JPH01163919A - Manufacture of oxide superconductive formation - Google Patents
Manufacture of oxide superconductive formationInfo
- Publication number
- JPH01163919A JPH01163919A JP62323537A JP32353787A JPH01163919A JP H01163919 A JPH01163919 A JP H01163919A JP 62323537 A JP62323537 A JP 62323537A JP 32353787 A JP32353787 A JP 32353787A JP H01163919 A JPH01163919 A JP H01163919A
- Authority
- JP
- Japan
- Prior art keywords
- powder
- specific
- oxide
- base body
- top surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004519 manufacturing process Methods 0.000 title claims description 5
- 230000015572 biosynthetic process Effects 0.000 title abstract 4
- 239000000843 powder Substances 0.000 claims abstract description 34
- 239000002887 superconductor Substances 0.000 claims abstract description 23
- 238000000034 method Methods 0.000 claims description 13
- 239000002994 raw material Substances 0.000 claims description 13
- 238000010438 heat treatment Methods 0.000 claims description 9
- 239000002243 precursor Substances 0.000 claims description 8
- 239000000758 substrate Substances 0.000 claims description 7
- 239000000463 material Substances 0.000 abstract description 6
- 238000003825 pressing Methods 0.000 abstract description 3
- 238000003860 storage Methods 0.000 abstract description 2
- 239000012159 carrier gas Substances 0.000 abstract 1
- 230000001105 regulatory effect Effects 0.000 abstract 1
- 239000000126 substance Substances 0.000 abstract 1
- 239000013078 crystal Substances 0.000 description 7
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 5
- 238000010586 diagram Methods 0.000 description 5
- 239000007788 liquid Substances 0.000 description 4
- 229910001220 stainless steel Inorganic materials 0.000 description 4
- 239000011230 binding agent Substances 0.000 description 3
- 239000011248 coating agent Substances 0.000 description 3
- 238000000576 coating method Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000012733 comparative method Methods 0.000 description 2
- 238000007796 conventional method Methods 0.000 description 2
- 230000007423 decrease Effects 0.000 description 2
- 239000002184 metal Substances 0.000 description 2
- 229910052751 metal Inorganic materials 0.000 description 2
- 238000000465 moulding Methods 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 150000004703 alkoxides Chemical class 0.000 description 1
- 229910045601 alloy Inorganic materials 0.000 description 1
- 239000000956 alloy Substances 0.000 description 1
- 150000004649 carbonic acid derivatives Chemical class 0.000 description 1
- 150000003841 chloride salts Chemical class 0.000 description 1
- 239000000470 constituent Substances 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 229910052802 copper Inorganic materials 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000001125 extrusion Methods 0.000 description 1
- 239000007789 gas Substances 0.000 description 1
- 150000002484 inorganic compounds Chemical class 0.000 description 1
- 229910010272 inorganic material Inorganic materials 0.000 description 1
- 239000007769 metal material Substances 0.000 description 1
- 150000002739 metals Chemical class 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 150000002823 nitrates Chemical class 0.000 description 1
- 150000002894 organic compounds Chemical class 0.000 description 1
- 238000003672 processing method Methods 0.000 description 1
- 229910052761 rare earth metal Inorganic materials 0.000 description 1
- 150000003839 salts Chemical class 0.000 description 1
- 229910052706 scandium Inorganic materials 0.000 description 1
- 229910052727 yttrium Inorganic materials 0.000 description 1
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E40/00—Technologies for an efficient electrical power generation, transmission or distribution
- Y02E40/60—Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment
Landscapes
- Superconductor Devices And Manufacturing Methods Thereof (AREA)
- Superconductors And Manufacturing Methods Therefor (AREA)
Abstract
Description
【発明の詳細な説明】
〔産業上の利用分野〕
本発明は電カケープル、マグネット、電力貯蔵リンク又
は磁気シールド等に用いられる酸化物超電導成形体の製
造方法に関する。DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing an oxide superconducting molded body used for power cables, magnets, power storage links, magnetic shields, etc.
近年、(Lnl−XSrX)Cu04、(Ln、−、B
” +1) 2 Cu O4、LnBa*Cu307、
L n B a t−xS r x Cu s Oy等
(但し、LnはY、Sc又は希土類元素)の層状ペロプ
スカイト型構造の酸化物超電導体が見出されている。In recent years, (Lnl-XSrX)Cu04, (Ln,-,B
” +1) 2 Cu O4, LnBa*Cu307,
Oxide superconductors with a layered perovskite structure, such as LnBat-xSrxCusOy (wherein Ln is Y, Sc, or a rare earth element), have been found.
これらの酸化物超電導体は、液体N2温度以上で超電導
となるため従来の液体He温度で超電導を示す金属超電
導体に較べて格段に経済的であり、各分野での利用が検
討されている。These oxide superconductors are much more economical than conventional metal superconductors which exhibit superconductivity at liquid He temperatures because they become superconducting above the liquid N2 temperature, and their use in various fields is being considered.
しかしながら上記の酸化物超電導体は脆いため金属材料
のように塑性加工ができず、これらを線条体等に成形す
るには、例えば第4図に示すように酸化物超電導体粉末
を含有するペースト状物27をダイス25を通してステ
ンレス鋼線26の基体上に被覆し、これを150〜60
0℃に加熱してペースト状物27中のバインダー物質を
除去し、次いで0□気流中で950℃程度に加熱し徐冷
する方法、又は第5図に示したように酸化物超電導体粉
末24をダイス35に入れ上下からポンチ29で圧粉し
て成形し、上記と同様の加熱処理を施す方法等により行
われている。However, the above-mentioned oxide superconductors are brittle and cannot be plastically worked like metal materials, and in order to form them into a linear body, for example, a paste containing oxide superconductor powder is used as shown in Figure 4. The shaped material 27 is passed through the die 25 and coated on the base of the stainless steel wire 26, and this is coated with a
A method of heating to 0° C. to remove the binder material in the paste-like material 27, and then heating it to about 950° C. in a 0□ air current and slowly cooling it, or as shown in FIG. 5, the oxide superconductor powder 24 This is carried out by a method such as putting it into a die 35, pressing it into powder from the top and bottom with a punch 29, and then subjecting it to the same heat treatment as described above.
ところで酸化物超電導体は、臨界電流密度(以下Jcと
略記)等の特性に対して結晶異方性が強く、特定の結晶
方位を通電方向に合わせて成形することが極めて重要と
されている。Incidentally, oxide superconductors have strong crystal anisotropy with respect to properties such as critical current density (hereinafter abbreviated as Jc), and it is considered extremely important to mold the superconductor so that a specific crystal orientation matches the current direction.
しかしながら前記のような従来の成形方法によると粉体
は全方位に均等に配向して成形されるので得られた成形
体全体は結晶学的に無配向となり、このためJc値等で
高い値のものが得られないという問題があった。However, according to the conventional molding method as described above, the powder is molded with uniform orientation in all directions, so the entire molded product obtained is crystallographically unoriented, and therefore has a high Jc value etc. There was a problem of not being able to get things.
又従来の方法では、粉末はダイスによる圧粉成形、ペー
スト状にしたものは引抜加工、というように加工方法が
限定されてしまうという問題があり、更には曲面状の基
体に超電導体膜を成形する適当な方法がなく実用上種々
支障を来たしていた。In addition, with conventional methods, there is a problem in that the processing methods are limited, such as compacting the powder with a die and drawing it into a paste form.Furthermore, it is difficult to form a superconductor film on a curved substrate. There was no suitable method to do this, which caused various practical problems.
〔問題点を解決するための手段〕
本発明はかかる状況に鑑みなされたもので、その目的と
するところは超電導特性に優れた酸化物超電導成形体を
製造する方法を提供することにある。[Means for Solving the Problems] The present invention was made in view of the above situation, and its purpose is to provide a method for manufacturing an oxide superconducting molded body having excellent superconducting properties.
即ち本発明は酸化物超電導体又はその前駆物質の粉末又
はこれらを原料として調製したペースト状物をダイス内
又は基体上に圧力をかけて擦り合わせながら供給して、
所望の形状に成形したのち、これを所定温度に加熱する
ことを特徴とするものである。That is, the present invention supplies a powder of an oxide superconductor or its precursor, or a paste prepared using these as raw materials, into a die or onto a substrate while rubbing them together under pressure.
It is characterized in that it is molded into a desired shape and then heated to a predetermined temperature.
本発明において、原料にはYBazCu30gのような
酸化物超電導体又はその前駆物質が用いられるが、後者
の前駆物質には上記超電導体を構成する元素の酸化物、
炭酸塩、塩化物、硝酸塩等の無機化合物、アルコキシド
や錯塩等の有機化合物、又は構成元素の金属やその合金
等が、更には上記の前駆物質を所定量配合し仮焼成して
酸化物の混合体や超電導体酸化物となしこれを粉末に加
工したものなども用いることもできる。In the present invention, an oxide superconductor such as 30 g of YBazCu or its precursor is used as a raw material, and the latter precursor includes oxides of elements constituting the superconductor,
Inorganic compounds such as carbonates, chlorides, and nitrates, organic compounds such as alkoxides and complex salts, or constituent metals and alloys thereof, as well as predetermined amounts of the above precursors are blended and calcined to form oxides. It is also possible to use a superconductor oxide or a superconductor oxide processed into powder.
本発明において成形に際し回転フィーダーの先端面から
原料の粉末等を供給しつつ、上記先端面を基体等に押し
つけて成形するようにすると、原料を圧力下で容易に擦
り合わせることができるので、この回転フィーダーを用
いる方法は超電導体を曲面状の基体に成形するのに好都
合である。In the present invention, when molding is performed by supplying raw material powder etc. from the tip surface of the rotary feeder and pressing the tip surface against the base etc., the raw materials can be easily rubbed together under pressure. A method using a rotating feeder is convenient for forming a superconductor into a curved substrate.
本発明においては酸化物超電導体又はその前駆物質の粉
末又はこれらを原料として調製したペースト状物を圧力
をかけて擦り合わせながら供給し、成形するので上記酸
化物超電導体は結晶方位が特定の向きに配列されて成形
される。In the present invention, powders of oxide superconductors or their precursors, or pastes prepared using them as raw materials, are fed and molded while being rubbed together under pressure, so that the oxide superconductors have crystal orientations in a specific direction. are arranged and molded.
又圧力をかけて擦り合わせるので原料粉末が更に微細化
し且つ粉末と基体の密着性が向上する。Furthermore, since the powder is rubbed together under pressure, the raw material powder is further refined and the adhesion between the powder and the substrate is improved.
原料粉末が微細になる程、個々の粉末に占める結晶粒数
が減少し、又粉末形状も鱗片状等の球状以外の形状のも
のが増加するので、Jc等の超電導特性の向上化が一層
顕著にあられれるようになる。As the raw material powder becomes finer, the number of crystal grains in each powder decreases, and the powder shape also increases in shapes other than spherical, such as scaly shapes, so the improvement in superconducting properties such as Jc becomes even more remarkable. You will be able to have a rainy day.
以下に本発明を実施例により詳細に説明する。 The present invention will be explained in detail below using examples.
実施例1
第1図は本発明の詳細な説明図である。同図において、
1は回転フィーダーである。Example 1 FIG. 1 is a detailed explanatory diagram of the present invention. In the same figure,
1 is a rotating feeder.
回転フィーダー1の先端面2に直径1ma+の原料供給
孔3が20個設けられており、この供給孔3から平均粒
径5nのY + B a z Cu x Oqの仮焼粉
4をOtガスにエチルアルコールガスを10容量%含有
させたキャリアガスにより、500(実施例1)又は2
.500rpm (実施例2)で回転する内径50mm
のダイス5内に、200kg/dの圧力をかけて圧入し
て、50IIIIφX20m’の圧粉成形体9となし、
次いでこの圧粉成形体をO!気流中で950°C6H加
熱したのち、300℃まで2“C/ll1nの速度で冷
却して酸化物超電導成形体を製造した。Twenty raw material supply holes 3 with a diameter of 1 ma+ are provided on the tip surface 2 of the rotary feeder 1, and from these supply holes 3, calcined powder 4 of Y + B az Cu x Oq with an average particle size of 5 n is supplied to Ot gas. 500 (Example 1) or 2
.. Inner diameter 50mm rotating at 500rpm (Example 2)
Press fit into the die 5 of 200 kg/d to form a powder compact 9 of 50IIIφX20m',
Next, this compacted powder compact is O! After heating at 950°C for 6 hours in an air stream, the mixture was cooled to 300°C at a rate of 2"C/ll1n to produce an oxide superconducting molded body.
比較例1
ダイス5を回転させない他は実施例1と同じ方法により
同様の酸化物超電導成形体を製造した。Comparative Example 1 A similar oxide superconducting molded body was produced by the same method as in Example 1 except that the die 5 was not rotated.
斯くの如くして得た実施例及び比較例で製造した酸化物
超電導成形体について臨界温度(以下TCと略記)及び
液体窒素中(77K )でのJcを測定した。得られた
結果を第1表に示した。The critical temperature (hereinafter abbreviated as TC) and Jc in liquid nitrogen (77K) were measured for the oxide superconducting molded bodies produced in Examples and Comparative Examples thus obtained. The results obtained are shown in Table 1.
第 1 表
* T−テスラ
第1表より明らかなように本発明方法品(実施例1.2
)はダイスを回転させたため、粉末の結晶配向性が向上
し、比較方法品(比較例1)に較べてTC,Jcとも高
い値を示している。特に本発明方法品は高磁場中でのJ
、の低下が小さく、この傾向はダイスの回転が速いもの
(実施例2)程大きくなっている。Table 1 * T-Tesla As is clear from Table 1, the method of the present invention (Example 1.2
), because the die was rotated, the crystal orientation of the powder was improved, and both TC and Jc showed higher values than the comparative method product (Comparative Example 1). In particular, the method of the present invention provides J
The decrease in , is small, and this tendency becomes larger as the die rotates faster (Example 2).
実施例3
第2図は本発明の他の実施例を示す説明図である。同図
において6は基体のNiメツキステンレス鋼線である。Embodiment 3 FIG. 2 is an explanatory diagram showing another embodiment of the present invention. In the same figure, 6 is a Ni-plated stainless steel wire of the base.
回転フィーダー11はその先端面12に直径0.5閣の
原料供給孔13がIIII+1間隔で直線状に設けられ
ており、このフィーダー11を1,0OOrp11で回
転させながら上記供給孔13から平均粒径0.8μのY
、Ba。The rotary feeder 11 has raw material supply holes 13 with a diameter of 0.5 mm linearly provided on its tip surface 12 at intervals of III+1, and while rotating this feeder 11 at 1,00 Orp11, the average particle diameter is Y of 0.8μ
, Ba.
Cu、O,の仮焼粉をを機バインダーに懸濁させたペー
スト状物7を上記フィーダー11の軸方向に対して直角
に配置されて10rpmで回転しながら1m/sinの
速度で走行する直径1■のNiメツキステンレス鋼線6
上に2 kg/cdの圧力をかけて0.1鶴の厚さに圧
着被覆させたのち、この被覆体10を大気中で150〜
600℃IH加熱してバインダーを除去し、次いで0.
気流中で950℃6H加熱したのち、300°Cまで2
°C/minの速度で冷却して酸化@lJMi電導線材
となした。A paste 7 made by suspending calcined powder of Cu, O, in a machine binder is placed perpendicular to the axial direction of the feeder 11 and rotates at 10 rpm while traveling at a speed of 1 m/sin. 1 ■ Ni-plated stainless steel wire 6
A pressure of 2 kg/cd was applied to the top to form a crimped coating to a thickness of 0.1 mm, and then this coating 10 was heated in the atmosphere at
The binder was removed by IH heating at 600°C, then 0.
After heating to 950°C for 6 hours in an air stream, heat to 300°C for 2 hours.
It was cooled at a rate of °C/min to form an oxidized @lJMi conductive wire.
比較例2
第4図に示した従来の押出し法により実施例3で用いた
と同じペースト状物を同一のNiメツキステンレス鋼線
上に被覆させた他は実施例3と同じ方法により酸化物超
電導線材を製造した。Comparative Example 2 An oxide superconducting wire was produced in the same manner as in Example 3, except that the same paste used in Example 3 was coated on the same Ni-plated stainless steel wire by the conventional extrusion method shown in FIG. Manufactured.
斯くの如くして製造された各々の酸化物超電導線材につ
いて、T、及び液体窒素中(77K)でのJ、を測定し
た。結果は第2表に示した。T and J in liquid nitrogen (77K) were measured for each of the oxide superconducting wires produced in this manner. The results are shown in Table 2.
第 2 表
* T−テスラ
第2表より明らかなように本発明方法品(実施例3)は
、比較方法品(比較例2)に較べてTc、J、とも高い
値を示しており、特に高磁場中でのJ、の低下が小さい
。Table 2 * T-Tesla As is clear from Table 2, the product manufactured using the method of the present invention (Example 3) shows higher values for both Tc and J than the product manufactured using the comparative method (Comparative Example 2), and especially The drop in J is small in a high magnetic field.
実施例4
第3図は本発明の他の実施例説明図である。同図におい
て8は曲面状の基体である。Embodiment 4 FIG. 3 is an explanatory diagram of another embodiment of the present invention. In the figure, 8 is a curved base body.
回転フィーダー1の先端面2に設けられた図示していな
い原料供給孔からY+Batcusotの平均粒径0.
8−の仮焼粉を供給しながら上記フィーダー1を曲面状
の基体8上に所定の圧力をかけて押しつけつつ上記基体
8上を移動させて上記仮焼粉を圧着被覆した。上記仮焼
粉4は結晶配向性の高い状態で圧着被覆されており、こ
の圧着被覆体20に所定の加熱処理を施したところ、実
施例1と同程度の高いTc及びJc値が得られた。The average particle size of Y+Batcusot is 0.0000000000000 from a raw material supply hole (not shown) provided on the tip surface 2 of the rotary feeder 1.
While supplying the calcined powder of No. 8, the feeder 1 was moved over the curved substrate 8 while applying a predetermined pressure to the curved substrate 8 to cover it with the calcined powder. The above-mentioned calcined powder 4 was pressure-coated with high crystal orientation, and when this pressure-bonded coating 20 was subjected to a predetermined heat treatment, high Tc and Jc values comparable to those of Example 1 were obtained. .
以上述べたように本発明によれば、酸化物超電導体又は
その前駆物質等の粉末が高い結晶配向性をもって成形さ
れるので、これを所定温度に加熱することによりJ6等
の特性に優れた酸化物超電導成形体が得られ、工業上顕
著な効果を奏する。As described above, according to the present invention, the powder of the oxide superconductor or its precursor is molded with high crystal orientation, and by heating it to a predetermined temperature, the powder can be oxidized to have excellent characteristics such as J6. A superconducting molded body is obtained, which has remarkable industrial effects.
第1〜3図は本発明方法の実施例説明図、第4゜5図は
従来方法の説明図である。
1.11・・・回転フィーダー、 2.12・・・先
端面、3.13・・・原料供給孔、 5・・・ダイス、
9・・・圧粉体、 10.20・・・圧着被覆体。1 to 3 are explanatory diagrams of an embodiment of the method of the present invention, and FIGS. 4-5 are explanatory diagrams of a conventional method. 1.11... Rotating feeder, 2.12... Tip surface, 3.13... Raw material supply hole, 5... Dice,
9...Powder compact, 10.20...Crimp covering body.
Claims (2)
らを原料として調整したペースト状物をダイス内又は基
体上に圧力をかけて擦り合わせながら供給して所望の形
状に成形したのち、これを所定温度に加熱することを特
徴とする酸化物超電導成形体の製造方法。(1) Powder of an oxide superconductor or its precursor, or a paste prepared using these as raw materials, is fed into a die or onto a substrate while being rubbed together under pressure to form it into a desired shape. A method for producing an oxide superconducting molded body, which comprises heating to a predetermined temperature.
らを原料として調整したペースト状物の供給及び成形を
回転フィーダーを用いて行うことを特徴とする特許請求
の範囲第1項記載の酸化物超電導成形体の製造方法。(2) The oxide according to claim 1, characterized in that a rotary feeder is used to feed and mold a powder of an oxide superconductor or its precursor, or a paste prepared using these as raw materials. A method for manufacturing a superconducting molded body.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62323537A JP2593497B2 (en) | 1987-12-21 | 1987-12-21 | Method for producing oxide superconducting molded body |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP62323537A JP2593497B2 (en) | 1987-12-21 | 1987-12-21 | Method for producing oxide superconducting molded body |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH01163919A true JPH01163919A (en) | 1989-06-28 |
JP2593497B2 JP2593497B2 (en) | 1997-03-26 |
Family
ID=18155809
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP62323537A Expired - Lifetime JP2593497B2 (en) | 1987-12-21 | 1987-12-21 | Method for producing oxide superconducting molded body |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2593497B2 (en) |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6465721A (en) * | 1987-09-03 | 1989-03-13 | Sanyo Electric Co | Method for making wire of superconductor |
-
1987
- 1987-12-21 JP JP62323537A patent/JP2593497B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS6465721A (en) * | 1987-09-03 | 1989-03-13 | Sanyo Electric Co | Method for making wire of superconductor |
Also Published As
Publication number | Publication date |
---|---|
JP2593497B2 (en) | 1997-03-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH06500426A (en) | Method for forming high temperature oxide superconductor tape | |
US5284822A (en) | Oxide superconductor and process for producing the same | |
JPH01163919A (en) | Manufacture of oxide superconductive formation | |
JPH03159902A (en) | Multicomponent oxide for production of oxide superconductor and production of oxide superconductor | |
JPS63308810A (en) | Superconductor which can be taken up by winding and manufacture of the same | |
JP3034255B2 (en) | Superconductor, superconductor wire, and method of manufacturing superconducting wire | |
CN1032879A (en) | Make the method for superconductive products | |
US5429791A (en) | Silver-high temperature superconductor composite material manufactured based on powder method, and manufacturing method therefor | |
JPH02183918A (en) | Manufacture of oxide superconductor | |
JPH02192401A (en) | Production of oxide superconductor and oxide superconducting wire | |
JP2556545B2 (en) | Method for manufacturing oxide superconducting wire | |
JPH01164799A (en) | Production of superconducting molded body | |
JPH04342911A (en) | Manufacture of tape-like ceramic superconductive conductor | |
JP3314102B2 (en) | Manufacturing method of oxide superconductor | |
JP2971504B2 (en) | Method for producing Bi-based oxide superconductor | |
JPH01225013A (en) | Manufacture of oxide superconductive compact | |
JP2555089B2 (en) | Method for manufacturing superconducting conductor | |
JPH11322341A (en) | Production of oxide superconductor material and oxide superconductor material | |
JPH09235120A (en) | Production of bismuth-based oxide superconductor | |
JPH01224208A (en) | Method for synthesizing oxide superconductor precursor | |
JPH01281613A (en) | Manufacture of oxide superconducting wire material | |
JPH03153560A (en) | Production of oxide superconductor | |
JPH01198462A (en) | Manufacture of formed body of oxide superconductor | |
JPH03201320A (en) | Manufacture of bismuth oxide superconductor | |
JPH01313324A (en) | Production of superconducting film |