JPH01162874A - Production of water absorbable composite - Google Patents

Production of water absorbable composite

Info

Publication number
JPH01162874A
JPH01162874A JP62316031A JP31603187A JPH01162874A JP H01162874 A JPH01162874 A JP H01162874A JP 62316031 A JP62316031 A JP 62316031A JP 31603187 A JP31603187 A JP 31603187A JP H01162874 A JPH01162874 A JP H01162874A
Authority
JP
Japan
Prior art keywords
water
layer
low
synthetic resin
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62316031A
Other languages
Japanese (ja)
Inventor
Katsuji Ohira
大平 克次
Toyoaki Tanaka
豊秋 田中
Masamichi Nakajima
中嶋 正道
Ryosuke Kamei
亀井 良祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP62316031A priority Critical patent/JPH01162874A/en
Publication of JPH01162874A publication Critical patent/JPH01162874A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Landscapes

  • Absorbent Articles And Supports Therefor (AREA)
  • Laminated Bodies (AREA)
  • Sealing Material Composition (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Chemical Or Physical Treatment Of Fibers (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Insulated Conductors (AREA)

Abstract

PURPOSE: To produce an excellent water-absorbing complex having high strength by fusing together a water-soluble resin powder on the outer surface of a low-melting layer of a tape-like laminate or the like comprising high-melting and low-melting synthetic resin layers and then by subjecting the water-soluble resin powder to crosslinking treatment with a foaming crosslinking agent. CONSTITUTION: This water-absorbing complex is produced by the following steps: (1) the formation of a tape-like laminate (or its split fiber or conjugated fiber) where the laminate comprises a high-melting synthetic resin layer 1 and a low-melting synthetic resin layer 2 and the low-melting layer is disclosed from the surface; (2) heating the laminate up to the vicinity of the melting point of the low-melting resin and fusing together a water-soluble resin (e.g. polyacrylic acid or its copolymer or the like) on the outer surface of the low-melting layer discolored from the surface; (3) making the water-soluble resin contact with a foaming aqueous solution comprising a crosslinking agent (e.g. sorbitol polyglycidyl ether or the like) and a foaming agent such as a surfactant and applying crosslinking treatment. The high-melting synthetic resin is e.g. a crystalline polypropylene or the like. The low-melting synthetic resin is e.g. an unsaturated carboxylic acid-grafted modified polyolefin or the like. The laminate may have three layers e.g. consisting of the layer 2, the layer 1 and the layer 2 as the tape-like laminate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主として熱可塑性合成樹脂から構成される吸水
性複合体の製造方法に関し、さらに用途面からみれば、
特に電気通信ケーブル、光フアイバー通信ケーブル等の
防水被覆材として、また農園芸用保水シートや土木建築
用の各種止水材、諸工業用脱水材、衛生材、医療材など
の素材として用いられる吸水性複合体の製造方法に関す
る。
[Detailed Description of the Invention] [Industrial Field of Application] The present invention relates to a method for producing a water-absorbing composite mainly composed of a thermoplastic synthetic resin, and from a usage perspective,
In particular, it is used as a waterproof covering material for telecommunication cables, optical fiber communication cables, etc., as well as water-retaining sheets for agriculture and horticulture, various water-stopping materials for civil engineering and construction, water-absorbing materials for various industries, sanitary materials, medical materials, etc. The present invention relates to a method for producing a sexual complex.

〔従来の技術〕[Conventional technology]

吸水性または吸湿性の材料を利用した防水性被覆材はこ
れまでにも多くの分野で用いられている。
Waterproof coverings using water-absorbing or hygroscopic materials have been used in many fields.

たとえば、電気通信ケーブルや光フアイバー通信ケーブ
ル等のいわゆる伝導ケーブルでは、外部からの水分や湿
気の浸入は絶対に許されないため、ケーブル相互の接続
部分には特に綿密な防水被覆が施されている。
For example, in so-called conductive cables such as telecommunication cables and optical fiber communication cables, ingress of water or moisture from the outside is absolutely not allowed, so the joints between the cables are particularly carefully coated with waterproof coatings.

この防水被覆は、接続部分に施した防水性被覆材の外表
面にさらに吸水材および吸湿材を巻きつけ、その上にゴ
ムなどの防水材を被覆したものである。この最外表面の
防水材を通過して被覆層内に浸入した水分等は、上記の
吸水材および吸湿材に吸収されて、ケーブルまで達する
ことがないようにしである。
This waterproof coating is obtained by further wrapping a water-absorbing material and a moisture-absorbing material around the outer surface of the waterproof coating material applied to the connection part, and coating the waterproof material such as rubber on top of the water-absorbing material. Moisture or the like that has passed through the waterproof material on the outermost surface and entered the coating layer is absorbed by the water-absorbing material and the moisture-absorbing material, and is prevented from reaching the cable.

ここに用いられる吸水材、吸湿材としては、ぼりエチレ
ングリコール含浸のポリプロピレン製割繊維、ジエチレ
ングリコール含浸の紙などがある。
Examples of water-absorbing materials and moisture-absorbing materials used here include split ethylene glycol-impregnated polypropylene fibers and diethylene glycol-impregnated paper.

しかしながら、これらの吸水材、吸湿材は湿潤性を有す
ることから取扱いが煩雑となり、また流体を構成要素と
しているために、被覆の再現性が顧る困難であるという
問題点があった。
However, since these water-absorbing materials and moisture-absorbing materials have wettability, they are complicated to handle, and since they contain fluid, there are problems in that the reproducibility of coating is difficult.

一方、単層のポリオレフィン製解繊糸の表面を溶融状態
にして、それにポリアクリル酸ソーダ架橋体やアクリル
酸−酢酸ビニル共重合体などの高分子吸水剤の微粉末を
振シかけ、融着せしめた吸水材や吸湿材の使用が試みら
れている。
On the other hand, the surface of a single-layer polyolefin fibrillated yarn is brought to a molten state, and fine powder of a polymeric water absorbing agent such as crosslinked polysodium acrylate or acrylic acid-vinyl acetate copolymer is sprinkled onto it and fused. Attempts have been made to use dampened water-absorbing materials and moisture-absorbing materials.

しかし、この吸水材および吸湿材は、延伸加工処理した
繊維が溶融により延伸効果を失ない、ケーブル施設作業
時の引張などの応力に耐えず、破損し易いはかシか、高
分子吸水剤の融着量にも問題を有している。
However, these water-absorbing materials and moisture-absorbing materials are either fragile or polymeric water-absorbing materials, which do not lose their stretching effect due to melting of the stretched fibers, cannot withstand stress such as tension during cable facility work, and are easily damaged. There is also a problem with the amount of fusion.

これらの諸問題を解決するための手段として、ポリオレ
フィンの押出時に粉末状の高分子吸水剤を樹脂に添加混
練し、押出成形されたフィルムに延伸処理後に割繊維処
理を施して防水性を付与することが提案されたが、一般
的に高分子吸水剤は熱に弱く、ポリオレフィンの溶融温
度以下であっても押出成形までの長い時間そのままの状
態にあると、吸水能力の低下をきだすのみならず、押出
成形されたのちの高分子吸水剤の殆どが樹脂中に埋没し
、表面に露出する量はきわめて僅かとなるので、吸水効
果を充分に発揮し得ない難点がある。
As a means to solve these problems, a powdered polymeric water absorbing agent is added and kneaded into the resin during polyolefin extrusion, and the extruded film is subjected to split fiber treatment after stretching to impart waterproof properties. However, in general, polymeric water absorbing agents are sensitive to heat, and if left in that state for a long time before extrusion molding, even if the temperature is below the melting temperature of polyolefin, the water absorbing ability will only decrease. First, most of the polymeric water-absorbing agent after extrusion molding is buried in the resin, and only a very small amount is exposed on the surface, so there is a drawback that the water-absorbing effect cannot be fully exerted.

また、繊維質、たとえば多層のポリオレフィン製解繊糸
に水溶性樹脂を融着し、架橋剤の水溶液と接触させてか
ら乾燥を行なう吸水材も試みられているが、その乾燥に
は高熱が必要であり、しかも長時間を要する難点がある
In addition, attempts have been made to create water-absorbing materials in which a water-soluble resin is fused to a fibrous material, such as a multilayered polyolefin fibrillated yarn, which is brought into contact with an aqueous solution of a crosslinking agent and then dried, but this requires high heat to dry. However, there is a drawback that it requires a long time.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、繊維質またはテープ状積層体に水溶性
樹脂を融着しこれを架橋処理する方法において、短時間
の低温乾燥が可能であり、製造も取扱いも容易で従来よ
υも高い吸水性能を有し、且つ良好な引張強度も有する
吸水性複合体を得るための製造方法を提供することにあ
る。
The purpose of the present invention is to provide a method for fusing a water-soluble resin to a fibrous or tape-like laminate and crosslinking it, which enables short-time low-temperature drying, is easy to manufacture and handle, and has a higher υ than conventional methods. It is an object of the present invention to provide a manufacturing method for obtaining a water-absorbing composite having water-absorbing performance and good tensile strength.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の吸水性複合体の製造方法は、高融点合成樹脂の
少なくとも一つの層と低融点合成樹脂の少なくとも一つ
の層とからなり、該低融点合成樹脂の層が少なくとも一
部の表面に露出しているテープ状積層体もしくはこれを
割裂して得られる解繊糸または複合繊維体で構成され、
且つ表面に露出せる低融点合成樹脂層の外表面に、水溶
性樹脂粉末が融着しているテープ状積層体もしくはこれ
を割裂して得られる解繊糸または複合繊維体の前記水溶
性樹脂に架橋剤と起泡剤と水を主成分とする水溶液を起
泡状態で接触させて、水溶性樹脂を架橋処理し、さらに
乾燥することを特徴とする。
The method for producing a water absorbent composite of the present invention comprises at least one layer of high melting point synthetic resin and at least one layer of low melting point synthetic resin, and the layer of low melting point synthetic resin is exposed on at least a part of the surface. It is composed of a tape-like laminate or a fibrillated yarn or a composite fiber obtained by splitting the tape-like laminate,
and a tape-like laminate in which a water-soluble resin powder is fused to the outer surface of a low-melting synthetic resin layer exposed on the surface, or a fibrillated yarn or a composite fiber obtained by splitting the tape-shaped laminate, or a composite fiber body of the water-soluble resin. The method is characterized in that a water-soluble resin is crosslinked by contacting an aqueous solution containing a crosslinking agent, a foaming agent, and water as main components in a foamed state, and then dried.

以下、本発明の製造方法を、さらに詳しく説明する。The manufacturing method of the present invention will be explained in more detail below.

本発明で吸水性複合体の基体となるものは、高融点合成
樹脂の少なくとも一つの層と低融点合成樹脂の少なくと
も一つの層とからなり、且つ低融点合成樹脂の層が少な
くとも一部の表面に露出しているテープ状積層体もしく
はこれを割裂して得られる解繊糸または複合繊維体であ
る。
In the present invention, the substrate of the water-absorbing composite consists of at least one layer of high melting point synthetic resin and at least one layer of low melting point synthetic resin, and the layer of low melting point synthetic resin covers at least a part of the surface. This is a tape-like laminate exposed to the laminate, or a fibrillated yarn or composite fiber obtained by splitting the laminate.

テープ状積層体は、高融点合成樹脂と低融点合成樹脂を
共押出ししてフィルム状積層体とするか、または高融点
合成樹脂と低融点合成樹脂とからラミネーション法によ
りフィルム状積層体を得、次いで、フィルム状積層体を
延伸したのち細幅(てスリットするか、または細幅にス
リットしたのち延伸して得られるテープ状のものであっ
て、この太さは500〜10.0007”=−#、特に
1.ooo〜4.000デニールのものが好ましい。
The tape-like laminate is obtained by coextruding a high-melting point synthetic resin and a low-melting point synthetic resin to form a film-like laminate, or by obtaining a film-like laminate from a high-melting point synthetic resin and a low-melting point synthetic resin by a lamination method, Next, the film-like laminate is stretched and then slit into a narrow width, or a tape-like product obtained by slitting the film-like laminate into a narrow width and then stretching it, the thickness of which is 500 to 10.0007" = - #, particularly preferably 1.ooo to 4.000 deniers.

また、解繊糸とはこのテープ状積層体をたとえばスプリ
ットロールにかけて割裂し、網状にしたりさらに完全に
繊維状にしたものを指し、その単糸幅は好ましくは0.
03〜0.2鳩、より好ましくは0.03〜0.11瓢
、最も好ましくは0.03〜0.07mの範囲にある。
Further, the fibrillated yarn refers to a tape-like laminate that is split by applying a split roll to make it into a net shape or a complete fiber shape, and the single yarn width is preferably 0.
It is in the range of 0.03 to 0.2 meters, more preferably 0.03 to 0.11 meters, most preferably 0.03 to 0.07 meters.

第2図はその一例を示すもので、高融点合成樹脂層1を
中間層として、その外側に低融点合成樹脂層2が位置し
ている。
FIG. 2 shows an example of this, in which a high melting point synthetic resin layer 1 is used as an intermediate layer, and a low melting point synthetic resin layer 2 is located on the outside thereof.

テープ状積層体および解繊糸の製造に用いられるフィル
ム状積層体の好ましい例としては、高融点台底樹脂層/
低融点合成樹脂層(以下、高/低と略称)、低/高/低
の3層績層体および低/高/低/高/低の5層積層体が
挙げられる。
Preferred examples of film-like laminates used for producing tape-like laminates and defibrated yarns include a high melting point base resin layer/
Examples include a low melting point synthetic resin layer (hereinafter abbreviated as high/low), a three-layer laminate of low/high/low, and a five-layer laminate of low/high/low/high/low.

次に、基体としての複合繊維体としては、高融点合成樹
脂成分と低融点合成樹脂成分とからなるサイド・パイ・
サイド型複合繊維を延伸したもの、および低融点合成樹
脂の鞘と高融点合成樹脂の芯とからなるシス・コア型複
合繊維を延伸したものが用いられる。複合繊維体の繊度
は単糸で10〜60デニールであることが好ましい。
Next, as a composite fiber body as a base material, a side pipe and
Used are drawn side-type composite fibers and drawn cis-core type composite fibers consisting of a low-melting point synthetic resin sheath and a high-melting point synthetic resin core. The fineness of the composite fiber body is preferably 10 to 60 deniers in single yarn form.

テープ状&層体、解繊糸および複合繊維体における層数
は特に制限されないが、高融点合成樹脂が内層を構成し
低融点合成樹脂が外層を構成するものが好ましい。高融
点合成樹脂と低融点合成樹脂の融点の差は大きいほど好
ましく、一般には10℃以上であることが好ましい。但
し、融点が鋭敏に現われる合成樹脂では融点の差は僅が
であってもよい。
The number of layers in the tape-shaped & layered body, defibrated yarn, and composite fiber body is not particularly limited, but it is preferable that the high melting point synthetic resin constitutes the inner layer and the low melting point synthetic resin constitutes the outer layer. The larger the difference in melting point between the high melting point synthetic resin and the low melting point synthetic resin, the more preferable it is, and generally it is preferably 10° C. or higher. However, in the case of synthetic resins whose melting points appear sharply, the difference in melting points may be small.

一般に、高融点合成樹脂は結晶性ポリプロピレン、高密
度ポリエチレン、ポリエステル、ナイロン6およびナイ
ロン66等の熱可塑性合成樹脂から選ばれる。
Generally, the high melting point synthetic resin is selected from crystalline polypropylene, high density polyethylene, polyester, thermoplastic synthetic resins such as nylon 6 and nylon 66.

また、低融点合成樹脂としては、使用する高融点合成樹
脂と良好な接合性を示す低融点熱可塑性樹脂が用いられ
る。その例としては、低密度ポリエチレン、直鎖状低密
度ポリエチレン、高密度ポリエチレンのようなポリオレ
フィン;エチレン−酢酸ビニル共重合体;マレイン酸、
フマル酸、イタコン酸、無水マレイン酸、無水イタコン
酸等の不飽和カルボン酸もしくはその無水物でグラフト
変性した低密度ポリエチレン、直鎖状低密度ポリエチレ
ン、高密度ポリエチレン、ポリプロピレン等のポリオレ
フィン(ER樹脂、特に、高密度ポリエチレンおよび直
鎖状低密度ポリエチレンのグラフト変性物が好1しく、
グラフト率は0.3〜0.36重量%が好ましい);エ
チレン−無水マレイン酸−メチルメタクリレート三元共
重合体(ET樹脂)、エチレン−アクリル酸共重合体(
FAA樹脂)、エチレン−エチルアクリレート共重合体
(EEA樹脂)のようなエチレン−アクリレ一トもしく
はメタクリレート共重合体;ならびにエチレン−メタク
リル酸共重合体をナトリウム、亜鉛等の金属で部分的に
中和した熱可塑性樹脂(すなわち、アイオノマー樹脂)
があげられる。
Further, as the low melting point synthetic resin, a low melting point thermoplastic resin that exhibits good bonding properties with the high melting point synthetic resin used is used. Examples include polyolefins such as low density polyethylene, linear low density polyethylene, high density polyethylene; ethylene-vinyl acetate copolymers; maleic acid,
Polyolefins (ER resin, Particularly preferred are graft-modified products of high-density polyethylene and linear low-density polyethylene,
The grafting rate is preferably 0.3 to 0.36% by weight); ethylene-maleic anhydride-methyl methacrylate terpolymer (ET resin), ethylene-acrylic acid copolymer (
FAA resins), ethylene-acrylate or methacrylate copolymers such as ethylene-ethyl acrylate copolymers (EEA resins); and ethylene-methacrylic acid copolymers partially neutralized with metals such as sodium and zinc. thermoplastic resin (i.e., ionomer resin)
can be given.

これら低融点合成樹脂のうち、特にカルボニル基または
カルボキシル基を有する低融点熱可塑性樹脂の使用が好
ましい。このような低融点熱可塑性樹脂を使用すれば、
後述する水溶性樹脂全架橋処理する際に、架橋剤が水溶
性樹脂と反応すると共に、低融点合成樹脂中の上記官能
基とも反応して、水浴性樹脂の架橋処理物と低融点合成
樹脂の結合をより一層強固にし、架橋処理物の脱落を防
止する。
Among these low melting point synthetic resins, it is particularly preferable to use a low melting point thermoplastic resin having a carbonyl group or a carboxyl group. If such a low melting point thermoplastic resin is used,
When the water-soluble resin is completely cross-linked as described below, the cross-linking agent reacts with the water-soluble resin and also reacts with the above-mentioned functional groups in the low-melting point synthetic resin, so that the cross-linked product of the water bath resin and the low-melting point synthetic resin are combined. This makes the bond even stronger and prevents the crosslinked product from falling off.

高融点合成樹脂と低融点合成樹脂との好ましい組合せの
具体例は次のとおシである。
A specific example of a preferable combination of a high melting point synthetic resin and a low melting point synthetic resin is as follows.

結晶性ポリプロピレンと酸グラフト変性直鎖状低密度ポ
リエチレンとの組合せ、結晶性ぼりプロピレンと酸グラ
フト変性高密度ポリエチレンとの組合せ、結晶性ポリプ
ロピレンとエチレン−無水マレイン酸・メチルメタクリ
レート三元共重合体の組合せ、および結晶性ポリプロピ
レンとアイオノマー樹脂との組合せ。
Combinations of crystalline polypropylene and acid-grafted modified linear low-density polyethylene, combinations of crystalline propylene and acid-grafted modified high-density polyethylene, combinations of crystalline polypropylene and ethylene-maleic anhydride/methyl methacrylate terpolymer combinations, and combinations of crystalline polypropylene and ionomer resins.

本発明においては、まずテープ状積層体もしくはその解
繊糸または複合繊維体の表面に蕗出せる低融点合成樹脂
層の外表面に、水溶性樹脂粉末を融着させる。
In the present invention, water-soluble resin powder is first fused to the outer surface of the low-melting point synthetic resin layer that is formed on the surface of the tape-shaped laminate, its defibrated yarn, or composite fiber.

低融点合成樹脂層に水溶性樹脂粉末全融着せしめるには
、たとえばテープ状積層体もしくは解繊糸または複合繊
維体を低融点合成樹脂の融点近傍まで加熱し、加熱され
たテープ状積層体もしくは解繊糸または複合繊維体に水
溶性樹脂粉末全接触せしめて、該水溶性樹脂粉末を表面
に露出せる低融点合成樹脂層の外表面に融着させる方法
;テープ状積層体もしくは解繊糸または複合繊維体を低
融点合成樹脂の融点近傍まで加熱し、加熱されたテープ
状積層体もしくは解繊糸または複化繊維体に帯電コーテ
ング機を用いて水溶性樹脂粉末を表面に露出せる低融点
合成樹脂層に融着する方法;テープ状積層体もしくは解
繊糸または複合繊維体に帯電コーテング機を用いて水溶
性樹脂粉末を付着させた後、該テープ状積層体もしくは
解繊糸または複合繊維体を表面に露出せる低融点合成樹
脂の融点近傍まで加熱し、水溶性樹脂粉末を表面に露出
せる低融点合成樹脂層の外表面に融着させる方法;等が
あげられる。
In order to completely fuse the water-soluble resin powder to the low melting point synthetic resin layer, for example, the tape-like laminate, defibrated yarn, or composite fiber body is heated to near the melting point of the low-melting point synthetic resin, and the heated tape-like laminate or A method in which the water-soluble resin powder is fully brought into contact with the defibrated yarn or the composite fiber body, and the water-soluble resin powder is fused to the outer surface of the exposed low-melting point synthetic resin layer; Low-melting point synthesis involves heating the composite fiber body to near the melting point of the low-melting point synthetic resin, and exposing the water-soluble resin powder to the surface of the heated tape-shaped laminate, defibrated yarn, or composite fiber body using a charged coating machine. Method of fusing to a resin layer: After adhering water-soluble resin powder to a tape-shaped laminate, defibrated yarn, or composite fiber body using a charging coating machine, the tape-shaped laminate, defibrated yarn, or composite fiber body Examples include a method in which the water-soluble resin powder is heated to near the melting point of the low-melting synthetic resin layer exposed on the surface, and the water-soluble resin powder is fused to the outer surface of the low-melting synthetic resin layer exposed on the surface.

本発明に用いられる水溶性樹脂粉末とは、カルボキシル
基、スルホン酸基またはそれらの塩等を有する水溶性高
分子の粉末であり、具体例としてはポリアクリル酸およ
びその共重合体、ポリアクリル酸塩、ポリアクリルアミ
ド部分加水分解物、ポリスチレンスルホン酸、ポリアク
リルアミドプロパンスルホン酸およびその共重合体等が
挙げられる。水溶性樹脂粉末の平均粒径は、テープ状積
層体、解繊糸、複合繊維体の外表面に露出している低融
点合成樹脂層をできるだけ稠密に被覆しうるよう小さい
ほど好ましい。一般にその平均粒径は10〜500μで
、好ましくは10〜300μ、より好ましくは10〜5
0μである。もし、平均粒径が500μを超えると、水
溶性樹脂が稠密な被覆を形成せず、また得られる吸水性
複合体の表面線が悪くなる。
The water-soluble resin powder used in the present invention is a water-soluble polymer powder having a carboxyl group, a sulfonic acid group, or a salt thereof, and specific examples include polyacrylic acid and its copolymer, polyacrylic acid Examples include salts, polyacrylamide partial hydrolysates, polystyrene sulfonic acids, polyacrylamide propane sulfonic acids, and copolymers thereof. The average particle diameter of the water-soluble resin powder is preferably as small as possible so that the low melting point synthetic resin layer exposed on the outer surface of the tape-shaped laminate, defibrated yarn, or composite fiber body can be covered as densely as possible. Generally, the average particle size is 10-500μ, preferably 10-300μ, more preferably 10-5
It is 0μ. If the average particle size exceeds 500μ, the water-soluble resin will not form a dense coating, and the surface lines of the resulting water-absorbing composite will be poor.

また、平均粒径が10μ未満の水溶性樹脂では、製造お
よび取扱いが困難で、価格も高い。
Furthermore, water-soluble resins with an average particle size of less than 10 μm are difficult to manufacture and handle, and are expensive.

水溶性樹脂の付着量または融着量は、未付着のテープ状
積層体、解繊糸もしくは複合繊維体の重量に対して10
〜60重量%であることが好ましい。その付着量または
融着量が10重量%未溝の場合は、充分な吸水性が得ら
れず、また60重量%を超えた場合は、表面肌が悪いげ
かシではなく、擦ると水溶性樹脂が脱落するという問題
がある。
The amount of water-soluble resin attached or fused is 10% of the weight of the unattached tape-like laminate, fibrillated yarn or composite fiber.
It is preferably 60% by weight. If the amount of adhesion or fusion is 10% by weight without grooves, sufficient water absorption will not be obtained, and if it exceeds 60% by weight, the surface texture will not be bad and will become water soluble when rubbed. There is a problem that the resin falls off.

、前述した如く、水溶性樹脂粉末を付着または融着せし
めるに際し、テープ状積層体、解繊糸もしくは複合繊維
体は低融点合成樹脂の融点近傍まで加熱されるが、他の
構成成分である高融点合成樹脂の方は加熱によっても大
きな変化を受けないので、テープ状積層体、解繊糸もし
く?′i複合繊維体は延伸による配向状態を失なうこと
なく良好逢引張強度をそのまま維持する。
As mentioned above, when attaching or fusing the water-soluble resin powder, the tape-like laminate, fibrillated yarn, or composite fiber body is heated to near the melting point of the low-melting synthetic resin, but The melting point of synthetic resins does not change significantly even when heated, so it can be used for tape-shaped laminates, defibrated yarns, etc. The composite fiber maintains good tensile strength without losing its orientation due to stretching.

テープ状積層体、解は糸もしくは複合繊維体に融着した
水溶性樹脂は、次の段階として主に架橋剤と起泡剤と水
からなる水溶液の泡と接触させることによって、架橋処
理される。
In the next step, the water-soluble resin fused to the tape-like laminate, fiber thread, or composite fiber is crosslinked by contacting it with foam from an aqueous solution mainly consisting of a crosslinking agent, a foaming agent, and water. .

本発明に用いられる架橋剤は、前記水溶性樹脂中のカル
ボキシル基、スルホン酸基またはそれらの塩と反応し得
るような官能基を2個以上有するものであり、且つ水溶
性を有するものであれは何んでも使用できる。
The crosslinking agent used in the present invention has two or more functional groups capable of reacting with the carboxyl group, sulfonic acid group, or a salt thereof in the water-soluble resin, and is water-soluble. can be used for anything.

このような架橋剤の代表例としては、ソルビトールポリ
グリシジルエーテル、ポリダリセロールボリグリシジル
エーテル、ジグリセロールポリグリシジルエーテル、グ
リセロールポリグリシジルエーテル、エチレングリコー
ル& りIJジノルエーテル、ぼりエチレングリコール
ノグリシノルエーテルなどのような多官能エポキシ化合
物が挙げられる。
Typical examples of such crosslinking agents include sorbitol polyglycidyl ether, polydarycerol polyglycidyl ether, diglycerol polyglycidyl ether, glycerol polyglycidyl ether, ethylene glycol & glycol dinor ether, and ethylene glycol noglycinole ether. Polyfunctional epoxy compounds such as

また、起泡剤としては水溶性を示すものが用いられる。In addition, as the foaming agent, a water-soluble foaming agent is used.

その代表例としては、脂肪族アルキルサルフェート、ア
ルキルアリールスルホネートなどのアニオン系界面活性
剤、ポリプロピレングリコールまたはプロピレンダリコ
ールの低級アルキル(炭素1〜4)またはフェニルエー
テル、アルキルフェノール系、−級または二級長鎖アル
コール・サルフェート、セルローズエーテル、アルコー
ルエーテル、脂肪族ジェタノールアミド系、などのノニ
オン系界面活性剤を挙げることができる。
Typical examples include anionic surfactants such as aliphatic alkyl sulfates and alkylaryl sulfonates, lower alkyl (1 to 4 carbon atoms) or phenyl ethers of polypropylene glycol or propylene dalicol, alkylphenol-based, -grade or secondary long chain Examples include nonionic surfactants such as alcohol sulfates, cellulose ethers, alcohol ethers, and aliphatic jetanolamide surfactants.

上記架橋剤と起泡剤は水溶性樹脂中のカルボキシル基、
スルホン酸基またはそれらの塩との反応を容易にし、か
つ架橋密度を均一にするために、後述するように水溶液
として用いられ、好ましくは希釈水溶液として用いられ
る。水溶液中の水と架橋剤と起泡剤の割合は、一般には
水100nfflt部に対して架橋剤が0.005〜2
重量部、起泡剤が0.1〜5重量部が好ましい。
The crosslinking agent and foaming agent mentioned above are carboxyl groups in the water-soluble resin,
In order to facilitate the reaction with a sulfonic acid group or a salt thereof and to make the crosslinking density uniform, it is used as an aqueous solution, preferably as a diluted aqueous solution, as described below. The ratio of water, crosslinking agent, and foaming agent in an aqueous solution is generally 0.005 to 2 parts of crosslinking agent to 100 nfflt parts of water.
The foaming agent is preferably 0.1 to 5 parts by weight.

上に述べた起泡剤、架橋剤は水溶液として用いられ、さ
らにこれら泡を形成することが必要である。架橋剤の使
用量は、前記融着した水溶性樹脂の重量に対して0.0
1〜2重量%であることが好ましい。その使用量が0.
01重量%未満では水溶性樹脂の架橋度が低く、充分な
吸水性能が得られずに水に溶解してしまう。また使用量
が2重量%より多い場合は、架橋度が高すぎて吸水能力
が不充分となる。
The foaming agents and crosslinking agents mentioned above are used in the form of aqueous solutions, and it is necessary to form these foams. The amount of crosslinking agent used is 0.0 based on the weight of the fused water-soluble resin.
It is preferably 1 to 2% by weight. The usage amount is 0.
If the amount is less than 0.01% by weight, the degree of crosslinking of the water-soluble resin will be low, and sufficient water absorption performance will not be obtained and it will dissolve in water. If the amount used is more than 2% by weight, the degree of crosslinking will be too high and the water absorption capacity will be insufficient.

また、起泡剤の使用量は前記融着した水溶性樹脂の重量
に対して0.25〜2重量%であることが好ましい。そ
の使用量が0.255重量%満では発泡が不安定となり
、架橋密度が不均一となる。また使用量が2重量%を超
えた場合は発泡しすぎて、水溶性樹脂に対する架橋剤の
添加量が減少し、架橋度が低くなって、充分な吸水性能
が得られず、水に溶解してしまう。
Further, the amount of the foaming agent used is preferably 0.25 to 2% by weight based on the weight of the fused water-soluble resin. If the amount used is less than 0.255% by weight, foaming becomes unstable and the crosslinking density becomes non-uniform. In addition, if the amount used exceeds 2% by weight, excessive foaming will result, and the amount of crosslinking agent added to the water-soluble resin will decrease, resulting in a low degree of crosslinking, resulting in insufficient water absorption performance and dissolution in water. It ends up.

なお、起泡剤、架橋剤の2成分からなる水溶液の泡では
、前記融着水溶性樹脂と接触させたときに得られる吸水
性複合体が硬くなる場合もあるので、必要に応じてたと
えばグリセリンに代表される軟化剤を少量上記水溶液に
添加してもよい。その軟化剤の添加量は前記融着水溶性
樹脂の重量に対して0.01〜2重!−%の範囲が好ま
しい。
Note that with foam from an aqueous solution consisting of two components, a foaming agent and a crosslinking agent, the resulting water-absorbing composite may become hard when brought into contact with the fused water-soluble resin. A small amount of a softening agent represented by the following may be added to the above aqueous solution. The amount of the softener added is 0.01 to 2 times the weight of the fused water-soluble resin! -% range is preferred.

本発明では前記起泡剤、架橋剤、水とを必須成分とする
水溶液から泡を形成し、これを前記融着水溶性樹脂に接
触させて、架橋処理する。
In the present invention, foam is formed from an aqueous solution containing the foaming agent, crosslinking agent, and water as essential components, and is brought into contact with the fused water-soluble resin for crosslinking treatment.

上記水溶液を用いず、その泡を用いる理由は、水溶液で
は後段における乾燥工程において乾燥温度を高温にせね
ばならず、コスト的にも不利であるのに対し、泡の場合
は低温乾燥が可能であり、コストの削減ができるばかり
でなく、解繊糸等の形状変化を少なく抑え、風合を保持
できる利点があるからである。
The reason for using foam instead of the aqueous solution is that with an aqueous solution, the drying temperature must be raised to a high temperature in the subsequent drying process, which is disadvantageous in terms of cost, whereas foam can be dried at low temperatures. This is because it has the advantage of not only being able to reduce costs, but also being able to suppress changes in the shape of the fibrillated yarn, etc., and maintain its texture.

前記水溶液から泡をつくる方法としては、水平バター法
、ナイフコーテング法、ドクターロール法、キュースタ
ー法、センフォート法、ミツター法などのオープンシス
テム、FFT法、ロータリースクリーン法、プリントニ
ア法などのクローズドシステムがあるが、外気に触れる
ことなく泡がつくれる後者のクローズドシステムが泡の
安定性の点から好ましい。とくにFFT法は前記水溶液
に空気を吹き込みつつ発泡機で高速攪拌する方法である
ので好ましい。なお、その発泡倍率を決めるものは起泡
剤の濃度も関係するが、主に水溶液の量と吹き込む空気
量である。
Methods for creating foam from the aqueous solution include open systems such as the horizontal butter method, knife coating method, doctor roll method, Kuester method, Senfort method, and Mitzter method, and closed systems such as the FFT method, rotary screen method, and printnear method. There are several systems available, but the latter closed system, which allows foam to be created without exposure to the outside air, is preferred from the standpoint of foam stability. In particular, the FFT method is preferable because it is a method in which the aqueous solution is stirred at high speed with a foaming machine while blowing air into the aqueous solution. Although the foaming ratio is determined by the concentration of the foaming agent, the main factors are the amount of aqueous solution and the amount of air blown into the foam.

前記水溶液から得られる泡の発泡倍率は、テープ状積層
体、解繊糸、複合繊維体の種類や搬送速度が異なるため
、−概には決められないが、一般的には5〜18倍、好
ましくは8〜13倍が適当である。その理由は、発泡倍
率が5倍未満では水分が多くなるために乾燥に長時間を
要するばかシではなく、架橋度が高くなって吸水倍率が
低くなる。壕だ、発泡倍率が18倍を超えると架橋剤の
濃度が薄くなって、架橋度が低くなるので好ましくない
ためである。水溶性樹脂が融着したテープ状積層体、解
繊糸または複合繊維体は前記泡と接触させたのち、乾燥
処理される。
The expansion ratio of the foam obtained from the aqueous solution cannot be determined generally, but is generally 5 to 18 times, since the type and conveyance speed of the tape-like laminate, defibrated yarn, and composite fiber differ. Preferably, 8 to 13 times is appropriate. The reason for this is that if the expansion ratio is less than 5 times, the water content will increase and drying will take a long time, but the degree of crosslinking will increase and the water absorption capacity will decrease. This is because if the expansion ratio exceeds 18 times, the concentration of the crosslinking agent becomes diluted and the degree of crosslinking becomes low, which is not preferable. The tape-like laminate, fibrillated yarn, or composite fiber body to which the water-soluble resin is fused is brought into contact with the foam and then dried.

上記水溶性樹脂は前記泡と接触すると、泡中の架橋剤の
官能基が水溶性樹脂中のカルボキシル基、スルホン酸基
またはそれらの塩と反応し、テープ状積層体、解繊糸ま
たは複合繊維体上に水溶性樹脂の架橋処理物が形成され
、この反応は乾燥処理によって一層促進される。
When the water-soluble resin comes into contact with the foam, the functional groups of the crosslinking agent in the foam react with carboxyl groups, sulfonic acid groups, or their salts in the water-soluble resin, resulting in a tape-like laminate, defibrated yarn, or composite fiber. A crosslinked product of the water-soluble resin is formed on the body, and this reaction is further promoted by the drying process.

この際、低融点合成樹脂としてカルビニル基またはカル
ボキシル基を有するものを使用した場合は、それらの基
と、架橋剤中の官能基との反応が同時に起る。
At this time, when a low melting point synthetic resin having a carbinyl group or a carboxyl group is used, the reaction between these groups and the functional group in the crosslinking agent occurs simultaneously.

第3図は架橋処理物が融着した解は糸の一例を示すもの
で、低融点合成樹脂層2の表面に架橋処理物3が付着し
ている。
FIG. 3 shows an example of a yarn in which the crosslinked product is fused, and the crosslinked product 3 is attached to the surface of the low melting point synthetic resin layer 2.

なお、乾燥処理の温度は、用いるテープ状頃層体、解繊
糸または複合繊維体の種類、水溶性樹脂の種類およびそ
の付着量、発泡倍率、架橋剤の添加量等によって異なる
が、得られる吸水性複合体の特性値等を考謔すると、一
般には120℃未満でよい。また乾燥時間も温度等によ
り一概には決められないが、水分の付着量が少ないこと
から一般には1〜10分、好ましくは2〜6分程度で充
分である。なお、乾燥処理としては連続的に乾式トする
方式以外にパッチ式に乾燥する方法も採用できる。
Note that the temperature of the drying process varies depending on the type of tape-like layer, defibrated yarn or composite fiber used, the type and amount of water-soluble resin attached, the expansion ratio, the amount of crosslinking agent added, etc. Considering the characteristic values of the water-absorbing composite, the temperature may generally be lower than 120°C. Although the drying time cannot be determined unconditionally depending on the temperature, etc., generally 1 to 10 minutes, preferably 2 to 6 minutes, is sufficient since the amount of moisture attached is small. In addition to the continuous drying method, a patch drying method can also be used as the drying process.

以上の諸工程金経て得られる吸水性複合体はたとえば不
織布の製造に供される。
The water-absorbing composite obtained through the above-mentioned processes is used, for example, in the production of nonwoven fabrics.

まず、架橋処理物が融着したテープ状積層体からはスプ
リントロール等により解繊糸が製造される。この架橋処
理物の融着した解繊糸、複合繊維体は、コーミングロー
ル等によシ短繊維化し、この短繊維をスクリーンネット
上にパキュウムにより吸引沈積させてウェブとなし、こ
のウェブを熱ロール等に通して熱圧着させると、シート
状の不織布が得られる。
First, a fibrillated yarn is produced from a tape-like laminate in which the crosslinked product is fused using a splint roll or the like. The fused fibrillated yarns and composite fibers of this cross-linked product are made into short fibers using a combing roll, etc., and the short fibers are deposited on a screen net by suction using a pacuum to form a web, and this web is heated and rolled. A sheet-like nonwoven fabric can be obtained by heat-compression bonding by passing it through a cloth or the like.

この不織布は高い吸水性能と弾力性を有し、農園芸用保
水シート、土木および諸工業用の脱水材、衛生材その他
の用途に好適である。
This nonwoven fabric has high water absorption performance and elasticity, and is suitable for use as water retaining sheets for agriculture and horticulture, dewatering materials for civil engineering and various industries, sanitary materials, and other uses.

〔実施例〕〔Example〕

以下、実施例および比較例をあげて本発明をさらに詳細
に説明する。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

なお、得られた吸水性複合体の吸水倍率の測定は、11
1の吸水性複合体1150dの蒸留水に5分間浸漬し、
その後2■目の金網とJKワイノマー150−8(テラ
シュ)の上に注ぎ、10分間水切り全行ない、流れ出た
水の量を求め下式よシ計算した。
In addition, the water absorption capacity of the obtained water absorbent composite was measured at 11
Immerse 1150d of the water-absorbent composite of No. 1 in distilled water for 5 minutes,
Thereafter, the mixture was poured onto the second wire mesh and JK Wynomer 150-8 (Terash), drained for 10 minutes, and the amount of water flowing out was calculated using the formula below.

実施例 1 下記組成、処決により、三層インフレーションフィルム
全製膜後、このフィルムを下記に示すごとく、スリット
し、熱ロールで延伸後、スプリントロールで割裂して解
繊糸を得た。
Example 1 After forming a three-layer blown film with the following composition and treatment, the film was slit as shown below, stretched with a hot roll, and split with a splint roll to obtain a fibrillated yarn.

最外層 スクリュー径     40■φ シリンダー温度     C4:170℃C2:190
℃ CS:200℃ L−LDPE(直鎖状低密度、j? IJエチレン、密
度0、、920 g 7cm5、MFR3,O,!i’
/10分、融点120℃)ペースER樹脂(無水マレイ
ン酸グラフト率0.35重量%、融点122℃)を溶融
押出。
Outermost layer screw diameter 40■φ Cylinder temperature C4: 170℃C2: 190
°C CS: 200 °C L-LDPE (linear low density, j? IJ ethylene, density 0, 920 g 7cm5, MFR3, O,!i'
/10 minutes, melting point 120°C) PACE ER resin (maleic anhydride grafting rate 0.35% by weight, melting point 122°C) was melt extruded.

中  間  層 スクリュー径      65+m++φシリンダー温
度     C1:180℃C2:200℃ C5:210℃ PP(結晶性ポリプロピレン、密度0.901/cm’
、MFR3,0g710分、融点160℃)を溶融押出
Intermediate layer screw diameter 65+m++φ Cylinder temperature C1: 180℃C2: 200℃ C5: 210℃ PP (crystalline polypropylene, density 0.901/cm'
, MFR 3.0g 710 minutes, melting point 160°C) was melt extruded.

最  内  層 スクリュー径      40咽φ 他条件は最外層に同じ。Innermost layer Screw diameter 40mm φ Other conditions are the same as for the outermost layer.

グイリップを1.21、引取速度31.5m/分、で厚
さがER樹脂層(20μ)/PP層(10μ)/ER樹
脂層(20μ)の三層インフレーションフィルムを引取
後、フィルムをテープ幅40鴎にスリットし、延伸ロー
ル温度103℃、延イ申倍率5倍で縦方向に延伸後、(
3012デニール)スプリントロールで割裂幅0.07
11111に解繊した。解繊糸は3012デニールであ
った。
After taking off a three-layer blown film with thicknesses of ER resin layer (20μ)/PP layer (10μ)/ER resin layer (20μ) at a grip of 1.21 and a take-up speed of 31.5m/min, the film was rolled to the tape width. After slitting it into 40 pieces and stretching it in the longitudinal direction at a stretching roll temperature of 103°C and a stretching magnification of 5 times, (
3012 denier) Split width 0.07 with splint roll
It was defibrated to 11111. The defibrated yarn had a denier of 3012.

得られた解繊糸を第1図に示す装置を用いて水溶性樹脂
粉末を付着させ、次いでこれを架橋処理せしめた。
A water-soluble resin powder was applied to the resulting fibrillated yarn using the apparatus shown in FIG. 1, and then crosslinked.

すなわち、解繊糸4をまず帯電コーテング機(静電粉体
塗装機、日本ランズパーグ■製、721APユニツト)
5に送った。この帯電コーテング機5はフーチング槽6
と水溶性樹脂粉末7を均一に”JX射fるコーテングガ
ン8と、水溶性樹脂粉末7の貯槽9から構成され、この
実施例では水溶性樹脂粉末7として、平均粒径50μ程
度のポリアクリル酸ソーダ粉末を用いた。
That is, the defibrated yarn 4 was first coated with a charging coating machine (electrostatic powder coating machine, manufactured by Nippon Landspurg ■, 721AP unit).
Sent to 5th. This charging coating machine 5 has a footing tank 6.
It consists of a coating gun 8 that uniformly sprays the water-soluble resin powder 7 and a storage tank 9 for the water-soluble resin powder 7. Acid soda powder was used.

この帯電コーテング機5をガン発生電圧70 kV、空
気量10 Nm3/時の条件で稼動し、コーテングガン
8から解繊糸4にポリアクリル酸ソーダ粉末を噴射せし
め、付着させた。その付着量は、解繊糸の重量に対し4
5重量%であった。なお、解繊糸4の走行速度は3 m
 7分であった。この操作で、解繊糸4のER樹脂層の
表面はポリアクリル酸ソーダ粉末が付着した状態となる
(粉末自体が帯電されているため)。
This charging coating machine 5 was operated under the conditions of a gun generation voltage of 70 kV and an air flow rate of 10 Nm3/hour, and the coating gun 8 sprayed and adhered the sodium polyacrylate powder onto the fibrillated yarn 4. The amount of adhesion is 4% relative to the weight of the defibrated yarn.
It was 5% by weight. Note that the traveling speed of the defibrated yarn 4 is 3 m.
It was 7 minutes. With this operation, the surface of the ER resin layer of the defibrated yarn 4 is brought into a state where the sodium polyacrylate powder is attached (because the powder itself is electrically charged).

上記ポリアクリル酸ソーダ粉末が付着した解繊糸4′は
続いてロール10を介して加熱空気温度が130℃の加
熱装置11に送った。この操作によってER樹脂層の表
面は溶融状態となり、ポリアクリル酸ソーダ粉末はより
強固にgR樹脂層表面に融着する。
The defibrated yarn 4' to which the sodium polyacrylate powder was adhered was then sent via a roll 10 to a heating device 11 where the heating air temperature was 130°C. This operation brings the surface of the ER resin layer into a molten state, and the sodium polyacrylate powder is more firmly fused to the surface of the gR resin layer.

次に、ポリアクリル酸ソーダ粉末が融着した解繊糸4”
は泡加工機(ガストン、カランティ社製FFT機)12
に送った。この泡加工機12は、架橋剤と起泡剤と軟化
剤と水との混合水溶液13を送液ポンプ14を介して発
泡機15に送るとともに、コンプレッサー16を介して
空気を発泡機15に送る仕組みになっており、泡17は
ホース18を通じて発泡機15からラッパ状器具19上
に出てくる。
Next, 4"
is a foam processing machine (FFT machine manufactured by Gaston and Calanti) 12
Sent to. This foam processing machine 12 sends a mixed aqueous solution 13 of a crosslinking agent, a foaming agent, a softening agent, and water to a foaming machine 15 via a liquid feed pump 14, and also sends air to the foaming machine 15 via a compressor 16. The foam 17 comes out from the foaming machine 15 through a hose 18 onto a trumpet-shaped device 19.

上記混合水溶液は水100重量部、エチレングリコール
ジグリシジルエーテル(架橋剤、ディナコールEX−3
13) 0.01重量部、起泡剤(ノニオン系界面活性
剤、メイフォーマF210、明放化学社製)0.5重量
部、グリセリン0.1重量部を混合して調製した。また
、泡加工機12の操作条件は、発泡機15の回転数90
Orpm、送液量75g/分、空気量1.011分、発
泡倍率11.6倍とした。
The above mixed aqueous solution contains 100 parts by weight of water, ethylene glycol diglycidyl ether (crosslinking agent, Dinacol EX-3),
13) It was prepared by mixing 0.01 part by weight, 0.5 part by weight of a foaming agent (nonionic surfactant, Mayforma F210, manufactured by Meiho Kagaku Co., Ltd.), and 0.1 part by weight of glycerin. Further, the operating conditions for the foam processing machine 12 are as follows: the rotation speed of the foaming machine 15 is 90;
Orpm, liquid feeding amount 75 g/min, air amount 1.011 min, and foaming ratio 11.6 times.

泡加工機12によってER樹脂層上のポリアクリル酸ソ
ーダ粉末は泡17と接触し、架橋処理が始まる。この状
態にある解繊糸4″は続いて温度120℃の乾燥器20
に送シ、ガイドロール21でジグザグに解繊糸4″′を
誘導して、乾燥器内の通過時間3分間で乾燥させ、最後
にこれをデピン22に巻き取った。
The foam processing machine 12 brings the sodium polyacrylate powder on the ER resin layer into contact with the foam 17, and the crosslinking process begins. The defibrated yarn 4'' in this state is then placed in a dryer 20 at a temperature of 120°C.
The defibrated yarn 4'' was guided in a zigzag manner by the guide roll 21, dried for 3 minutes in the dryer, and finally wound around the depin 22.

得られた吸水性複合体の特性を表1に示す。Table 1 shows the properties of the obtained water absorbent composite.

実施例 2 実施例1で得られた三層インフレーションフィルム(E
R樹脂層20μ/PP層10μ/ER樹脂層20μ)を
スリットとして幅40鴫のテープとし、このテープを延
伸ロール温度103℃で縦方向に5倍延伸して3012
デニールのテープを得た。このテープをスリットロール
で割裂幅0.07鴎に解繊した。解繊糸は3012デニ
ールであった。次にこの解繊維金クリンパ機(大阪機工
■製OKKターボDCクリンパ)にかけて、速度12m
/分、圧力0.4 ’Q / cmの条件で稼動し、解
繊糸山数13山/インチのクリンノタ解繊糸を得た。こ
の解繊糸を実施例1と同様にして帯電コーテング機5に
送シ、そのER樹脂層の表面にポリアクリル酸ソーダ粉
末を付着せしめ(付着量40重量% ) 、以後実施例
1と同様にして泡加工、乾燥を行なった。得られた吸水
性複合体は風合の非常に優れたものであシ、その特性値
は表1に示すとおりである。
Example 2 The three-layer blown film obtained in Example 1 (E
R resin layer 20μ/PP layer 10μ/ER resin layer 20μ) were slit to make a tape with a width of 40mm, and this tape was stretched 5 times in the longitudinal direction at a stretching roll temperature of 103°C to obtain 3012
Got denier tape. This tape was opened to a split width of 0.07 using a slit roll. The defibrated yarn had a denier of 3012. Next, the fiber was applied to a gold crimper machine (OKK Turbo DC crimper manufactured by Osaka Kiko) at a speed of 12 m.
It was operated under the conditions of 0.4'Q/min and a pressure of 0.4'Q/cm to obtain a Clinnota defibrated yarn having 13 defibrated yarns/inch. This defibrated yarn was sent to the charging coating machine 5 in the same manner as in Example 1, and sodium polyacrylate powder was adhered to the surface of the ER resin layer (adhesion amount: 40% by weight). Foam processing and drying were performed. The obtained water-absorbent composite had an excellent texture, and its characteristic values are shown in Table 1.

実施例 3 泡加工機12の空気量を0.81!/分、送液量150
.9/分、発泡倍率8倍としたこと、および最終工程の
乾燥時間を5分としたことを除いて実施例1と同様にし
て吸水性複合体を得た。その特性値は表1に示す。
Example 3 The amount of air in the foam processing machine 12 is 0.81! /min, liquid flow rate 150
.. A water-absorbing composite was obtained in the same manner as in Example 1, except that the foaming rate was 9/min, the foaming ratio was 8 times, and the drying time in the final step was 5 minutes. Its characteristic values are shown in Table 1.

比較例 1 泡加工8!全用いず、未発泡状態の混合水溶液にアクリ
ル酸ソーダが融着している解繊糸をドブ付けして、前記
融着している?リアクリル酸ソーダを架橋処理したこと
、および乾燥を120℃で60分間行なった以外は、実
施例1と同様にして吸水性複合体を得た。その結果を表
1に示す。
Comparative example 1 Foam processing 8! The defibrated yarn with sodium acrylate fused to it is added to the unfoamed mixed aqueous solution without using it at all, and the fused yarn is fused as described above. A water-absorbing composite was obtained in the same manner as in Example 1, except that the sodium acrylate was crosslinked and the drying was performed at 120° C. for 60 minutes. The results are shown in Table 1.

なお、上記において乾燥’t120℃で3分間行なった
ところ、得られた吸水性複合体には水分が残存しておシ
、その表面はベトついていた。
In addition, when drying was carried out at 120° C. for 3 minutes in the above, water remained in the obtained water absorbent composite and the surface thereof was sticky.

〔発明の効果〕〔Effect of the invention〕

以上述べたように、本発明の製造方法によってつくられ
た吸水性複合体は従来のものより吸水性能に優れ、引張
強度も有するばかりか、取扱も製造も容易であり、しか
も製造時には水溶性樹脂の無駄も少ない。そして水溶性
樹脂の架橋処理には架橋剤の含有された水溶液の泡を使
用するので、乾燥も短時間の低温乾燥が可能であり、コ
ストの低減を図ることができる。
As described above, the water-absorbent composite produced by the production method of the present invention not only has superior water-absorption performance and tensile strength compared to conventional ones, but also is easy to handle and manufacture, and is made using water-soluble resin. There is also less waste. Since foam of an aqueous solution containing a crosslinking agent is used for the crosslinking treatment of the water-soluble resin, drying can be carried out at a low temperature for a short period of time, and costs can be reduced.

したがって、本発明による吸水性複合体は伝導ケーブル
用防水被覆材をはじめ、農園芸用保水ンート、土木建築
用の各種止水材、諸工業用脱水材、衛生材その他の素材
として有用なものである。
Therefore, the water-absorbing composite according to the present invention is useful as a waterproof coating material for conductive cables, water retaining trunks for agriculture and horticulture, various water-stopping materials for civil engineering and construction, dewatering materials for various industries, sanitary materials, and other materials. be.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例で採用されるフローチャート
、第2図は複合解繊糸の一例を示す横断面図、第3図は
本発明によって得られる複合解愼糸の一例を示す横断面
図である。 1・・・高融点合成樹脂層、2・・・低融点合成樹脂瘤
、3・・・架橋処理物、4・・・解繊糸、5・・・帯電
コーテング機、7・・・水溶性樹脂粉末、11・・・加
熱装置、12・・・泡加工機、13・・・混合水溶液、
15・・・発泡機、20・・・乾燥器。
FIG. 1 is a flowchart adopted in an embodiment of the present invention, FIG. 2 is a cross-sectional view showing an example of a composite defibrated yarn, and FIG. 3 is a cross-sectional view showing an example of a composite defibrated yarn obtained by the present invention. It is a front view. DESCRIPTION OF SYMBOLS 1...High melting point synthetic resin layer, 2...Low melting point synthetic resin bump, 3...Crosslinked product, 4...Fibrated thread, 5...Charging coating machine, 7...Water-soluble Resin powder, 11... Heating device, 12... Foam processing machine, 13... Mixed aqueous solution,
15... Foaming machine, 20... Dryer.

Claims (2)

【特許請求の範囲】[Claims] (1) 高融点合成樹脂の少なくとも一つの層と低融点
合成樹脂の少なくとも一つの層とからなり、該低融点合
成樹脂の層が少なくとも一部の表面に露出しているテー
プ状積層体もしくはこれを割裂して得られる解繊糸また
は複合繊維体で構成され、且つ表面に露出せる低融点合
成樹脂層の外表面に、水溶性樹脂粉末が融着しているテ
ープ状積層体もしくはこれを割裂して得られる解繊糸ま
たは複合繊維体の前記水溶性樹脂に架橋剤と起泡剤と水
を主成分とする水溶液を起泡状態で接触せしめて、水溶
性樹脂を架橋処理し、さらに乾燥することを特徴とする
吸水性複合体の製造方法。
(1) A tape-shaped laminate consisting of at least one layer of high-melting point synthetic resin and at least one layer of low-melting point synthetic resin, in which the layer of low-melting point synthetic resin is exposed on at least a part of the surface; A tape-shaped laminate consisting of fibrillated yarn or composite fibers obtained by splitting a laminate, in which a water-soluble resin powder is fused to the outer surface of a low-melting synthetic resin layer exposed on the surface, or a tape-shaped laminate obtained by splitting the same. The water-soluble resin of the defibrated yarn or composite fiber body obtained by this process is brought into contact with an aqueous solution containing a crosslinking agent, a foaming agent, and water as main components in a foamed state, and the water-soluble resin is crosslinked, and then dried. A method for producing a water-absorbing composite, characterized by:
(2) 前記架橋剤と起泡剤と水を主成分とする水溶液
の発泡倍率が5〜18倍である特許請求の範囲第(1)
項記載の吸水性複合体の製造方法。(3) 前記起泡剤
がアニオン系およびノニオン系の界面活性剤である特許
請求の範囲第(1)項または第(2)項記載の吸水性複
合体の製造方法。
(2) Claim No. 1, wherein the aqueous solution containing the crosslinking agent, foaming agent, and water as main components has a foaming ratio of 5 to 18 times.
2. Method for producing a water-absorbing composite as described in Section 1. (3) The method for producing a water-absorbing composite according to claim (1) or (2), wherein the foaming agent is an anionic or nonionic surfactant.
JP62316031A 1987-12-16 1987-12-16 Production of water absorbable composite Pending JPH01162874A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62316031A JPH01162874A (en) 1987-12-16 1987-12-16 Production of water absorbable composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62316031A JPH01162874A (en) 1987-12-16 1987-12-16 Production of water absorbable composite

Publications (1)

Publication Number Publication Date
JPH01162874A true JPH01162874A (en) 1989-06-27

Family

ID=18072483

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62316031A Pending JPH01162874A (en) 1987-12-16 1987-12-16 Production of water absorbable composite

Country Status (1)

Country Link
JP (1) JPH01162874A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234867A (en) * 1990-02-07 1991-10-18 Dainichiseika Color & Chem Mfg Co Ltd Water-swellable non-twisted yarn
JP2006283278A (en) * 2005-03-31 2006-10-19 Daiwabo Co Ltd Water cutoff vegetative base material
JP2007182051A (en) * 2005-12-09 2007-07-19 Tigers Polymer Corp Flexible hose

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03234867A (en) * 1990-02-07 1991-10-18 Dainichiseika Color & Chem Mfg Co Ltd Water-swellable non-twisted yarn
JP2006283278A (en) * 2005-03-31 2006-10-19 Daiwabo Co Ltd Water cutoff vegetative base material
JP2007182051A (en) * 2005-12-09 2007-07-19 Tigers Polymer Corp Flexible hose

Similar Documents

Publication Publication Date Title
US4966809A (en) Water-absorbing composite body
AU2002224531B2 (en) Thermoplastic superabsorbent polymer blend compositions and their preparation
JP3917178B2 (en) Substrate having superabsorbent material, method for producing the same and use thereof
US4392908A (en) Process for making absorbent articles
JP3196933B2 (en) Water-absorbing composite surface-coated with fibrous hot melt, method for producing the same, and absorbent article
JPH10505521A (en) Absorbent structures having zones of different degree of cross-linking and their preparation
CN108752681B (en) Polyethylene/polystyrene composite film roll with mesh cloth support and manufacturing method thereof
JPS63235558A (en) Steaming adhesive nonwoven cloth and its production
JP3692486B2 (en) Superabsorbent sheet and method for producing the same
JPH01162874A (en) Production of water absorbable composite
JPH01156578A (en) Production of water absorbable composite
JP3529628B2 (en) Optical cable manufacturing method
JPS6224550B2 (en)
JPH05174636A (en) Thin cut-off tape for cable
JP2522813B2 (en) Super absorbent laminated sheet with handle
JPS6335883A (en) Production of water absorbable fiber
JP2933230B2 (en) Fibrous absorber for sanitary goods
JPH03176332A (en) Water-stopping tape and manufacture therefor
JPS62237613A (en) Manufacture of moisture-proof covering of conducting cable
JPH01145002A (en) Water-absorptive insole
JPS63283526A (en) Agricultural nonwoven fabric
JPH0745132A (en) Water cut-off tape and manufacture thereof
JPS6335867A (en) Production of water absorbable web and water absorbable sheet like nonwoven fabric
JP4255561B2 (en) Method for producing hydrophilic laminated sheet
JPS6335884A (en) Production of water absorbable fiber