JPH01164356A - Apparatus for generating uniform magnetic field - Google Patents
Apparatus for generating uniform magnetic fieldInfo
- Publication number
- JPH01164356A JPH01164356A JP62322729A JP32272987A JPH01164356A JP H01164356 A JPH01164356 A JP H01164356A JP 62322729 A JP62322729 A JP 62322729A JP 32272987 A JP32272987 A JP 32272987A JP H01164356 A JPH01164356 A JP H01164356A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- uniformity
- permanent magnet
- magnetic
- pieces
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 abstract description 14
- 239000000463 material Substances 0.000 abstract description 11
- 229910052742 iron Inorganic materials 0.000 abstract description 7
- 230000035699 permeability Effects 0.000 abstract description 5
- 238000003745 diagnosis Methods 0.000 abstract description 2
- 230000002093 peripheral effect Effects 0.000 abstract 1
- 238000000034 method Methods 0.000 description 14
- 230000005415 magnetization Effects 0.000 description 10
- 230000004907 flux Effects 0.000 description 9
- 239000011159 matrix material Substances 0.000 description 8
- 239000000696 magnetic material Substances 0.000 description 6
- 238000005259 measurement Methods 0.000 description 5
- 238000009434 installation Methods 0.000 description 4
- NJPPVKZQTLUDBO-UHFFFAOYSA-N novaluron Chemical compound C1=C(Cl)C(OC(F)(F)C(OC(F)(F)F)F)=CC=C1NC(=O)NC(=O)C1=C(F)C=CC=C1F NJPPVKZQTLUDBO-UHFFFAOYSA-N 0.000 description 4
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 238000013461 design Methods 0.000 description 2
- 238000003754 machining Methods 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000000007 visual effect Effects 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000012937 correction Methods 0.000 description 1
- 238000000354 decomposition reaction Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000003993 interaction Effects 0.000 description 1
- 238000005457 optimization Methods 0.000 description 1
- 230000008569 process Effects 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 230000004044 response Effects 0.000 description 1
- 230000035945 sensitivity Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- 238000003325 tomography Methods 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Landscapes
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
[産業上の利用分野コ
本発明は、磁界の発生装置に関し、さらに詳しくは、核
磁気共鳴断層撮影装置(MRI)に用いられる磁界の発
生装置に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a magnetic field generating device, and more particularly to a magnetic field generating device used in a nuclear magnetic resonance tomography apparatus (MRI).
[従来の技術]
MHIに用いられる磁界の発生装置として、永久磁石型
のものがあり、その中に、空隙を形成して対向する一対
の永久磁石を継鉄で磁気的に結合した装置が知られてい
る。本装置は、起磁力を発生するための永久磁石、磁場
を均一にするための磁極(ポールピース)、および磁気
回路を形成するための継鉄(ヨーク)の3つの部分から
構成され、一般にヨークタイプと呼ばれている。[Prior Art] There are permanent magnet type magnetic field generators used in MHI, and one known device is one in which a pair of permanent magnets facing each other with an air gap are magnetically coupled with a yoke. It is being This device consists of three parts: a permanent magnet to generate magnetomotive force, a magnetic pole to make the magnetic field uniform, and a yoke to form a magnetic circuit. It's called a type.
MHIに用いられるためには、きわめて均一で広い磁界
空間を得ることが要求される。空隙の磁場を均一にする
ためには、ポールピースの形状の選定に工夫を要する。In order to be used for MHI, it is required to obtain an extremely uniform and wide magnetic field space. In order to make the magnetic field in the air gap uniform, it is necessary to carefully select the shape of the pole piece.
最も単純には、ポールピースの面積をできるだけ大きく
する。しかし、この方法では、装置全体のm Nは大き
くなってしまう。The simplest method is to make the area of the pole piece as large as possible. However, with this method, mN of the entire device becomes large.
最近、ポールピースの形状や特殊な調整手段を工夫して
、装置全体の重力を軽減する試みが提案され始めた。Recently, attempts have begun to be made to reduce the gravity of the entire device by devising the shape of the pole piece or special adjustment means.
たとえば、P CT W O84−00611号明細書
には、ポールピース上に多数の可動式磁性ビスを設けた
調整手段が記載されている。For example, PCT WO 84-00611 describes an adjusting means in which a number of movable magnetic screws are provided on a pole piece.
また、特開昭60−257109号明細書には、ポール
ピースの対向面距離を可変とする調整機構をヨークに設
ける試みが記載されている。Further, Japanese Patent Application Laid-Open No. 60-257109 describes an attempt to provide a yoke with an adjustment mechanism that changes the distance between opposing surfaces of pole pieces.
さらに、実開昭62−’112106号明細書には、ポ
ールピースに環状突起を設け、かつ環状突起の所要箇所
に、1個または複数個の磁性材からなる磁界調整片を着
接する調整手段が記載されている。Furthermore, Japanese Utility Model Application Publication No. 112106/1983 discloses an adjusting means in which a pole piece is provided with an annular projection, and one or more magnetic field adjusting pieces made of magnetic material are attached to required positions of the annular projection. Are listed.
[発明が解決しようとする問題点コ
一般に、ヨークタイプの磁界の発生装置においては、装
置を組立てた後、なんらかの方法で磁界調整を行なわな
いと十分な磁界均一性が得られない。発生磁界が不均一
になる要因としては、装置の部品の加工精度や組立精度
などいくつか考えられる。また、MRI用の磁界発生装
置として用いられるためには、永久磁石部は、横方向の
寸法が1mを越さざるをえず、小さな永久磁石片の集合
体より構成されるため、永久磁石片毎の磁気特性の不均
一性が大きな要因となる。[Problems to be Solved by the Invention] Generally, in a yoke type magnetic field generating device, sufficient magnetic field uniformity cannot be obtained unless the magnetic field is adjusted by some method after the device is assembled. There are several possible causes for the non-uniformity of the generated magnetic field, including the processing accuracy and assembly accuracy of the parts of the device. In addition, in order to be used as a magnetic field generator for MRI, the permanent magnet part must have a horizontal dimension of more than 1 m, and is composed of an aggregate of small permanent magnet pieces. A major factor is the non-uniformity of the magnetic properties of each type.
磁界の不均一性を表現する方法としては、磁界空間の球
面上の多数の点の磁界を測定し、その測定値を調和関数
の集まりとして近似することがよく用いられる。この表
現でいえば、加工や組立精度の狂いは、比較的低次の調
和関数の集まりとして表現できる(以下低次の不均一性
と表現する)のに対し、磁気特性の不均一性に起因する
ものは、比較的高次に属する不均一性を惹起する。A commonly used method for expressing the non-uniformity of a magnetic field is to measure the magnetic field at many points on a spherical surface in magnetic field space and approximate the measured values as a collection of harmonic functions. In this expression, errors in machining or assembly accuracy can be expressed as a collection of relatively low-order harmonic functions (hereinafter referred to as low-order nonuniformity), whereas errors in machining or assembly accuracy are caused by nonuniformity in magnetic properties. Those that do induce relatively high-order heterogeneity.
前述のポールピースの対向面距離を可変とした調整手段
は、低次の不均一性を調整するのに適しており、環状突
起部への磁性材の調整片の取付は法は中広の不均一性を
調整するのに適している。The above-mentioned adjustment means that varies the distance between the facing surfaces of the pole pieces is suitable for adjusting low-order non-uniformity, and the method of attaching a magnetic adjustment piece to the annular protrusion is suitable for medium-wide non-uniformity. Suitable for adjusting uniformity.
一方、可動性ビスによる手段は、低次より高次まで対応
できる調整手段である。On the other hand, the means using movable screws is an adjustment means that can be applied from low order to high order.
しかしながら、可動性ビスによる磁界調整手段には、次
のような2つの問題がある。However, the magnetic field adjustment means using movable screws has the following two problems.
(1)磁性体ビスのサイズの大きさ、可動幅、個数には
おのずから限界があるため、高次の不均一性を調整する
には限界がある。(1) Since there are limits to the size, movable width, and number of magnetic screws, there are limits to adjusting high-order non-uniformity.
(2)磁性体ビスには鉄などの高透磁率材料が用いられ
るが、鉄のようなまわりの磁界によってその磁化率が著
しく変化する材料を含んだ系の発生する磁界を計算によ
って求めるためには、有限要素法のごとき反復修正法を
用いることになり、したがって、三次元空間での計算に
は膨大な時間を要することになり、計算による磁性体ビ
スの位置の最適化は困難である。そこで、実際には磁性
体ビスの位置を移動させながら試行錯誤を繰り返して最
適化するわけであるが、そのような方法では調整に多大
な時間を要し、しかも、均一性を十分に改良することは
難しい。(2) High magnetic permeability materials such as iron are used for magnetic screws, but in order to calculate the magnetic field generated by a system containing a material such as iron whose magnetic susceptibility changes significantly depending on the surrounding magnetic field. This method uses an iterative correction method such as the finite element method, and therefore requires a huge amount of time to calculate in three-dimensional space, making it difficult to optimize the position of the magnetic screw by calculation. Therefore, in practice, optimization is performed by repeating trial and error while moving the position of the magnetic screw, but such a method requires a large amount of time for adjustment, and it is difficult to sufficiently improve uniformity. That's difficult.
そこで、本発明の目的は、ヨークタイプの磁界の発生装
置の磁界の均一性を改良するにあたって、低次の不均一
性のみならず高次の不均一性も調整することができ、し
かも短時間で容易に調整できるように構成した磁界の調
整手段を具備した磁界の発生装置を提供することにある
。Therefore, an object of the present invention is to be able to adjust not only low-order non-uniformity but also high-order non-uniformity in improving the magnetic field uniformity of a yoke type magnetic field generator, and to be able to adjust it in a short time. An object of the present invention is to provide a magnetic field generating device equipped with a magnetic field adjusting means configured to be easily adjusted.
[問題点を解決するための手段]
このような目的・を達成するために、本発明は、空隙を
形成して対向する一対の永久磁石を継鉄で磁気的に結合
して、空隙に磁界を発生させる均一磁界の発生装置にお
いて、磁界調整用末久磁石小片を配置して固定した保持
板を具え、保持板を対向する永久磁石に関連して配設し
たことを特徴とする。[Means for Solving the Problems] In order to achieve these objects, the present invention magnetically couples a pair of permanent magnets facing each other with an air gap formed therein, and applies a magnetic field to the air gap. A uniform magnetic field generator for generating a uniform magnetic field is characterized in that it includes a holding plate on which permanent magnet pieces for magnetic field adjustment are arranged and fixed, and the holding plate is arranged in relation to the opposing permanent magnet.
[作 用]
本発明の磁界の発生装置によれば、永久磁石小片が磁界
均一性の調整手段として配置されるので、調整すべき磁
界の不均一性に対応した永久磁石小片の最適配置が精度
よくかつ短時間で求められる。また、永久磁石小片の寸
法、残留磁束密度、さらには、取付位置を選ぶことによ
り、低次から高次までの不均一性の調整が可1t’eと
なる。さらに、永久磁石小片の磁化方向が正にも負にも
選択できるので、寸法を小さくでき、高次の不均一性調
整に好適である。[Function] According to the magnetic field generating device of the present invention, the permanent magnet pieces are arranged as means for adjusting the magnetic field uniformity, so that the optimum arrangement of the permanent magnet pieces corresponding to the non-uniformity of the magnetic field to be adjusted can be performed with high accuracy. Required often and in a short time. Further, by selecting the dimensions, residual magnetic flux density, and mounting position of the permanent magnet pieces, it is possible to adjust the non-uniformity from low order to high order. Furthermore, since the magnetization direction of the permanent magnet pieces can be selected to be positive or negative, the size can be reduced, which is suitable for high-order non-uniformity adjustment.
[実施例] 以下に図面を参照して、本発明の詳細な説明する。[Example] The present invention will be described in detail below with reference to the drawings.
第1図は、この発明による磁界の発生装置であり、第2
図はその平面である。本実施例は一対の円板状永久磁石
1の各々の一方端に軟鉄などの高透磁率材料からなるポ
ールピース2を固着して対向させ、他方端を軟鉄などの
高透磁率材料からなるヨーク3で結合し、ポールピース
2間の空隙4に磁界を発生させ、この空隙内に人体の一
部または全部を入れて診断する構成となっている。FIG. 1 shows a magnetic field generating device according to the present invention, and a second
The figure is its plane. In this embodiment, a pole piece 2 made of a high magnetic permeability material such as soft iron is fixed to one end of each of a pair of disc-shaped permanent magnets 1 and are opposed to each other, and the other end is a yoke made of a high magnetic permeability material such as soft iron. 3, a magnetic field is generated in the gap 4 between the pole pieces 2, and a part or all of the human body is inserted into this gap for diagnosis.
一対のポールピース2は、その対向面の周縁に、所定の
内径、高さからなる断面が略三角形の環状突起5が突設
してあり、空隙を介して対向させることにより、均一性
の改良に役立たせている。The pair of pole pieces 2 have an annular protrusion 5 protruding from the periphery of their opposing surfaces and having a predetermined inner diameter and height and a substantially triangular cross section.By facing each other through a gap, uniformity can be improved. It is useful for
このポールピース対内面の凹部に、永久磁石小片6を配
置した保持板7が設けられている。A holding plate 7 on which a small permanent magnet piece 6 is arranged is provided in the recessed portion of the inner surface of the pole piece.
第3図は、永久磁石小片6の配置例を示す図である。永
久磁石小片6は台座9を介して保持板7に取付ける。永
久磁石小片6としては、残留磁束密度は等しく、寸法は
複数の種類のものがあり、その磁化方向8は、永久磁石
1の磁化方向と平行ではあるが、同一方向(正方向)に
加え逆方向(負方向)のものがあってもよい。このよう
に、永久磁石小片6を用いることの利点は、磁化方向が
それ自体で決まっていること、および負方向にもとれる
ことであり、前述の磁性ビスや磁性材からなる磁界調整
片とは基本的に異なる点である。FIG. 3 is a diagram showing an example of the arrangement of the permanent magnet pieces 6. The small permanent magnet piece 6 is attached to the holding plate 7 via the pedestal 9. The permanent magnet pieces 6 have the same residual magnetic flux density and are available in multiple sizes, and the magnetization direction 8 is parallel to the magnetization direction of the permanent magnet 1, but in addition to being in the same direction (positive direction), it is also opposite. There may also be a direction (negative direction). In this way, the advantage of using the permanent magnet small piece 6 is that the magnetization direction is determined by itself, and that it can also be magnetized in the negative direction. This is a fundamentally different point.
その結果、寸法も小さくでき、かつ低次の不均一性のみ
ならず高次の不均一性にも対応できることになる。As a result, the dimensions can be reduced and it is possible to deal with not only low-order non-uniformity but also high-order non-uniformity.
永久磁石小片6の配置場所としては、餌述のように、保
持板上に取付けた後、ポールピース2の凹部に設けるこ
とはポールピース間の間隙を有効に利用しつる点で最も
好ましいが、鉄製のポールピースとの磁気的相互作用を
避けるため、若干の距離をおいて設置することが好まし
い。しかし、場合によっては、ボールビス面を直接使用
してもよい。この場合、環状突起部5の上に設けてもよ
いが、この部分は、設置スペースが少なく、この部分の
みではあまり有効ではない。As for the placement of the permanent magnet pieces 6, it is most preferable to install them on the holding plate and then in the recesses of the pole pieces 2, as described above, in order to effectively utilize the gaps between the pole pieces. In order to avoid magnetic interaction with the iron pole piece, it is preferable to install it at a certain distance. However, in some cases, the ball screw surface may be used directly. In this case, it may be provided on the annular protrusion 5, but this portion requires less installation space and is not very effective alone.
本発明の他の実施例として、永久磁石小片6の寸法およ
び取付位置を固定しておき、残留磁束密度の異なった永
久磁石小片6を用いたり、あるいは、永久磁石小片6の
寸法を固定しておき、その取付位置の自由度を増やすよ
うにしてもよい。As another embodiment of the present invention, the size and mounting position of the small permanent magnet piece 6 may be fixed and permanent magnet pieces 6 having different residual magnetic flux densities may be used, or the size of the small permanent magnet piece 6 may be fixed. It may also be possible to increase the degree of freedom in its mounting position.
この永久磁石小片6として使用可能な磁石材料には、S
m−Go系やNd−Fe−8系などの希土類磁石材料、
フェライト磁石材料またはこれらの類似物がある。永久
磁石小片6の材料は、永久磁石1と同一材料でもよく異
なっていてもよい。Magnet materials that can be used as this permanent magnet piece 6 include S
Rare earth magnet materials such as m-Go type and Nd-Fe-8 type,
There are ferrite magnet materials or their analogs. The material of the permanent magnet piece 6 may be the same as that of the permanent magnet 1 or may be different.
第4図は磁界調整用末久磁石小片6の最適配置を決める
手順の1例を示すフローチャートである。磁石小片6は
残留磁束密度が等しく、かつ寸法の異なるものを数種類
用意する。どの大きさの磁石小片6をどの位置に固定す
ればよいかという設計情報の算出は例えば次のようにす
る。FIG. 4 is a flowchart showing an example of the procedure for determining the optimum arrangement of the permanent magnet pieces 6 for magnetic field adjustment. Several types of small magnet pieces 6 having the same residual magnetic flux density and different sizes are prepared. For example, the design information regarding which size and position of the small magnet piece 6 should be fixed is calculated as follows.
まず、磁界がどのくらい乱れているかを評価する。視野
空間(ここでは球とする)の乱れは視野球表面の乱れを
調べれば十分なことが知られている。表面の多数(n個
)の点で主磁場方向の磁界()II、H2、H3・・・
Hn)を測定する。First, evaluate how much the magnetic field is disturbed. It is known that it is sufficient to investigate the disturbance in the visual field space (here, a sphere) by examining the disturbance in the visual field surface. Magnetic fields ()II, H2, H3... in the direction of the main magnetic field at many (n) points on the surface
Hn) is measured.
ある点Pの乱れCpは次式で定義される。The disturbance Cp at a certain point P is defined by the following equation.
Cp= (Hp−Ho) x 10’ /Ho
(1)HOは視野球中心の磁界である。点Pの乱れCp
は正負の符号をもった値であり、n個の点のCをもって
磁界の乱れ(不均一性)を表現する。Cp=(Hp-Ho) x 10'/Ho
(1) HO is a magnetic field centered on the baseball field. Disturbance Cp at point P
is a value with positive and negative signs, and the disturbance (non-uniformity) of the magnetic field is expressed by C at n points.
次にこの磁界の乱れに対応して調整情報を得なければな
らない。今、磁石小片6の取り付は可能な各位置(ここ
では保持板7上の予め定められた位置)に通し番号をつ
け、磁石小片6の大きさをi番目の位置についてΔRi
で表わす。磁石小片6の磁化方向は永久磁石!の磁化方
向8と平行であり正負をもたせる。ある乱れに対して各
位置にどの大きさの磁石小片6を配置固定したかをこの
番号順に並べると、これは(△R1、△R2、△R3、
・・・、68m) というベクトルになる。このベク
トルのことを調整ベクトルまたはシミングベクトルと呼
ぶ。Next, adjustment information must be obtained in response to this disturbance in the magnetic field. Now, to attach the small magnet piece 6, attach a serial number to each possible position (here, a predetermined position on the holding plate 7), and set the size of the small magnet piece 6 to ΔRi for the i-th position.
It is expressed as The magnetization direction of the small magnet piece 6 is a permanent magnet! It is parallel to the magnetization direction 8 of , and has positive and negative values. When arranging the size of magnet pieces 6 arranged and fixed at each position in this numerical order for a certain disturbance, this is (△R1, △R2, △R3,
..., 68 m). This vector is called an adjustment vector or shimming vector.
調整を行なうにはこのシミングベクトル△Rを求めなけ
ればならない。基礎方程式として、次式を考える。To perform the adjustment, this shimming vector ΔR must be found. Consider the following equation as a basic equation.
−C=G・△R(2)
n:乱れの展開係数の総数
m:調整機構の総数
ここで、Cは磁界測定から得れる「磁界の乱れ」の列ベ
クトル、Gは各位置の磁石小片の大きさの微小変化に対
して各測定点の磁界がどのように変化するかを表わす(
nxm)の行列である。このGは感度行列とも呼ばれる
。-C=G・△R (2) n: Total number of disturbance expansion coefficients m: Total number of adjustment mechanisms Here, C is the column vector of "magnetic field disturbance" obtained from magnetic field measurement, and G is the small magnet piece at each position. It shows how the magnetic field at each measurement point changes due to minute changes in the size of (
nxm) matrix. This G is also called a sensitivity matrix.
△Rはパラメーターの変化量、すなわち各位置に固定す
る磁石小片6の大きさを指示するm次の列ベクトルで(
2)式の解として求まる。磁場の乱れCを打ち消す新た
な乱れ(−〇)を作り出す訳である。△R is an m-th column vector that indicates the amount of change in the parameter, that is, the size of the small magnet piece 6 fixed at each position (
2) It is found as the solution of Eq. This creates a new disturbance (-〇) that cancels out the disturbance C in the magnetic field.
(2)式を次のようにして解く。Solve equation (2) as follows.
Gは(nxm)の長方行列で、−組の直交度ti s、
Tでつぎのような形に変換することができる(特異値分
解)。G is a (nxm) rectangular matrix, - orthogonality of the set ti s,
It can be converted into the following form using T (singular value decomposition).
G=S−D−T”、(D) 1j=dij−5ij
(3)従って
−C=SDT+・△R(4)
S” (−(:) = D −T”・△R(5)これを
−C“=D・△R’ (6)と
書くと、(2)式は
という形に変形されたことになる。△Rベクトルの各要
素は、△R’j = (−C:’j/di)
(8)として求まる。G=S-D-T'', (D) 1j=dij-5ij
(3) Therefore, −C=SDT+・△R(4) S” (−(:) = D −T”・△R(5) If we write this as −C”=D・△R′ (6), Equation (2) has been transformed into the form.Each element of the △R vector is △R'j = (-C:'j/di)
It can be found as (8).
(1/di)を対角要素にもつ行列をD−1で表わせば
(D””) ij−(1/dij) ・5ijD−’
S” (−C)−T”・△R(9)△R−TD−’S
責−C)−G+・(−C) (10)とな
る。つまり(TD−’S”)の部分がGの逆行列G+ど
なっているわけである。このようにしてG+が求まれば
ある磁界の乱れCを打消すシミングベクトル△Rが直ち
に求まる。If the matrix with (1/di) as diagonal elements is expressed as D-1, then (D"") ij-(1/dij) ・5ijD-'
S"(-C)-T"・△R(9)△R-TD-'S
Responsibility-C)-G+・(-C) (10). In other words, the part (TD-'S'') is the inverse matrix G+ of G. If G+ is determined in this way, the shimming vector ΔR that cancels out a certain magnetic field disturbance C can be immediately determined.
第4図に従って具体的手順を示す。まずステップS1に
おいて磁石小片6の取り付は可能位置を決める。取り付
は可能位置は、例えば保持板7上に一定間隔で規定され
た格子点とする。The specific procedure is shown according to FIG. First, in step S1, a possible mounting position for the small magnet piece 6 is determined. Possible positions for attachment are, for example, grid points defined at regular intervals on the holding plate 7.
次にステップS2において、単位量の磁石小片6が各位
置に配置されたときの視野球表面上の各測定点におよぼ
す磁界変化の情報を計算によって求め、0行列として用
意する。次にステップS3において、0行列から前述し
た方法で一般化逆行列G+を求めておく。装置の組立て
後、ステップS4において視野球表面上の各測定点(n
個)の磁界をNMRブーロブを用いて精密に測定し、ス
テップS5において磁界の乱れCを求める。Next, in step S2, information on changes in the magnetic field exerted on each measurement point on the surface of the baseball field when a unit amount of small magnet pieces 6 are placed at each position is calculated and prepared as a zero matrix. Next, in step S3, the generalized inverse matrix G+ is obtained from the 0 matrix using the method described above. After assembling the device, each measurement point (n
The magnetic field of 2) is precisely measured using an NMR Boolob, and the disturbance C of the magnetic field is determined in step S5.
磁界の均一性は、磁界測定の結果により、その最も大き
い値と最も小さい値との差を絶対磁界(平均値)で割算
し、ppmで表現する。ステップS6においてこの値が
目標値(例えば、中心磁界が3000ガウスのユニット
では30ppm以下が要求される)に達していない時は
ステップS7に移り、G+とCによって(10)式を用
いて各位置に配置する磁石の大きさ(シミングベクトル
)△Rを求める。The uniformity of the magnetic field is expressed in ppm by dividing the difference between the largest value and the smallest value by the absolute magnetic field (average value) based on the result of magnetic field measurement. If this value does not reach the target value (for example, 30 ppm or less is required for a unit with a central magnetic field of 3000 Gauss) in step S6, the process moves to step S7, and G+ and C are used to calculate each position using equation (10). Find the size (shimming vector) ΔR of the magnet placed at .
最後にステップS8において、以上のようにして決めら
れた永久磁石小片6の位置、サイズ、磁化方向および磁
石の材料によって決まる残留磁束密度等のデータに従っ
て、永久磁石小片6を準備し、これら小片6を非磁性材
の台座9を介して保持板7に配置して固定する。取り付
は後、永久磁石小片6の位置がずれると磁界の均一性を
悪くする原因となるので、かかる固定は確実にしっかり
と行う必要がある。Finally, in step S8, permanent magnet pieces 6 are prepared according to data such as the position, size, magnetization direction, and residual magnetic flux density determined by the magnet material of the permanent magnet pieces 6 determined as described above. is placed and fixed on the holding plate 7 via a pedestal 9 made of non-magnetic material. After installation, if the permanent magnet piece 6 is misaligned, it will cause the uniformity of the magnetic field to deteriorate, so it is necessary to securely and securely fix the permanent magnet piece 6.
ついで保持板7を、ポールピース2上に取付ける。固定
させるために、ポールピース2から、あるいは外部から
非磁性材の保持具を用いて取付ける。−例を第5図に示
す。本例では、保持板7はポールピース2の環状突起部
5に対し非磁性材のボルト10を用いて取付けられてい
る。他の例では、ポールピース2の環状突起部内に取付
けることも可能である。接着材を用いて保持板とポール
ピースを接着してもよい。Then, the holding plate 7 is attached onto the pole piece 2. In order to fix it, it is attached from the pole piece 2 or from the outside using a holder made of a non-magnetic material. - An example is shown in FIG. In this example, the holding plate 7 is attached to the annular protrusion 5 of the pole piece 2 using bolts 10 made of a non-magnetic material. In other examples, it is also possible to install it within the annular projection of the pole piece 2. The retainer plate and the pole piece may be bonded together using an adhesive.
第6図に示すように、永久磁石小片6は、非磁性材の台
座9の上に接着され、非磁性のビス11で非磁性材の保
持板7に確実に固定される。As shown in FIG. 6, the permanent magnet piece 6 is adhered onto a pedestal 9 made of a non-magnetic material, and securely fixed to a holding plate 7 made of a non-magnetic material with a non-magnetic screw 11.
保持板7を取付けた後、さらに均一性を改良したいとき
は、前述の操作を繰り返す。After attaching the retaining plate 7, if it is desired to further improve the uniformity, the above-described operation is repeated.
以上の例では保持板7が磁束に垂直に、つまりポールピ
ース2に対しては平行に取り付けられた場合であったが
、本発明はこれに限定されるものではない。第7図に示
すように磁束に平行に空隙4を左右から挟むように保持
板7を取り付けてもよい。第8図は第7図の例の横断面
図である。永久磁石小片6の磁化方向は第1図に示した
例と同様に磁束の方向と平行とし、正負をもうける。In the above example, the holding plate 7 was attached perpendicularly to the magnetic flux, that is, parallel to the pole piece 2, but the present invention is not limited to this. As shown in FIG. 7, retaining plates 7 may be attached parallel to the magnetic flux so as to sandwich the air gap 4 from left and right sides. FIG. 8 is a cross-sectional view of the example of FIG. 7. The magnetization direction of the permanent magnet piece 6 is parallel to the direction of the magnetic flux, as in the example shown in FIG. 1, and has positive and negative values.
なお、本発明では、永久磁石小片6による調整手段に加
えて、他の調整手段、例えば、ポールピースの対向面距
離を可変となす調整手段、シムコイルの併用も可能であ
る。In the present invention, in addition to the adjustment means using the permanent magnet pieces 6, other adjustment means, such as adjustment means for making the distance between the facing surfaces of the pole pieces variable, or a shim coil can be used in combination.
[発明の効果]
以上に述べたように、本発明の磁界の発生装置によれば
、永久磁石小片が磁界均一性の調整手段として配置され
るので、調整すべき磁界の不均一性に対応した永久磁石
小片の最適配置が精度よくかつ短時間で求められる。ま
た、永久磁石小片の寸法、残留磁束密度、さらには、取
付位置を選ぶことにより、低次から高次までの不均一性
の調整が可能となる。さらに、永久磁石小片の磁化方向
が正にも負にも選択できるので、寸法を小さくでき、高
次の不均一性調整に好適である。また、ポールピース面
状全面を利用して永久磁石小片を配置することができ、
均一性改良に有効である。さらに永久磁石小片の取付は
容易である。したかつて、MRIのような装置の磁界の
発生装置として最適である。[Effects of the Invention] As described above, according to the magnetic field generating device of the present invention, the permanent magnet pieces are arranged as means for adjusting the magnetic field uniformity, so that the magnetic field generating device according to the present invention can be adjusted to correspond to the non-uniformity of the magnetic field to be adjusted. Optimal placement of permanent magnet pieces can be determined with high precision and in a short time. Furthermore, by selecting the dimensions, residual magnetic flux density, and mounting position of the permanent magnet pieces, it is possible to adjust the non-uniformity from low order to high order. Furthermore, since the magnetization direction of the permanent magnet pieces can be selected to be positive or negative, the size can be reduced, which is suitable for high-order non-uniformity adjustment. In addition, small pieces of permanent magnets can be placed using the entire surface of the pole piece.
Effective for improving uniformity. Furthermore, the permanent magnet pieces are easy to attach. In the past, it was most suitable as a magnetic field generator for devices such as MRI.
第1図は本発明による均一磁界の発生装置の一実施例を
示す縦断面図、
第2図は第1図磁界発明装置の横断面図、第3図は磁界
調整用末久磁石小片の配置例を示す部分側面図、
第4図は磁界調整用末久磁石小片の設計手順の一例のフ
ローチャート、
第5図は磁界調整用末久磁石小片の具体的取り付は例を
示す部分側面図、
第6図は磁界調整用末久磁石小片の保持板への固定例を
示す断面図、
第7図は本発明による磁界発生装置の他の実施例を示す
縦断面図、
第8図は第7図磁界発生装置の横断面図である。
1・・・永久磁石、
2・・・ポールピース、
3・・・ヨーク、
4・・・空隙、
5・・・環状突起、
6・・・永久磁石小片、
7・・・保持板、
8・・・磁化方向、
9・・・台座、
lO・・・ボルト、
11・・・ビス。
d
#を日月1−:J″る均−石数」Fの発生数置の〈施イ
列の断′面図第 I N
第2図
永久磁石ホへの配這設計ヰ)・酒の一イ列右示すフロー
+−ヤード第4図
永久石哀石小片の具惨的取付はイ列Σ示す図第5図
第6図
不発日月1−よる61番先玉采−1のイ氾の曵力色イ列
の断面図第7図Fig. 1 is a longitudinal cross-sectional view showing an embodiment of the uniform magnetic field generating device according to the present invention, Fig. 2 is a cross-sectional view of the magnetic field generating device shown in Fig. 1, and Fig. 3 is the arrangement of small permanent magnet pieces for magnetic field adjustment. A partial side view showing an example; FIG. 4 is a flowchart of an example of the design procedure of a small magnet piece for magnetic field adjustment; FIG. 5 is a partial side view showing an example of the specific installation of a small magnet piece for magnetic field adjustment; FIG. 6 is a cross-sectional view showing an example of fixing a permanent magnet small piece for magnetic field adjustment to a holding plate, FIG. 7 is a longitudinal cross-sectional view showing another embodiment of the magnetic field generating device according to the present invention, and FIG. FIG. 2 is a cross-sectional view of the magnetic field generator. DESCRIPTION OF SYMBOLS 1... Permanent magnet, 2... Pole piece, 3... Yoke, 4... Air gap, 5... Annular projection, 6... Permanent magnet small piece, 7... Holding plate, 8... ... Magnetization direction, 9... Pedestal, lO... Bolt, 11... Screw. d. The flow shown in row 1 on the right + - yard Figure 4 The actual installation of the small piece of permanent stone is shown in row Σ Figure 5 Figure 6 Figure 7 is a cross-sectional view of the pulling force of color A.
Claims (1)
的に結合し、該空隙に磁界を発生させる均一磁界の発生
装置において、磁界調整用末久磁石小片を配置して固定
した保持板を具え、該保持板を前記対向する永久磁石に
関連して配設したことを特徴とする均一磁界の発生装置
。In a uniform magnetic field generator that magnetically couples a pair of permanent magnets facing each other with a gap formed therein, and generates a magnetic field in the gap, a holding plate on which permanent magnet small pieces for magnetic field adjustment are arranged and fixed. A device for generating a uniform magnetic field, characterized in that the holding plate is disposed in relation to the opposing permanent magnet.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62322729A JPH01164356A (en) | 1987-12-22 | 1987-12-22 | Apparatus for generating uniform magnetic field |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62322729A JPH01164356A (en) | 1987-12-22 | 1987-12-22 | Apparatus for generating uniform magnetic field |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH01164356A true JPH01164356A (en) | 1989-06-28 |
Family
ID=18146970
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62322729A Pending JPH01164356A (en) | 1987-12-22 | 1987-12-22 | Apparatus for generating uniform magnetic field |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH01164356A (en) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0383903U (en) * | 1989-12-13 | 1991-08-26 | ||
WO1999033397A1 (en) * | 1996-08-26 | 1999-07-08 | Sumitomo Special Metals Co., Ltd. | Mri magnetic field generator |
US6933820B2 (en) | 2003-12-10 | 2005-08-23 | Shin-Etsu Chemical Co., Ltd. | Magnetic circuit with opposing permanent magnets and method for adjusting magnetic field thereof |
WO2009136643A1 (en) * | 2008-05-09 | 2009-11-12 | 株式会社日立製作所 | Magnetic field adjustment for mri apparatus |
WO2009136642A1 (en) * | 2008-05-09 | 2009-11-12 | 株式会社日立製作所 | Software for adjusting magnetic homogeneity, method for adjusting magnetic homogeneity, magnet device, and magnetic resonance imaging device |
ITGE20100008A1 (en) * | 2010-01-22 | 2011-07-23 | Esaote Spa | MACHINE FOR NUCLEAR MAGNETIC RESONANCE WITH MEANS OF CORRECTION OF THE MAGNETIC FIELD HOMOGENEITY |
-
1987
- 1987-12-22 JP JP62322729A patent/JPH01164356A/en active Pending
Cited By (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0383903U (en) * | 1989-12-13 | 1991-08-26 | ||
WO1999033397A1 (en) * | 1996-08-26 | 1999-07-08 | Sumitomo Special Metals Co., Ltd. | Mri magnetic field generator |
US6275128B1 (en) | 1997-12-26 | 2001-08-14 | Sumitomo Special Metals Co., Ltd. | MRI magnetic field generator |
KR100373577B1 (en) * | 1997-12-26 | 2003-02-26 | 스미토모 도큐슈 긴조쿠 가부시키가이샤 | Mri magnetic field generator |
US6933820B2 (en) | 2003-12-10 | 2005-08-23 | Shin-Etsu Chemical Co., Ltd. | Magnetic circuit with opposing permanent magnets and method for adjusting magnetic field thereof |
WO2009136642A1 (en) * | 2008-05-09 | 2009-11-12 | 株式会社日立製作所 | Software for adjusting magnetic homogeneity, method for adjusting magnetic homogeneity, magnet device, and magnetic resonance imaging device |
WO2009136643A1 (en) * | 2008-05-09 | 2009-11-12 | 株式会社日立製作所 | Magnetic field adjustment for mri apparatus |
JP2009268791A (en) * | 2008-05-09 | 2009-11-19 | Hitachi Ltd | Software for adjusting magnetic homogeneity, magnetic homogeneity adjustment method, magnet device and magnetic resonance imaging apparatus |
JP4902787B2 (en) * | 2008-05-09 | 2012-03-21 | 株式会社日立製作所 | Magnetic field adjustment for MRI equipment |
JP2012101105A (en) * | 2008-05-09 | 2012-05-31 | Hitachi Ltd | Magnetic field adjustment for mri apparatus |
US8947089B2 (en) | 2008-05-09 | 2015-02-03 | Hitachi, Ltd. | Magnetic field shimming adjustment: reducing magnetic distribution errors by obtaining current potential distributions of MRI apparatus |
ITGE20100008A1 (en) * | 2010-01-22 | 2011-07-23 | Esaote Spa | MACHINE FOR NUCLEAR MAGNETIC RESONANCE WITH MEANS OF CORRECTION OF THE MAGNETIC FIELD HOMOGENEITY |
WO2011089115A1 (en) * | 2010-01-22 | 2011-07-28 | Esaote S.P.A. | Magnetic resonance imaging apparatus with means for correcting magnetic field homogeneity |
US9188652B2 (en) | 2010-01-22 | 2015-11-17 | Esaote S.P.A. | Magnetic resonance imaging apparatus with means for correcting magnetic field homogeneity |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPS63226009A (en) | Uniform magnetic field generator | |
US5332971A (en) | Permanent magnet for nuclear magnetic resonance imaging equipment | |
US9588200B2 (en) | Method for adjusting static magnetic field homogeneity, static magnetic field generation device for magnetic resonance imaging, magnetic field adjustment system, and program | |
EP0965305B1 (en) | Mri magnetic field generator | |
US5992006A (en) | Method for passive control of magnet hemogeneity | |
JPH03131234A (en) | Equipment for generating magnetic field for mri | |
JPH07171131A (en) | Improvement of mri magnet | |
JP2533758Y2 (en) | Magnetic field generator | |
US20170089992A1 (en) | Magnetic resonance imaging system, static magnetic field homogeneity adjusting system, magnetic field homogeneity adjusting method, and magnetic field homogeneity adjusting program | |
US6634088B1 (en) | Method and apparatus for shimming a magnet to control a three-dimensional field | |
JP4369613B2 (en) | Magnetic resonance imaging system | |
JPH01164356A (en) | Apparatus for generating uniform magnetic field | |
EP1214906A1 (en) | Open-type magnet device for mri | |
CN115831570A (en) | Shimming method of Halbach-configuration magnet | |
US6809619B1 (en) | System and method for adjusting magnetic center field for permanent MRI magnetic field generator | |
JPH01165106A (en) | Magnetic field generator | |
GB2348960A (en) | Iterative method for determining shim positioning in NMR apparatus | |
JP3151129B2 (en) | Permanent magnet permanent magnet magnetic circuit and its magnetic field adjustment method | |
JP3171721B2 (en) | Magnetic field generator for magnetic resonance imaging | |
JP4486575B2 (en) | Magnetic field adjustment shim board, magnetic field adjustment device, and magnetic field adjustment method | |
JP2002102205A (en) | Magnetic resonace imaging apparatus | |
JPH0422337A (en) | Magnetic field generating device | |
JP2838106B2 (en) | Nuclear magnetic resonance imaging equipment | |
US6933820B2 (en) | Magnetic circuit with opposing permanent magnets and method for adjusting magnetic field thereof | |
Yao et al. | The Optimal Design of Passive Shimming Elements for High Homogeneous Permanent Magnets Utilizing Sensitivity Analysis |