JPH03131234A - Equipment for generating magnetic field for mri - Google Patents
Equipment for generating magnetic field for mriInfo
- Publication number
- JPH03131234A JPH03131234A JP2179761A JP17976190A JPH03131234A JP H03131234 A JPH03131234 A JP H03131234A JP 2179761 A JP2179761 A JP 2179761A JP 17976190 A JP17976190 A JP 17976190A JP H03131234 A JPH03131234 A JP H03131234A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic field
- permanent magnet
- pieces
- magnetic
- magnetization direction
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 230000005291 magnetic effect Effects 0.000 title claims abstract description 173
- 230000005415 magnetization Effects 0.000 claims abstract description 30
- 239000000696 magnetic material Substances 0.000 claims description 19
- 230000004907 flux Effects 0.000 abstract description 4
- 238000000034 method Methods 0.000 abstract description 3
- 230000003068 static effect Effects 0.000 abstract description 3
- 239000000470 constituent Substances 0.000 abstract 3
- 239000000126 substance Substances 0.000 abstract 3
- XEEYBQQBJWHFJM-UHFFFAOYSA-N Iron Chemical compound [Fe] XEEYBQQBJWHFJM-UHFFFAOYSA-N 0.000 description 8
- 230000000694 effects Effects 0.000 description 8
- 239000000463 material Substances 0.000 description 7
- 229910052742 iron Inorganic materials 0.000 description 4
- 238000005259 measurement Methods 0.000 description 3
- 238000005481 NMR spectroscopy Methods 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 238000010586 diagram Methods 0.000 description 2
- 238000003325 tomography Methods 0.000 description 2
- 229910052779 Neodymium Inorganic materials 0.000 description 1
- 229910052777 Praseodymium Inorganic materials 0.000 description 1
- 229910000828 alnico Inorganic materials 0.000 description 1
- 239000010941 cobalt Substances 0.000 description 1
- 229910017052 cobalt Inorganic materials 0.000 description 1
- GUTLYIVDDKVIGB-UHFFFAOYSA-N cobalt atom Chemical compound [Co] GUTLYIVDDKVIGB-UHFFFAOYSA-N 0.000 description 1
- 239000002131 composite material Substances 0.000 description 1
- 239000006185 dispersion Substances 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000005294 ferromagnetic effect Effects 0.000 description 1
- 238000003384 imaging method Methods 0.000 description 1
- 239000006247 magnetic powder Substances 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000002910 rare earth metals Chemical class 0.000 description 1
- 229910000859 α-Fe Inorganic materials 0.000 description 1
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/387—Compensation of inhomogeneities
- G01R33/3873—Compensation of inhomogeneities using ferromagnetic bodies ; Passive shimming
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R33/00—Arrangements or instruments for measuring magnetic variables
- G01R33/20—Arrangements or instruments for measuring magnetic variables involving magnetic resonance
- G01R33/28—Details of apparatus provided for in groups G01R33/44 - G01R33/64
- G01R33/38—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field
- G01R33/383—Systems for generation, homogenisation or stabilisation of the main or gradient magnetic field using permanent magnets
Landscapes
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Magnetic Resonance Imaging Apparatus (AREA)
Abstract
Description
【発明の詳細な説明】
産業上の利用分野
この発明は、医療用核磁気共鳴断層撮影装置(以下MR
Iという)等に用いられる永久磁石を使用した磁界発生
装置の改良に係り、磁極片の空隙)ツ白面上に、複数の
磁界調整用磁性材小片及び/又は永久磁石構成体の磁化
方向とは同方向ま/、:は逆方向の磁化方向を有する複
数の磁界調整用永久磁石小片を、同一円上または同心円
上に配設置〜、空隙の磁界均一度の向上を図り、磁気回
路、特に継鉄形状の差異に基づく磁界均一度の乱れをな
くしたMRI用磁界発生装置に関する。DETAILED DESCRIPTION OF THE INVENTION Field of Industrial Application This invention relates to a medical nuclear magnetic resonance tomography apparatus (hereinafter referred to as MR
Regarding the improvement of a magnetic field generating device using permanent magnets used in magnetic pole pieces (referred to as I), etc., what is the magnetization direction of a plurality of small pieces of magnetic material for magnetic field adjustment and/or permanent magnet components on the white surface of the magnetic pole pieces? In the same direction or:: A plurality of small permanent magnet pieces for magnetic field adjustment having opposite magnetization directions are arranged on the same circle or on a concentric circle to improve the magnetic field uniformity in the air gap and The present invention relates to a magnetic field generator for MRI that eliminates disturbances in magnetic field uniformity due to differences in iron shape.
従来の技術
医療用核磁気共鳴断層撮影装置(以下MRJという)は
、強力な磁界を形成する磁界発生装置の空隙内に、被検
者の一部または全部を挿入して、対象物の断層イメージ
を得てその組織の性質まで描き出すことができる装置で
ある。Conventional technology Medical nuclear magnetic resonance tomography (hereinafter referred to as MRJ) involves inserting a part or all of the subject into the gap of a magnetic field generator that generates a strong magnetic field to obtain a tomographic image of the object. This is a device that can be used to draw out the characteristics of the tissue.
上記MRI用の磁界発生装置において、空隙は被検者の
一部または全部が挿入できるだけの広さが必要であり、
かつ鮮明な断層イメージを得るt:めに、通常、空隙内
の撮像視野内には、0.05〜2.OTでかつ1xlO
以下の精度を有する安定1−た強力な均一磁界を形成す
ることが要求される。In the above magnetic field generation device for MRI, the gap must be wide enough to allow part or all of the subject to be inserted;
In order to obtain a clear tomographic image, the imaging field of view within the gap usually has a thickness of 0.05 to 2. OT and 1xlO
It is required to create a stable, strong, and uniform magnetic field with the following accuracy:
MRJに用いる′6!L′!、、界発生装置と1.で、
第1図に示す如く、Fe−B−R系磁石を用いlニ一対
の永久磁石構成体(1)(1)の各々の一方端に磁極片
(2X2)を固着し7て対向させ、他方端を板状継鉄(
4X5)、さらにこれらを4本の柱状継鉄(6)にて連
結し、磁極片(2X2)間の空隙(7)内に、静磁界を
発生させる構成が知られている。'6 used for MRJ! L′! , field generator and 1. in,
As shown in FIG. 1, magnetic pole pieces (2×2) are fixed to one end of each of a pair of permanent magnet structures (1) (1) using Fe-B-R magnets, and the other The end is plate-shaped yoke (
4X5), and a configuration in which these are further connected by four columnar yokes (6) to generate a static magnetic field in the gap (7) between the magnetic pole pieces (2X2) is known.
例えば、上記構成において、より安定i−た均一磁界を
形成するため、磁極片の対向面の各々の周縁部に環状突
起(3)を設け、あるいはさらに磁極片の対向面の各々
の中央部に凸状突起を設けた磁界発生装置が提案(実開
昭60−166]−10号公報)されている。For example, in the above configuration, in order to form a more stable and uniform magnetic field, an annular protrusion (3) may be provided at the peripheral edge of each of the opposing surfaces of the magnetic pole pieces, or an annular protrusion (3) may be provided at the center of each of the opposing surfaces of the magnetic pole pieces. A magnetic field generating device provided with convex protrusions has been proposed (Japanese Utility Model Application Publication No. 1983-166]-10).
また、上記構成において、磁極片の各対向面に環状突起
を設け、かつ環状突起の所要箇所に、1または複数の磁
性材からなる磁界調整片を着設した構成の磁界発生装置
が提案(実開昭62−112106号公報)されている
。In addition, a magnetic field generating device has been proposed (actually implemented) in which, in the above configuration, an annular projection is provided on each opposing surface of the magnetic pole piece, and magnetic field adjustment pieces made of one or more magnetic materials are attached at required locations on the annular projection. (Kokai No. 62-112106).
発明が解決(−ようとする課題
磁界発生装置の磁界の均一度は、前述lまた如く、所定
空間内で1xlO以下の精度が要求されるが、特に磁気
回路における磁極片の形状による影響が大きく、また継
鉄の形状や配置箇所などにより影響を受ける。As mentioned above, the uniformity of the magnetic field of a magnetic field generator is required to have an accuracy of 1xlO or less within a given space, but it is particularly affected by the shape of the magnetic pole piece in the magnetic circuit. , and is also affected by the shape and location of the yoke.
例えば、前述の第1図に示す場合は、磁極片(2X2)
の影響だけでなく、長方形の板状継鉄(4X5)や柱状
継鉄(6)が磁界均一度に大きな影響を与え、長方形の
板状継鉄(4X5)けX方向の磁界よりもY方向を強く
し、柱状継鉄(6)は、柱の方向の磁界を弱くする。For example, in the case shown in Figure 1 above, the magnetic pole pieces (2X2)
In addition to the effects of The columnar yoke (6) weakens the magnetic field in the direction of the column.
磁極片に環状突起を設けて高い均一度を得ているが、−
層高い均一度が要求され、前記磁気回路の各構成部材の
形状、配置に応じて磁極片上で局部的に磁界強度を強く
したい場合は、実開昭62−112106号公報に提案
される如く、鉄片を貼ればよい。しかし、単に磁極片に
鉄片を貼るだけでは、極めて高い均一度を得ることがで
きない。High uniformity is achieved by providing annular protrusions on the magnetic pole pieces, but -
When high uniformity is required and it is desired to locally strengthen the magnetic field strength on the magnetic pole piece according to the shape and arrangement of each component of the magnetic circuit, as proposed in Japanese Utility Model Application No. 62-112106, Just put a piece of iron on it. However, simply pasting iron pieces on the magnetic pole pieces does not provide extremely high uniformity.
また、反対゛に局部的に磁界強度を弱くしたい場などを
設けることが考えられるが、穴を掘るなど組立て後に磁
極片を再加工することは困難な作業であり、必ずしも所
望の効果が得られるとは限らない。Also, on the contrary, it is possible to create a field where you want to locally weaken the magnetic field strength, but it is difficult work to rework the magnetic pole piece after assembly, such as by digging a hole, and it is not always possible to obtain the desired effect. Not necessarily.
この発明は、MRI用磁界発生装置において、磁極片を
再加工することなく、所要空隙内の磁界強度を局部的に
所定量だけ増減でき、極めて高い均一度の磁界を得るこ
とができる磁界発生装置の提供を目的としている。The present invention is a magnetic field generator for MRI that can locally increase or decrease the magnetic field strength within a required air gap by a predetermined amount without reworking the magnetic pole pieces, and can obtain a magnetic field with extremely high homogeneity. The purpose is to provide
課題を解決するための手段
すなわち、この発明は、
空隙を形成して対向する一対の永久磁石構成体を継鉄で
磁気的結合し、各永久磁石構成体の空隙対向面に磁極片
を固着し、該空隙に磁界を発生させるMRI用磁界発生
装置において、
磁極片の空隙対向面上に、複数の磁界調整用磁性材小片
及びl又は永久磁石構成体の磁化方向と同方向の磁化方
向を有する複数の磁界調整用永久r(北石小片を同一円
上または同心円」二に配設置−て磁児強磁極片の空隙対
向面上に、永久磁石構成体の磁化方向とは逆方向の磁化
方向を有する複数の磁界調整用永久磁石小片を同一円上
または同心円上に配設して磁界強度を減少させたり、
あるいは、前記磁界調整用磁性材小片と各々永久磁石小
片を同一円上または同心円上に併用して配設したことを
特徴とするMRI用磁界発生装置である。A means for solving the problem, that is, the present invention is to magnetically couple a pair of opposing permanent magnet structures with a yoke by forming an air gap, and to fix a magnetic pole piece to a surface of each permanent magnet structure that faces the air gap. , in an MRI magnetic field generation device that generates a magnetic field in the air gap, on the surface of the magnetic pole piece facing the air gap, a plurality of small pieces of magnetic material for magnetic field adjustment have a magnetization direction that is the same as the magnetization direction of the permanent magnet structure. A plurality of magnetic field adjustment permanent magnets (small pieces of north stones are arranged in the same circle or concentric circles) are placed on the air gap facing surfaces of the magnetic ferromagnetic pole pieces in a magnetization direction opposite to the magnetization direction of the permanent magnet structure. The magnetic field strength can be reduced by arranging a plurality of small permanent magnet pieces for magnetic field adjustment on the same circle or concentric circles, or by arranging the magnetic material small pieces for magnetic field adjustment and each permanent magnet piece on the same circle or concentric circles. This is a magnetic field generator for MRI, characterized in that it is disposed in combination with the MRI apparatus.
作用
この発明は、磁界発生装置において、磁極片を再加工す
ることなく、所要空隙内の磁界強度を局部的に増減でき
る構成を目的に種々検討した結果、磁極片間に形成され
る空隙中央部の球体の空隙を複数の水平面で横断して測
定した各同心円上での磁界強度の強弱に応じて、磁極片
の空隙対向面上の所定装置で、磁界強度を増強する箇所
には磁性材小片及びl又は磁石構成体の磁化方向と同方
向の磁化方向を有する永久磁石小片を、磁界強度を減少
させる箇所には磁石構成体の磁化方向と逆方向の磁化方
向を有する永久磁石小片を配設することにより、きめ細
かい磁界調整が容易にでき、極めて高い均一度の磁界を
得ることができることを知見し、この発明を完成したも
のである。Operation This invention was developed as a result of various studies aimed at creating a configuration in which the magnetic field strength within the required air gap can be locally increased or decreased without reworking the magnetic pole pieces in a magnetic field generating device. Depending on the strength of the magnetic field on each concentric circle measured by crossing the air gap of the sphere on multiple horizontal planes, a small piece of magnetic material is placed at a location where the magnetic field intensity is to be increased using a predetermined device on the surface of the magnetic pole piece facing the air gap. and 1 or a permanent magnet small piece having a magnetization direction in the same direction as the magnetization direction of the magnet structure, and a permanent magnet small piece having a magnetization direction opposite to the magnetization direction of the magnet structure in a place where the magnetic field strength is to be reduced. The present invention was completed based on the finding that by doing so, fine magnetic field adjustment could be easily made and a magnetic field with extremely high degree of uniformity could be obtained.
さらに詳細に説明するならば、本発明者は前記球体を横
断した水平面の円周上の磁界強度を調整するためには、
その円周上の各位置に対応して磁極片の空隙対向面上に
最も適した位置(径)があることを種々の実験から確認
した。To explain in more detail, in order to adjust the magnetic field strength on the circumference of the horizontal plane that crosses the sphere, the inventors believe that:
It has been confirmed through various experiments that there is a most suitable position (diameter) on the surface of the magnetic pole piece facing the air gap corresponding to each position on the circumference.
それらの所定位置に磁性材小片や、永久磁石小片を同一
円上に配置することにより、前記球体の円周上の磁界を
調整ことかできる。By arranging small pieces of magnetic material or small pieces of permanent magnet on the same circle at these predetermined positions, the magnetic field on the circumference of the sphere can be adjusted.
さらに、球体の複数の横断された水平面における各々円
周上の磁界強度の平均値を同等の値とするためには、前
記磁性材小片や永久磁石小片を同心円状に配置すること
が有効であることを確認した。Furthermore, in order to equalize the average value of the magnetic field strength on each circumference in a plurality of traversed horizontal planes of the sphere, it is effective to arrange the magnetic material pieces and the permanent magnet pieces concentrically. It was confirmed.
この発明において、磁気回路は、空隙を形成して対向す
る一対の永久磁石構成体を継鉄で磁気的結合し、各永久
磁石構成体の空隙対向面に磁極片を固着した構成であれ
ば、いかなる構成であってもよく、永久磁石の磁気特性
、形状寸法、継鉄の形状寸法及び所要空隙の大きさ等に
応じて、適宜選定することが望ましい。In this invention, if the magnetic circuit has a configuration in which a pair of permanent magnet structures facing each other with an air gap are magnetically coupled by a yoke, and a magnetic pole piece is fixed to the surface of each permanent magnet structure facing the air gap, Any configuration may be used, and it is desirable to select an appropriate configuration depending on the magnetic properties and dimensions of the permanent magnet, the dimensions of the yoke, the required gap size, and the like.
この発明において、磁極片は、任意の形状、形態を取り
得るが、磁界の均一度向上を目的に、円板状磁性体、円
板状磁性体の外周部に断面台形状または矩形状等の環状
突起を形成したもの、さらに、磁極片中央部に断面台形
状のまたは矩形状等の凸状突起を設けたもの等が適宜採
用でき、また、磁極片の材質も、種々の磁性材のバルク
からなるもの、磁性粉を固めたもの、同心円状にラミネ
ートしたもの、異材質等を複合したもの等、適宜選定で
きる。In this invention, the magnetic pole piece can take any shape or form, but for the purpose of improving the uniformity of the magnetic field, the magnetic pole piece has a disc-shaped magnetic body, and a trapezoidal or rectangular cross-section on the outer periphery of the disc-shaped magnetic body. A magnetic pole piece with an annular protrusion or a convex protrusion with a trapezoidal or rectangular cross section in the center of the pole piece can be used as appropriate. The material can be selected as appropriate, such as a material made of solidified magnetic powder, a material laminated in concentric circles, a material made of a composite of different materials, etc.
かかる磁気回路に用いる磁石構成体の永久磁石は、フェ
ライト磁石、アルニコ系磁石、希土類コバルト系磁石が
使用できるが、特に、RとしてNdやPrを中心とする
資源的に豊富な軽希土類を用い、B、 Feを主成分と
して30MGOe以上の極めて高いエネルギー積を示す
、R−Fe−B系永久磁石を使用することにより、著し
く小型化することができる。As the permanent magnet of the magnet structure used in such a magnetic circuit, ferrite magnets, alnico magnets, and rare earth cobalt magnets can be used, but in particular, as R, light rare earths, which are rich in resources, mainly Nd and Pr, are used. By using an R-Fe-B permanent magnet which has B and Fe as its main components and exhibits an extremely high energy product of 30 MGOe or more, it is possible to significantly reduce the size.
この発明は、磁極片間に形成される空隙中央部の球体の
空隙を複数の水平面で横断して測定した各同心円上での
磁界強度の強弱に応じて、磁極片の空隙対向面上の所定
位置で、磁界強度を増強する箇所には磁性材小片及びl
又は磁石構成体の磁化方向と同方向の磁化方向を有する
永久磁石小片を、磁界強度を減少させる箇所には磁石構
成体の磁化方向と逆方向の磁化方向を有する永久磁石小
片を配設することを特徴とするが、磁性材小片および永
久磁石小片の形状、寸法は、後述する如く磁界調整の条
件に応じて適宜選定できる。In this invention, a predetermined position on the surface of the magnetic pole piece facing the air gap is determined according to the strength of the magnetic field on each concentric circle measured by crossing the spherical air gap at the center of the air gap formed between the magnetic pole pieces on a plurality of horizontal planes. At the location where the magnetic field strength is to be increased, small pieces of magnetic material and l
Alternatively, a small permanent magnet piece having a magnetization direction in the same direction as the magnetization direction of the magnet structure is provided, and a small permanent magnet piece having a magnetization direction in the opposite direction to the magnetization direction of the magnet structure is arranged at a place where the magnetic field strength is to be reduced. However, the shapes and dimensions of the magnetic material pieces and the permanent magnet pieces can be appropriately selected depending on the conditions of magnetic field adjustment, as described later.
実施例
図面に基づく開示
第1図aはこの発明の一実施例を示す磁界発生装置の縦
断説明図であり、同す図は横断説明図であり、同C図は
同a歯の部分拡大説明図であり、同d−g図は他の実施
例を示す断面説明図である。Disclosure based on Embodiment Drawings Fig. 1a is a vertical cross-sectional explanatory view of a magnetic field generator showing an embodiment of the present invention, the same figure is a cross-sectional explanatory view, and Fig. 1C is a partially enlarged explanatory view of the tooth a. FIG. 3 is a cross-sectional explanatory diagram showing another embodiment.
第2図は磁界発生装置の球体空間内の磁界を測定する方
法を示す空隙の斜視説明図である。FIG. 2 is a perspective explanatory view of an air gap showing a method of measuring a magnetic field within a spherical space of a magnetic field generating device.
ここでは、第1図に示す如く、Fe−B−R系磁石を用
いた一対の永久磁石構成体(IXI)の各々の一方端に
周縁部に環状突起(3)を設けた磁極片(2X2)を固
着して対向させ、他方端を長方形の板状継鉄(4X5)
、さらにこれらを四隅に配設した4本の柱状継鉄(6)
にて連結し、磁極片(2X2)間の空隙(7)内に、静
磁界を発生させる構成からなる磁界発生装置に、この発
明を適用した例を説明する。Here, as shown in Fig. 1, magnetic pole pieces (2X2 ) are fixed and facing each other, and the other end is a rectangular plate yoke (4X5).
, and four columnar yokes (6) with these arranged at the four corners.
An example in which the present invention is applied to a magnetic field generating device configured to generate a static magnetic field in a gap (7) between magnetic pole pieces (2×2) will be described.
上記構成からなる磁界発生装置の空隙(7)において、
その中心(0)から所定半径rの球体空間を設定し、第
2図に示す如く、当該球体を所要数の水平面、ここでは
7つの水平面(Pa−Pg)で横断し、さらに各水平面
(Pa=Pg)と球体空間との交差円周上を、Z軸を中
心に所要角度で等分割した複数点での磁界強度を測定し
、各水平面(Pa−Pg)の該円周上の磁界強度のばら
つきを調べる。(第6図参照)次に、各水平面(Pa−
Pg)の該円周上における複数の磁界強度測定点に対応
させて、各磁極片(2X2)上の該光点を磁界調整箇所
、すなわち、磁界強度を増強する箇所あるいは減少させ
る箇所とし、前記測定に応じて磁界分布が均一になるよ
う、第1図すに示す如く、各磁極片(2X2)上の調整
箇所に磁性材小片(8)または永久磁石構成体の磁化方
向とは逆方向の磁化方向(第1図C参照)を有する永久
磁石小片(9)を配設する。In the air gap (7) of the magnetic field generator having the above configuration,
A spherical space with a predetermined radius r is set from its center (0), and as shown in Fig. 2, the spherical space is traversed by the required number of horizontal planes, here seven horizontal planes (Pa-Pg), and each horizontal plane (Pa-Pg) is = Pg) and the spherical space, the magnetic field strength at multiple points equally divided at a required angle around the Z axis is measured, and the magnetic field strength on the circumference of each horizontal plane (Pa-Pg) is calculated. Examine the dispersion of. (See Figure 6) Next, each horizontal plane (Pa-
Corresponding to the plurality of magnetic field strength measurement points on the circumference of Pg), the light spot on each magnetic pole piece (2X2) is set as a magnetic field adjustment location, that is, a location where the magnetic field strength is increased or decreased, and In order to make the magnetic field distribution uniform according to the measurement, as shown in Figure 1, a small piece of magnetic material (8) or a magnetic material piece (8) in the opposite direction to the magnetization direction of the permanent magnet structure is placed at the adjustment location on each magnetic pole piece (2x2). A permanent magnet piece (9) having a magnetization direction (see FIG. 1C) is arranged.
永久磁石構成体の磁化方向と同方向の磁化方向を有する
永久磁石小片(9′)を配設(第1図g参照)しても前
記の磁性材小片(8)と同等の効果を得ることができる
ことから、磁界強度の調整量において、これら永久磁石
小片(9′)および磁性材小片(8)とを併用して配設
することもできる。Even if a small permanent magnet piece (9') having a magnetization direction in the same direction as that of the permanent magnet structure is provided (see Fig. 1g), the same effect as the magnetic material piece (8) described above can be obtained. Therefore, the permanent magnet small piece (9') and the magnetic material small piece (8) can be used in combination to adjust the amount of magnetic field strength.
また、磁界調整は要求される磁界均一度に応じて、上記
水平面の数や分割角度等を適宜選定するとよい。Further, for magnetic field adjustment, the number of horizontal planes, the dividing angle, etc. may be appropriately selected depending on the required magnetic field uniformity.
従って、各磁極片(2X2)上に着設された磁性材小片
(8)または永久磁石小片(9X9’)は、同心円上に
配列されることになり、磁極片(2)を再加工すること
なく、部分的に磁束密度が大きくなっている部分を小さ
く、あるいは逆に小さくなっている部分を大きくするこ
とができ、さらに、均一度の微妙な調整も可能になる。Therefore, the magnetic material pieces (8) or permanent magnet pieces (9X9') attached to each magnetic pole piece (2X2) are arranged concentrically, and it is not necessary to rework the magnetic pole piece (2). Therefore, it is possible to reduce the portions where the magnetic flux density is high, or to increase the portions where the magnetic flux density is low, and furthermore, it is possible to finely adjust the degree of uniformity.
また、磁極片(2)上で部分的に磁束密度が太きいとこ
ろに、磁石構成体の磁化方向と逆方向の磁化方向を有す
る永久磁石小片を貼着するが、第1図に示す如く必要に
応じて凹状の溝を堀って回漕に配設してもよい。In addition, a small permanent magnet piece having a magnetization direction opposite to that of the magnet structure is attached to a part of the magnetic pole piece (2) where the magnetic flux density is thick, but as shown in Figure 1, it is necessary to Depending on the situation, a concave groove may be dug and placed in the circulation tank.
以上第1図a−dおよびgにおいては、いずれも環状突
起が断面台形状の場合で説明したが、第1図eで示す如
く、断面矩形状の場合でも同様な効果が得られる。また
第1図fに示す如く、環状突起(3)だけでなく磁極片
(2)対向面中央部に凸状突起(10)を設けることに
よって、−層磁界均一度を向上することが可能となる。Although the annular protrusion has a trapezoidal cross-section in each of FIGS. 1a-d and g, the same effect can be obtained even when the annular protrusion has a rectangular cross-section as shown in FIG. 1e. Furthermore, as shown in Fig. 1f, by providing not only the annular projection (3) but also a convex projection (10) at the center of the opposing surface of the pole piece (2), it is possible to improve the -layer magnetic field uniformity. Become.
磁性材小片または永久磁石小片の形状には任意の形状が
採用できるが、例えば、円板状または円柱状の場合、そ
の直径と高さを前述の磁界強度の測定に基づき、磁界分
布が均一になるよう適宜選定でき、微小な磁界調整が可
能となる。Any shape can be adopted as the shape of the magnetic material piece or the permanent magnet piece, but for example, in the case of a disk shape or a cylindrical shape, the diameter and height are determined based on the above-mentioned magnetic field strength measurement, so that the magnetic field distribution is uniform. The magnetic field can be appropriately selected so that the magnetic field can be finely adjusted.
また、材質も任意のものが採用できるが、特に永久磁石
小片(9X9’)は永久磁石構成体(1ンの磁気特性に
応じて選定することが望ましい。Further, any material can be used, but it is particularly desirable to select the permanent magnet small piece (9 x 9') depending on the magnetic properties of the permanent magnet component (1).
実施例
常温時の(BH)maxが35MGOeを示すR−Fe
−B系永久磁石を用い、直径300mm、高さ1.0m
mの凸状突起と、外径1100mm、内径900mm、
高さ40工の環状突起を有する磁極片を配置し、磁極片
の対向距離を500皿に設定した第1図に示す磁界発生
装置において、空隙(7)内のx、y、zの各軸方向の
磁界強度を測定したところ、第4図の結果を得た。Example R-Fe with (BH)max of 35 MGOe at room temperature
-Using B-based permanent magnets, diameter 300mm, height 1.0m
m convex projection, outer diameter 1100mm, inner diameter 900mm,
In the magnetic field generating device shown in Fig. 1, in which magnetic pole pieces having annular protrusions with a height of 40 mm are arranged and the facing distance of the magnetic pole pieces is set to 500 plates, each of the x, y, and z axes in the air gap (7) is When the magnetic field strength in the direction was measured, the results shown in FIG. 4 were obtained.
さらに、空隙(7)内の直径350mmの球体空間を、
第2図に示す如く、7面の水平面(Pa−P、)にて横
断面し、各水平面と球体空間との交差円周上の磁界強度
を測定したところ、第6図の結果を得た。Furthermore, a spherical space with a diameter of 350 mm in the cavity (7) is
As shown in Figure 2, we made a cross section on seven horizontal planes (Pa-P) and measured the magnetic field strength on the intersection circumference of each horizontal plane and the spherical space, and obtained the results shown in Figure 6. .
第4図と第6図に示す空隙内の磁界強度分布から明らか
なように、長方形状継鉄の影響によりX軸方向(0°、
180°)に比べ、Y軸方向(90°、270°)が大
きくなっている。As is clear from the magnetic field strength distribution in the air gap shown in Figures 4 and 6, the effect of the rectangular yoke is to
180°), the Y-axis direction (90°, 270°) is larger.
そこで、第6図の球体空間内の磁界強度分布を基に、各
磁極片(2X2)上の磁界調整箇所を決定し、磁極片と
同材質からなる種々寸法の円柱状磁性材小片または永久
磁石構成体と同特性で永久磁石構成体の磁化方向とは逆
方向の磁化方向を有する種々寸法の円柱状永久磁石小片
を、各磁極片(2X2)上に同心円上に配設した。Therefore, based on the magnetic field strength distribution in the spherical space shown in Figure 6, the magnetic field adjustment points on each magnetic pole piece (2x2) are determined, and cylindrical magnetic material small pieces of various sizes or permanent magnets made of the same material as the magnetic pole piece are Cylindrical permanent magnet pieces of various sizes having the same characteristics as the structure and a magnetization direction opposite to that of the permanent magnet structure were arranged concentrically on each pole piece (2×2).
発明の効果
この発明による磁界発生装置の空隙(7)内のx、y、
zの各軸方向の磁界強度、水平面と球体空間との交差円
周上の磁界強度を測定したところ、第3図と第5図の結
果を得た。Effects of the Invention The x, y,
When the magnetic field strength in each z-axis direction and the magnetic field strength on the intersection circumference of the horizontal plane and the spherical space were measured, the results shown in FIGS. 3 and 5 were obtained.
第3図と第5図に示す空隙内の磁界強度分布から明らか
なように、この発明により、磁極片の形状に起因する影
響だけでなく長方形状継鉄の影響を減少させ、より均一
な空隙内の磁界強度分布が得られたことが分かる。As is clear from the magnetic field strength distribution in the air gap shown in FIGS. 3 and 5, the present invention reduces not only the effects caused by the shape of the pole pieces but also the effects of the rectangular yoke, resulting in a more uniform air gap. It can be seen that the magnetic field strength distribution within the range was obtained.
さらに、前記水平面の数を増してより精密な磁界調整を
行ったところ、直径350皿の球体空間内の磁界均一度
を50ppm以下にすることができた。Furthermore, by increasing the number of horizontal surfaces and performing more precise magnetic field adjustment, it was possible to reduce the magnetic field uniformity within the spherical space with a diameter of 350 plates to 50 ppm or less.
第1図aはこの発明の一実施例を示す磁界発生装置の縦
断説明図であり、同す図は横断説明図であり、同C図は
同a図の部分拡大説明図であり、同d−g図は他の実施
例を示す断面説明図である。
第2図は磁界発生装置の球体空隙内の磁界を測定する方
法を示す空隙の斜視説明図である。
第3図は第1図に示すこの発明による磁極片を用いた磁
界発生装置において、その球体空隙内x、y、z軸上の
磁界を測定した結果を方位と磁界強度で表すグラフであ
り、第5図は同様に第2図のPa−P−平面円周上の磁
界を測定した結果を方位と磁界強度で表すグラフである
。
第4図は第1図に示すこの発明による磁極片を用いる前
の磁界発生装置において、その球体空隙内x、y、z軸
上の磁界を測定した結果を方位と磁界強度で表すグラフ
であり、第6図は同様に第2図のpa−pg*平面円周
上の磁界を測定した結果を方位と磁界強度で表すグラフ
である。
1・・・永久磁石構成体、2・・・磁極片、3・・・環
状突起部、4,5・・・板状継鉄、6・・・柱状継鉄、
7・・・空隙、8・・・磁性材小片、9.9′・・・永
久磁石小片。FIG. 1a is a vertical cross-sectional explanatory view of a magnetic field generating device showing an embodiment of the present invention, the same figure is a cross-sectional explanatory view, FIG. 1C is a partially enlarged explanatory view of FIG. -g is a cross-sectional explanatory diagram showing another embodiment. FIG. 2 is a perspective explanatory view of a gap showing a method of measuring a magnetic field within a spherical gap of a magnetic field generating device. FIG. 3 is a graph showing the results of measuring the magnetic fields on the x, y, and z axes in the spherical gap in terms of orientation and magnetic field strength in the magnetic field generating device using the magnetic pole pieces according to the present invention shown in FIG. Similarly, FIG. 5 is a graph showing the results of measuring the magnetic field on the circumference of the Pa-P plane shown in FIG. 2 in terms of orientation and magnetic field strength. FIG. 4 is a graph showing the results of measuring the magnetic fields on the x, y, and z axes in the spherical gap in terms of orientation and magnetic field strength in the magnetic field generator before using the magnetic pole piece according to the present invention shown in FIG. 1. Similarly, FIG. 6 is a graph showing the results of measuring the magnetic field on the circumference of the pa-pg* plane shown in FIG. 2 in terms of orientation and magnetic field strength. DESCRIPTION OF SYMBOLS 1... Permanent magnet structure, 2... Magnetic pole piece, 3... Annular protrusion, 4, 5... Plate-shaped yoke, 6... Column-shaped yoke,
7... air gap, 8... small piece of magnetic material, 9.9'... small piece of permanent magnet.
Claims (1)
で磁気的結合し、各永久磁石構成体の空隙対向面に磁極
片を固着し、該空隙に磁界を発生させるMRI用磁界発
生装置において、 磁極片の空隙対向面上に、複数の磁界調整用磁性材小片
及び/又は永久磁石構成体の磁化方向と同方向の磁化方
向を有する複数の磁界調整用永久磁石小片を同一円上ま
たは同心円上に配設したことを特徴とするMRI用磁界
発生装置。 2 空隙を形成して対向する一対の永久磁石構成体を継鉄
で磁気的結合し、各永久磁石構成体の空隙対向面に磁極
片を固着し、該空隙に磁界を発生させるMRI用磁界発
生装置において、 磁極片の空隙対向面上に、永久磁石構成体の磁化方向と
逆方向の磁化方向を有する複数の磁界調整用永久磁石小
片を同一円上または同心円上に配設したことを特徴とす
るMRI用磁界発生装置。 3 空隙を形成して対向する一対の永久磁石構成体を継鉄
で磁気的結合し、各永久磁石構成体の空隙対向面に磁極
片を固着し、該空隙に磁界を発生させるMRI用磁界発
生装置において、 磁極片の空隙対向面上に、複数の磁界調整用磁性材小片
及び/又は永久磁石構成体の磁化方向と同方向の磁化方
向を有する複数の磁界調整用永久磁石小片と、永久磁石
構成体の磁化方向と逆方向の磁化方向を有する複数の磁
界調整用永久磁石小片を、同一円上または同心円上に配
設したことを特徴とするMRI用磁界発生装置。[Claims] 1. A pair of permanent magnet structures facing each other with a gap formed therebetween are magnetically coupled by a yoke, a magnetic pole piece is fixed to the surface of each permanent magnet structure facing the gap, and a magnetic field is applied to the gap. In the magnetic field generating device for MRI, a plurality of permanent magnetic field adjusting pieces having a magnetization direction in the same direction as a magnetization direction of a plurality of small pieces of magnetic material for magnetic field adjustment and/or a magnetization direction of the permanent magnet structure are disposed on the air gap facing surface of the magnetic pole piece. A magnetic field generating device for MRI, characterized in that small magnet pieces are arranged on the same circle or concentric circles. 2. Magnetic field generation for MRI in which a pair of permanent magnet structures facing each other with a gap are magnetically coupled with a yoke, a magnetic pole piece is fixed to the surface of each permanent magnet structure facing the gap, and a magnetic field is generated in the gap. The apparatus is characterized in that a plurality of small permanent magnet pieces for magnetic field adjustment having a magnetization direction opposite to the magnetization direction of the permanent magnet structure are arranged on the same circle or concentric circles on the air gap facing surface of the magnetic pole piece. Magnetic field generator for MRI. 3 Magnetic field generation for MRI in which a pair of permanent magnet structures facing each other with an air gap are magnetically coupled with a yoke, a magnetic pole piece is fixed to the air gap facing surface of each permanent magnet structure, and a magnetic field is generated in the air gap. In the device, a plurality of small pieces of magnetic material for magnetic field adjustment and/or a plurality of small pieces of permanent magnet for magnetic field adjustment having a magnetization direction in the same direction as the magnetization direction of the permanent magnet structure, and a permanent magnet are arranged on the air gap facing surface of the magnetic pole piece. A magnetic field generating device for MRI, characterized in that a plurality of small permanent magnet pieces for magnetic field adjustment having a magnetization direction opposite to the magnetization direction of the component are arranged on the same circle or on concentric circles.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP17605489 | 1989-07-07 | ||
JP1-176054 | 1989-07-07 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH03131234A true JPH03131234A (en) | 1991-06-04 |
JPH0587962B2 JPH0587962B2 (en) | 1993-12-20 |
Family
ID=16006913
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2179761A Granted JPH03131234A (en) | 1989-07-07 | 1990-07-06 | Equipment for generating magnetic field for mri |
Country Status (4)
Country | Link |
---|---|
US (1) | US5229723B1 (en) |
EP (1) | EP0407227A3 (en) |
JP (1) | JPH03131234A (en) |
SG (1) | SG118058A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999033397A1 (en) * | 1996-08-26 | 1999-07-08 | Sumitomo Special Metals Co., Ltd. | Mri magnetic field generator |
Families Citing this family (44)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2533758Y2 (en) * | 1989-12-13 | 1997-04-23 | 信越化学工業 株式会社 | Magnetic field generator |
JPH05329128A (en) * | 1992-05-29 | 1993-12-14 | Mitsubishi Electric Corp | Magnetic field corrector |
JPH067316A (en) * | 1992-06-29 | 1994-01-18 | Hitachi Medical Corp | Magnetic field generating device of magnetic resonance imaging system |
US5754085A (en) * | 1992-09-28 | 1998-05-19 | Fonar Corporation | Ferromagnetic yoke magnets for medical magnetic resonance studies |
US6023165A (en) | 1992-09-28 | 2000-02-08 | Fonar Corporation | Nuclear magnetic resonance apparatus and methods of use and facilities for incorporating the same |
US6201394B1 (en) | 1992-12-18 | 2001-03-13 | Fonar Corporation | MRI apparatus |
US6335623B1 (en) | 1992-12-18 | 2002-01-01 | Fonar Corporation | MRI apparatus |
GB2276946B (en) * | 1993-04-08 | 1997-04-02 | Oxford Magnet Tech | Improvements in or relating to MRI magnets |
FI933834A (en) * | 1993-09-01 | 1995-03-02 | Picker Nordstar Oy | Polsko for a magnetographic imaging device |
EP0645641B1 (en) * | 1993-09-29 | 1999-06-16 | Oxford Magnet Technology Limited | Improvements in or relating to MRI magnets |
GB9320043D0 (en) * | 1993-09-29 | 1993-11-17 | Oxford Magnet Rechnology Limit | Improvements in or relating to mri magnets |
US5495222A (en) * | 1994-04-15 | 1996-02-27 | New York University | Open permanent magnet structure for generating highly uniform field |
US5475355A (en) * | 1994-04-15 | 1995-12-12 | New York University | Method and apparatus for compensation of field distortion in a magnetic structure using spatial filter |
EP0760484B1 (en) * | 1995-08-28 | 2001-05-30 | Shin-Etsu Chemical Co., Ltd. | Opposed magnet-type magnetic circuit assembly with permanent magnets |
DE19702567A1 (en) * | 1997-01-24 | 1998-03-12 | Siemens Ag | Permanent magnet magnetic resonance device |
US6437571B1 (en) | 1997-11-21 | 2002-08-20 | Fonar Corporation | MRI apparatus |
US7127802B1 (en) | 1997-11-21 | 2006-10-31 | Fonar Corporation | Method of fabricating a composite plate |
IT1305407B1 (en) * | 1998-03-05 | 2001-05-04 | Esaote Spa | METHOD FOR CORRECTION AND / OR CALIBRATION OF MAGNETIC FIELDS IN PARTICULAR IN MAGNETS FOR IMAGE DETECTION MACHINES |
US6265959B1 (en) | 1998-04-29 | 2001-07-24 | New York University | Open unipolar magnetic structure |
GB2355800B (en) * | 1999-10-29 | 2004-10-27 | Oxford Magnet Tech | Improved magnet |
CN1217201C (en) | 2000-01-19 | 2005-08-31 | 千年技术公司 | C-shaped magnetic resonance imaging system |
US8190234B2 (en) | 2000-07-28 | 2012-05-29 | Fonar Corporation | Movable patient support with spatial locating feature |
US7697971B1 (en) | 2000-07-28 | 2010-04-13 | Fonar Corporation | Positioning system for an MRI |
US7196519B2 (en) * | 2000-07-28 | 2007-03-27 | Fonar Corporation | Stand-up vertical field MRI apparatus |
US6822449B1 (en) | 2000-11-22 | 2004-11-23 | Fonar Corporation | Ferromagnetic frame with laminated carbon steel |
US6662434B2 (en) | 2001-04-03 | 2003-12-16 | General Electric Company | Method and apparatus for magnetizing a permanent magnet |
US6518867B2 (en) | 2001-04-03 | 2003-02-11 | General Electric Company | Permanent magnet assembly and method of making thereof |
US6934574B1 (en) | 2001-06-21 | 2005-08-23 | Fonar Corporation | MRI scanner and method for modular patient handling |
US6944492B1 (en) | 2001-10-01 | 2005-09-13 | Fonar Corporation | Patient bed support for an open MRI system |
US7701209B1 (en) | 2001-10-05 | 2010-04-20 | Fonar Corporation | Coils for horizontal field magnetic resonance imaging |
US7906966B1 (en) | 2001-10-05 | 2011-03-15 | Fonar Corporation | Quadrature foot coil antenna for magnetic resonance imaging |
US7123008B1 (en) | 2002-04-19 | 2006-10-17 | Fonar Corporation | Positional magnetic resonance imaging |
US6984982B2 (en) | 2002-07-29 | 2006-01-10 | Ge Medical Systems Global Technology Company Llc | Method and system for shimming an MRI magnet assembly |
US8064984B2 (en) | 2003-03-18 | 2011-11-22 | Esaote S.P.A. | Magnetic resonance imaging apparatus |
US6844801B2 (en) * | 2003-03-21 | 2005-01-18 | Ge Medical Systems Global Technology Company, Llc | Methods and apparatus for adjusting center magnetic field of a magnetic field generator for MRI |
US7423431B2 (en) * | 2003-09-29 | 2008-09-09 | General Electric Company | Multiple ring polefaceless permanent magnet and method of making |
US7148689B2 (en) | 2003-09-29 | 2006-12-12 | General Electric Company | Permanent magnet assembly with movable permanent body for main magnetic field adjustable |
JP2005168692A (en) * | 2003-12-10 | 2005-06-30 | Shin Etsu Chem Co Ltd | Opposed permanent magnet type magnetic circuit and method for adjusting its magnetic field |
US8401615B1 (en) | 2004-11-12 | 2013-03-19 | Fonar Corporation | Planar coil flexion fixture for magnetic resonance imaging and use thereof |
US9386939B1 (en) | 2007-05-10 | 2016-07-12 | Fonar Corporation | Magnetic resonance imaging of the spine to detect scoliosis |
US8599215B1 (en) | 2008-05-07 | 2013-12-03 | Fonar Corporation | Method, apparatus and system for joining image volume data |
JP2012511989A (en) * | 2008-12-17 | 2012-05-31 | コーニンクレッカ フィリップス エレクトロニクス エヌ ヴィ | Permanent magnetic apparatus for magnetic particle imaging |
US9766310B1 (en) | 2013-03-13 | 2017-09-19 | Fonar Corporation | Method and apparatus for magnetic resonance imaging of the cranio-cervical junction |
CN104207777A (en) * | 2014-09-15 | 2014-12-17 | 苏州露宇电子科技有限公司 | NMR (nuclear magnetic resonance)-imaging device based on permanent magnetic unilateral magnet |
Family Cites Families (16)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1984000611A1 (en) * | 1982-08-04 | 1984-02-16 | William H Oldendorf | Adjustable magnet suitable for in vivo nmr imaging and method of adjusting the same |
JPS60210804A (en) * | 1984-04-04 | 1985-10-23 | Hitachi Ltd | Permanent magnet apparatus |
DE3566185D1 (en) * | 1984-04-11 | 1988-12-15 | Sumitomo Spec Metals | Magnetic field generating device for nmr-ct |
NL8402250A (en) * | 1984-07-17 | 1986-02-17 | Philips Nv | NUCLEAR SPIN RESONANCE DEVICE WITH A RECTANGULAR PERMANENT MAGNETIC MAGNET. |
US4682111A (en) * | 1985-03-05 | 1987-07-21 | Kabushiki Kaisha Toshiba | Magnetic resonance imaging magnet |
DE3518852A1 (en) * | 1985-05-23 | 1986-11-27 | Siemens AG, 1000 Berlin und 8000 München | MAGNET OF A CORE MIRROR TOMOGRAPH |
US4679022A (en) * | 1985-12-27 | 1987-07-07 | Sumitomo Special Metal Co. Ltd. | Magnetic field generating device for NMR-CT |
DE3616078A1 (en) * | 1986-05-13 | 1987-11-19 | Bruker Analytische Messtechnik | ELECTROMAGNETIC SYSTEM FOR THE NUCLEAR MRI |
US4827235A (en) * | 1986-07-18 | 1989-05-02 | Kabushiki Kaisha Toshiba | Magnetic field generator useful for a magnetic resonance imaging instrument |
EP0262880B1 (en) * | 1986-09-27 | 1992-06-10 | Sumitomo Special Metals Co. Ltd. | Magnetic field generating device for nmr-ct |
US4931760A (en) * | 1986-10-08 | 1990-06-05 | Asahi Kasei Kogyo Kabushiki Kaisha | Uniform magnetic field generator |
FR2611975B1 (en) * | 1987-03-03 | 1995-02-17 | Commissariat Energie Atomique | PERMANENT MAGNET SYSTEM FOR AN INTENSE MAGNETIC FIELD |
JPS63241905A (en) * | 1987-03-27 | 1988-10-07 | Sumitomo Special Metals Co Ltd | Magnetic field generating equipment |
US5063934A (en) * | 1987-10-07 | 1991-11-12 | Advanced Techtronics, Inc. | Permanent magnet arrangement |
US4943774A (en) * | 1989-06-01 | 1990-07-24 | General Atomics | Magnetic field control apparatus |
US5003276A (en) * | 1989-08-11 | 1991-03-26 | General Atomics | Method of site shimming on permanent magnets |
-
1990
- 1990-07-06 JP JP2179761A patent/JPH03131234A/en active Granted
- 1990-07-09 US US07550081 patent/US5229723B1/en not_active Expired - Lifetime
- 1990-07-09 SG SG1996005246A patent/SG118058A1/en unknown
- 1990-07-09 EP EP19900307445 patent/EP0407227A3/en not_active Ceased
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1999033397A1 (en) * | 1996-08-26 | 1999-07-08 | Sumitomo Special Metals Co., Ltd. | Mri magnetic field generator |
US6275128B1 (en) | 1997-12-26 | 2001-08-14 | Sumitomo Special Metals Co., Ltd. | MRI magnetic field generator |
Also Published As
Publication number | Publication date |
---|---|
US5229723A (en) | 1993-07-20 |
EP0407227A3 (en) | 1991-08-07 |
JPH0587962B2 (en) | 1993-12-20 |
US5229723B1 (en) | 2000-01-04 |
EP0407227A2 (en) | 1991-01-09 |
SG118058A1 (en) | 2006-01-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH03131234A (en) | Equipment for generating magnetic field for mri | |
EP0262880B1 (en) | Magnetic field generating device for nmr-ct | |
US4672346A (en) | Magnetic field generating device for NMR-CT | |
JP2839114B2 (en) | Permanent magnet for nuclear magnetic resonance imaging equipment | |
US4994777A (en) | Enhanced magnetic field within enclosed cylindrical cavity | |
US6275128B1 (en) | MRI magnetic field generator | |
JP3150248B2 (en) | Magnetic field generator for MRI | |
JP2764458B2 (en) | Magnetic field generator for MRI | |
JPH0541530Y2 (en) | ||
JP2726857B2 (en) | Magnetic field generator for MRI | |
CN113009394B (en) | Static magnetic field generating device | |
JP3056883B2 (en) | Magnetic field generator for MRI | |
JPH1097917A (en) | Superconductor magnet device | |
JPH0563085B2 (en) | ||
JP2596836B2 (en) | Magnetic field generator | |
JP3073933B2 (en) | Magnetic field generator for MRI | |
JPH01283905A (en) | Method for deviating uniform magnetic field for mri apparatus and magnetostatic field generating apparatus using the method | |
JP2520843Y2 (en) | Magnetic field generator | |
JPH03209803A (en) | Magnetic field generating device for mri | |
JPH0287505A (en) | Magnetic field generating equipment for mri use | |
JP4338166B2 (en) | Magnetic field generator for MRI | |
JPH0394733A (en) | Magnetic field generator for mri | |
JPH06151160A (en) | Magnetic field generating device for mri | |
JPH0314012Y2 (en) | ||
JPH07194572A (en) | Magnetic field generating device for magnetic resonance imaging device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
S533 | Written request for registration of change of name |
Free format text: JAPANESE INTERMEDIATE CODE: R313533 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313111 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101220 Year of fee payment: 17 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
EXPY | Cancellation because of completion of term | ||
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20101220 Year of fee payment: 17 |