しても良い。
In the examples shown in FIGS. 5 and 6, selfoc lenses are used, but they may be replaced with cylindrical lenses or bar lenses. Alternatively, the light may be directly received by a light guide.

以上説明したような表面状態検査装置に必要とされる重
要な性能の一つとして、ビームの走査線上に同じ異物が
あった場合に、同じ出力として検知する検出感度の一様
性がある。
One of the important performances required of the surface condition inspection apparatus as described above is uniformity of detection sensitivity, in which when the same foreign matter is present on the scanning line of the beam, it is detected with the same output.

ところか第5図に示した光検出系6−1等は視野絞りの
直後にライトガイドを配置している為、一部のライトガ
イドに断線があったり、個々のライトガイドの端面処理
が均一にできていない場合には、レーザーの走査線上で
均一な出力か得られなくなる。
However, in the photodetection system 6-1 shown in Figure 5, the light guide is placed immediately after the field diaphragm, so some of the light guides may be disconnected, or the end faces of the individual light guides may not be uniformly processed. If this is not done, it will not be possible to obtain uniform output on the laser scanning line.

すなわち、この種の装置は受光散乱光の強さで異物等の
大きさを判定している為、前記の如くライトカイトに欠
陥があると、同じ異物があっても、走査面上の場所によ
って違う大きさの異物として判定されてしまう。又、検
出限界にある異物を走査面上で検出し損うという欠点が
あった。
In other words, this type of device determines the size of a foreign object based on the intensity of the received and scattered light, so if there is a defect in the light kite as described above, even if there is the same foreign object, the size of the foreign object will differ depending on the location on the scanning surface. It will be judged as a foreign object of a different size. Furthermore, there is a drawback that foreign matter within the detection limit cannot be detected on the scanning surface.

更に、前記の如くライトガイドの部品欠陥がない場合で
も、受光素子の受光面に感度ムラが有る場合には誤検知
の原因となる。
Furthermore, even if there is no component defect in the light guide as described above, if there is sensitivity unevenness on the light receiving surface of the light receiving element, it may cause false detection.

ライトガイドが完全にランダムに束ねられているとすれ
ば、レーザー走査線上の一点からでた異物散乱光は受光
素子の受光面全面に広がり、検出場所による出力ムラは
ないはずである。
If the light guides were bundled completely randomly, the light scattered by the foreign matter emitted from one point on the laser scanning line would spread over the entire light-receiving surface of the light-receiving element, and there would be no output unevenness depending on the detection location.

ところが実際にはライトガイドを完全にランダムに束ね
ることは困難である為、走査面上の異物のある位置によ
って受光素子の受光面上に散乱光があたる部分が異なっ
てくる。
However, in reality, it is difficult to bundle the light guides completely randomly, so the portion of the light-receiving surface of the light-receiving element that is hit by the scattered light differs depending on the position of the foreign object on the scanning surface.

従って、受光素子の受光面に感度ムラがあると出力ムラ
か生してしまう。
Therefore, if there is sensitivity unevenness on the light receiving surface of the light receiving element, output unevenness will occur.

これらの問題を解決するものとして、例えば特開昭61
−105447がある。
As a solution to these problems, for example, JP-A-61
There is -105447.

これによると第7図に示すように、入射開口部が長方形
の光導波部材を該入射開口部の長手方向がビームの走査
方向と略一致するように該被測定面に対向させて配置し
、該光導波部材を介して該被測定面からの反射光、もし
くは透過光を受光するようにした事である。
According to this, as shown in FIG. 7, an optical waveguide member having a rectangular entrance aperture is arranged to face the surface to be measured so that the longitudinal direction of the entrance aperture substantially coincides with the scanning direction of the beam, The reflected light or the transmitted light from the surface to be measured is received through the optical waveguide member.

このような光学部材は次の作用をもっている。Such an optical member has the following functions.

つまり、第8図に示す様に、ビーム走査線(Bl 、 
B2 )上の各点PI、P2.P3から発した異物の散
乱光は上記の光導波部材1oの内面を反射しながら通過
していくうちに次第に交錯し、その射出口近傍に置かれ
た受光器(8)の受光面上に殆ど均一にあたる。その結
果、ビーム走査線上のどの位置からの発散光も均一に光
電変換され、検出位置による場所ムラがなくなる。しか
しながら、この光学部材(10)の最大の欠点は、その
射出光束の発散角が広がってしまう点にある。その傾向
は、入射端の断面積と射出端の断面積の比が大きければ
それだけ射出光束の発散角は大きくなってしまう。
In other words, as shown in FIG. 8, the beam scanning lines (Bl,
B2) Each point PI, P2. The scattered light of foreign matter emitted from P3 gradually intersects as it passes through the inner surface of the optical waveguide member 1o while being reflected, and almost all of the light is reflected on the light receiving surface of the light receiver (8) placed near the exit port. Equally uniform. As a result, diverging light from any position on the beam scanning line is uniformly photoelectrically converted, eliminating unevenness depending on the detection position. However, the biggest drawback of this optical member (10) is that the divergence angle of the emitted light beam is widened. The tendency is that the greater the ratio of the cross-sectional area of the entrance end to the cross-sectional area of the exit end, the greater the divergence angle of the emitted light beam.

受光素子は通常、受光配向角をもっていて、受光面の法
線に大きな角度でとび込んでくる光束に対しては感度が
低いという特性をもっている。
A light-receiving element usually has a light-receiving orientation angle, and has a characteristic of being low in sensitivity to light beams that enter at a large angle to the normal to the light-receiving surface.

従って、見かけ上光束の均一化を計っても、光電出力を
とった場合、検出の場所ムラが発生してしまうという欠
点があった。
Therefore, even if the luminous flux is apparently made uniform, when the photoelectric output is taken, there is a drawback that unevenness occurs in the detection location.

(発明が解決しようとする問題点) 本発明は、マスク、レチクル等の被測定面の表面状態を
一定の検出感度で検査することができ、又、受光素子の
受光面の感度ムラの影響を受けることもなく、高精度で
異物等の検出が可能な表面状態検査装置の提供を目的と
する。
(Problems to be Solved by the Invention) The present invention is capable of inspecting the surface condition of a surface to be measured such as a mask or reticle with a constant detection sensitivity, and also eliminates the influence of sensitivity unevenness on the light receiving surface of a light receiving element. The purpose of the present invention is to provide a surface condition inspection device that can detect foreign substances with high precision without being exposed to foreign substances.

(問題点を解決するための手段) 被検面を光ビームで走査し、被検面からの散乱光を光検
出器で受光することにより被検面の表面状態を測定する
装置であって、前記散乱光の光路中に前記散乱光を拡散
光させて伝達する伝達部材と該伝達部材から射出する拡
散光を収れんする集光レンズとを配設し、該集光レンズ
を介して前記散乱光を光検出器で検出することである。
(Means for Solving the Problems) An apparatus for measuring the surface condition of a surface to be inspected by scanning the surface to be inspected with a light beam and receiving scattered light from the surface to be inspected with a photodetector, the device comprising: A transmission member that diffuses and transmits the scattered light and a condenser lens that converges the diffused light emitted from the transmission member are disposed in the optical path of the scattered light, and the scattered light is transmitted through the condenser lens. is detected by a photodetector.

(実施例) 第1図は本発明の第1の実施例の概略図。同図(A)は
ビームの走査断面における概略図。同図(B)はそれと
直交する断面図。第8図と違う点は先導波路10の光束
射出口側に凸レンズ(13)を接着した構成である。図
かられかる様に、凸レンズ13の屈折作用により射出光
束の発散角は弱められ、受光素子8により垂直に近い角
度で受光される。
(Embodiment) FIG. 1 is a schematic diagram of a first embodiment of the present invention. Figure (A) is a schematic diagram of the scanning cross section of the beam. The same figure (B) is a sectional view orthogonal to it. The difference from FIG. 8 is that a convex lens (13) is bonded to the light beam exit side of the guiding waveguide 10. As can be seen from the figure, the divergence angle of the emitted light beam is weakened by the refraction effect of the convex lens 13, and the light is received by the light receiving element 8 at an almost vertical angle.

この際、凸レンズ13の形状としては、同図(A)のよ
うにビームの走査断面内の曲率は正のパワーをもつ事が
必要であるが、同図(B)に示すようにこれと直交する
断面内の曲率は必ずしもこれと同じである必要はなく、
平面でもいい。つまり、屈折光学素子13はシリンドリ
カルレンズかトーリックレンズでもいい。それは上記2
断面内での射出光束の発散角を元に決めればいい。
At this time, as for the shape of the convex lens 13, it is necessary that the curvature within the scanning cross section of the beam has a positive power as shown in the figure (A), but it is perpendicular to this as shown in the figure (B). The curvature within the cross section does not necessarily have to be the same,
It can be flat. In other words, the refractive optical element 13 may be a cylindrical lens or a toric lens. That is 2 above
It can be determined based on the divergence angle of the emitted light beam within the cross section.

又、13は光導波路10に接着しなくても、本作用をも
つ。
Moreover, the optical waveguide 13 has this effect even if it is not bonded to the optical waveguide 10.

第2図は本発明の他の実施例を示す概略図である。FIG. 2 is a schematic diagram showing another embodiment of the invention.

本実施例は第5図の従来例に本発明を適用したものであ
る。同図において、第5図と同一要素には同一番号を付
している。第1図に示す実施例においては各々の検査面
上のレーザービーム走査線上の異物からの散乱光を直接
先導波管の入射開口部に導光して受光していた。しかし
、本実施例においては該散乱光をセルフォックレンズ等
の結像素子5a等により視野絞り68等上に再結像させ
、そこを通過してくる散乱光束を先導波管10a等で均
一化して受光素子8a等に導光するものである。
This embodiment is an application of the present invention to the conventional example shown in FIG. In this figure, the same elements as in FIG. 5 are given the same numbers. In the embodiment shown in FIG. 1, the scattered light from the foreign matter on the laser beam scanning line on each test surface is directly guided to the entrance opening of the leading wave tube and received. However, in this embodiment, the scattered light is re-imaged on the field stop 68 etc. using an imaging element 5a such as a SELFOC lens, and the scattered light flux passing there is made uniform by a leading wave tube 10a etc. The light is guided to the light receiving element 8a and the like.

本実施例の様な構成にした場合、視野絞り68等を用い
ているので、フレアー光を遮断することができ、検査精
度を上げることができる。
In the case of the configuration of this embodiment, since the field stop 68 and the like are used, flare light can be blocked and inspection accuracy can be improved.

又、セルフォックレンズの開口数が限定されているので
レーザービームの走査線」−の何処の位置についても異
物散乱光の内、所定の角度の光束だけを受光できる。
Furthermore, since the numerical aperture of the SELFOC lens is limited, only the light beam at a predetermined angle among the light scattered by foreign objects can be received at any position along the scanning line of the laser beam.

このことは特にレチクルのパターン面において、パター
ン回折光を受光せずに、異物散乱光だけを選択的に受光
するような構成にすることが可能である。
In particular, it is possible to configure the pattern surface of the reticle to selectively receive only the foreign object scattered light without receiving the pattern diffracted light.

第3図は本発明の他の実施例を示す概略図である。第1
図、第2図に示す実施例は異物からの散乱光を受光する
構成にしていたが、本実施例ではレーザービームの検査
面上での直接反射光や直接透過光(基板が透過性の時の
み)を受光する構成に本発明を適用したものである。
FIG. 3 is a schematic diagram showing another embodiment of the present invention. 1st
The embodiments shown in Figs. 2 and 2 were configured to receive scattered light from foreign objects, but in this embodiment, the laser beam is directly reflected or directly transmitted on the inspection surface (if the substrate is transparent). The present invention is applied to a configuration that receives light (only 1).

同図において、1はレーザービーム、2は被測定物とし
ての基板、5e、5fはセルフォックレンズ、6e、6
fは視野絞り、10e、10fは光導波管、8e、8f
は受光素子である。添字eの付く部材で構成している光
検出系8−1は検査面上から直接反射光を受光し、添字
fの付く部材で構成している光検出系8−2は検査面を
透過する直接透過光を受光する。検査面上に異物が無い
場合は、レーザービーム1の該検査面に対する反射光を
受光した受光素子8eの出力と透過光を受光した受光素
子8fの出力との和は一定値であるが、異物等があると
光の吸収、散乱が起きる為、該2つの受光素子の出力の
和は減少する。
In the figure, 1 is a laser beam, 2 is a substrate as an object to be measured, 5e and 5f are selfoc lenses, 6e and 6
f is a field stop, 10e and 10f are optical waveguides, 8e and 8f
is a light receiving element. The photodetection system 8-1, which is made up of members with the subscript e, receives reflected light directly from the inspection surface, and the photodetection system 8-2, which is made up of the members with the subscript f, transmits the reflected light through the inspection surface. Receives directly transmitted light. If there is no foreign matter on the inspection surface, the sum of the output of the light receiving element 8e that received the reflected light of the laser beam 1 on the inspection surface and the output of the light receiving element 8f that received the transmitted light is a constant value. etc., absorption and scattering of light will occur, so the sum of the outputs of the two light receiving elements will decrease.

従って、その和が減少するという出力の変化を検出する
ことにより異物の検出を高精度に行なうことができる。
Therefore, foreign matter can be detected with high precision by detecting a change in the output such that the sum decreases.

尚、本実施例における光検出系8−1及び8−2は、第
2図の4つの光検出系と同様の構成で同様の効果をもた
らすものである。
The photodetection systems 8-1 and 8-2 in this embodiment have the same configuration as the four photodetection systems shown in FIG. 2, and provide the same effects.

第4図は本発明の他の一実施例の概略図である。本実施
例は第1図に示す実施例において先導波路10の入射側
にも凸レンズ50を設けている。
FIG. 4 is a schematic diagram of another embodiment of the present invention. This embodiment differs from the embodiment shown in FIG. 1 in that a convex lens 50 is also provided on the incident side of the leading waveguide 10.

本実施例ではビーム走査線上でライトガイドの光軸00
′から離れた位置(P+、P3)のゴミの散乱光(一般
には非テレセンビームでゴミが照射されるが、その散乱
光はその位置での入射ビームの主光線方向に沿って発散
する。)の方向なガイドの光軸00′に沿う方向に近づ
ける働きをもつ。
In this example, the optical axis of the light guide is 00 on the beam scanning line.
Scattered light of dust at a position (P+, P3) far away from It has the function of bringing the optical axis closer to the direction along the optical axis 00' of the guide.

これにより、ガイド内で光が全反射しやすくなり、ライ
トガイド10の光軸方向の長さを短くてき、装置全体の
コンパクト化を図っている。
This facilitates total reflection of light within the guide, shortens the length of the light guide 10 in the optical axis direction, and makes the entire device more compact.

(発明の効果) 本発明に依れば、光検出系の一部に屈折力を有する先導
波管を配置することにより、マスク、レチクル、ペリク
ル等の基板上の表面全体を一定の検出感度で検査するこ
とができ、又、検出限界にある異物等を前記基板上のあ
る部分で検出し損うこともなく、高精度で異物等の検出
を行なうことができる為、半導体製造工程の歩留まりを
高めることが可能な表面状態検査装置を達成することが
できる。
(Effects of the Invention) According to the present invention, by arranging a leading wave tube having refractive power in a part of the photodetection system, the entire surface of a substrate such as a mask, reticle, pellicle, etc. can be detected with a constant detection sensitivity. In addition, since it is possible to detect foreign substances with high precision without failing to detect foreign substances that are within the detection limit on a certain part of the substrate, the yield rate of the semiconductor manufacturing process can be improved. It is possible to achieve a surface condition inspection device that can be improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図(八)、(B) 、第2図、第3図、第4図は各
々本発明の各実施例を示す概略図、第5図。 第6図、第7図、第8図は従来の表面状態検査装置を示
す概略図である。 図中、1はレーザービーム、2はレチクル、3及び4は
ペリクル、8a、8b、8c、8dは受光素子、5a、
5b、5c、5d、5e、5fはセルフォックレンズ、
6a、6b、6c、6d。 6e、6fは視野絞り、to、11,12゜10a、1
0b、10c、10d、10e。 10fは光導波管、13.50は凸レンズ、14ばファ
イバーである。 特許出願人  キャノン株式会社
1(8), (B), FIG. 2, FIG. 3, and FIG. 4 are schematic diagrams showing respective embodiments of the present invention, and FIG. 5 is a schematic diagram showing each embodiment of the present invention. FIG. 6, FIG. 7, and FIG. 8 are schematic diagrams showing a conventional surface condition inspection device. In the figure, 1 is a laser beam, 2 is a reticle, 3 and 4 are pellicles, 8a, 8b, 8c, and 8d are light receiving elements, 5a,
5b, 5c, 5d, 5e, 5f are selfoc lenses,
6a, 6b, 6c, 6d. 6e, 6f are field stops, to, 11, 12° 10a, 1
0b, 10c, 10d, 10e. 10f is an optical waveguide, 13.50 is a convex lens, and 14 is a fiber. Patent applicant Canon Co., Ltd.

Claims (5)

【特許請求の範囲】[Claims] (1)被検面を光ビームで走査し、被検面からの散乱光
を光検出器で受光することにより被検面の表面状態を測
定する装置であって、前記散乱光の光路中に前記散乱光
を拡散光させて伝達する伝達部材と該伝達部材から射出
する拡散光を収れんする集光レンズとを配設し、該集光
レンズを介して前記散乱光を光検出器で検出することを
特徴とする表面状態検査装置。
(1) A device that measures the surface condition of a surface to be inspected by scanning the surface to be inspected with a light beam and receiving scattered light from the surface to be inspected with a photodetector, wherein the optical path of the scattered light is A transmission member that diffuses and transmits the scattered light and a condenser lens that converges the diffused light emitted from the transmission member are provided, and the scattered light is detected by a photodetector via the condenser lens. A surface condition inspection device characterized by:
(2)前記光伝達部材は入射開口部の長手方向が光ビー
ムの走査方向と一致する様な入射開口部を具えた光導波
部材から成ることを特徴とする特許請求の範囲第1項記
載の表面状態検査装置。
(2) The light transmission member is comprised of an optical waveguide member having an entrance opening such that the longitudinal direction of the entrance opening coincides with the scanning direction of the light beam. Surface condition inspection device.
(3)前記光導波部材の入射開口部と射出開口部は面積
が略等しい異った形状より構成されていることを特徴と
する特許請求の範囲第1項記載の表面状態検査装置。
(3) The surface condition inspection device according to claim 1, wherein the entrance opening and the exit opening of the optical waveguide member have different shapes having substantially equal areas.
(4)前記光導波部材は射出開口部からの射出光束の光
量分布が均一となるような形状より構成されていること
を特徴とする特許請求の範囲第1項記載の表面状態検査
装置。
(4) The surface condition inspection device according to claim 1, wherein the optical waveguide member has a shape such that the light intensity distribution of the emitted light beam from the exit aperture is uniform.
(5)前記集光レンズは光ビームの走査方向と直交する
方向に母線をもつシリンドリカルレンズから成ることを
特徴とする特許請求の範囲第1項記載の表面状態検査装
置。
(5) The surface condition inspection apparatus according to claim 1, wherein the condenser lens is a cylindrical lens having a generatrix in a direction perpendicular to the scanning direction of the light beam.
JP32432887A 1987-12-22 1987-12-22 Surface state checking device Pending JPH01166082A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32432887A JPH01166082A (en) 1987-12-22 1987-12-22 Surface state checking device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32432887A JPH01166082A (en) 1987-12-22 1987-12-22 Surface state checking device

Publications (1)

Publication Number Publication Date
JPH01166082A true JPH01166082A (en) 1989-06-29

Family

ID=18164561

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32432887A Pending JPH01166082A (en) 1987-12-22 1987-12-22 Surface state checking device

Country Status (1)

Country Link
JP (1) JPH01166082A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009020466A (en) * 2007-07-13 2009-01-29 Ricoh Co Ltd Vacuum chamber apparatus, electrostatic latent image forming apparatus, electrostatic latent image measuring apparatus, and image forming apparatus

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009020466A (en) * 2007-07-13 2009-01-29 Ricoh Co Ltd Vacuum chamber apparatus, electrostatic latent image forming apparatus, electrostatic latent image measuring apparatus, and image forming apparatus

Similar Documents

Publication Publication Date Title
EP0500293B1 (en) Particle detection method and apparatus
US4737650A (en) Inspection apparatus
US5963316A (en) Method and apparatus for inspecting a surface state
KR101446061B1 (en) Apparatus for measuring a defect of surface pattern of transparent substrate
US20140250679A1 (en) Optical inspection apparatus and optical inspection system
US6795185B2 (en) Film thickness measuring apparatus
JPS6273143A (en) Optical type web monitor device
JP2009008643A (en) Optical scanning type plane inspecting apparatus
JP2006214886A (en) Method and device for detecting defect of optical element
JPH01166082A (en) Surface state checking device
EP0447991B1 (en) Apparatus for measuring the distribution of the size of diffraction-scattering type particles
JPH06500401A (en) light detection device
CN115803608A (en) Foreign matter/defect inspection device, image generation device in foreign matter/defect inspection, and foreign matter/defect inspection method
US5706081A (en) Apparatus for inspecting surface defects with regularly reflected light and peripherally scattered light
JP3997761B2 (en) Illumination optical device and inspection device provided with the same
JP3871415B2 (en) Spectral transmittance measuring device
US7505151B2 (en) Arrangement for the optical distance determination of a reflecting surface
JP2001272355A (en) Foreign matter inspecting apparatus
JPH0118370B2 (en)
JPH04277643A (en) Optical inspection apparatus for transparent substrate
JP2006313107A (en) Inspection device, inspection method, and method of manufacturing pattern substrate using them
JPH09281054A (en) Method and apparatus for surface inspection of disk
JP2001264259A (en) Sheet inspecting device
JPH10239014A (en) Focal point detecting device and inspecting device
JPS62274248A (en) Surface stage measuring instrument