JPS6335884A - Production of water absorbable fiber - Google Patents

Production of water absorbable fiber

Info

Publication number
JPS6335884A
JPS6335884A JP61179224A JP17922486A JPS6335884A JP S6335884 A JPS6335884 A JP S6335884A JP 61179224 A JP61179224 A JP 61179224A JP 17922486 A JP17922486 A JP 17922486A JP S6335884 A JPS6335884 A JP S6335884A
Authority
JP
Japan
Prior art keywords
water
melting point
absorbing agent
resin layer
point resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP61179224A
Other languages
Japanese (ja)
Inventor
大平 克次
豊秋 田中
亀井 良祐
昭 中村
橋本 昭紘
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP61179224A priority Critical patent/JPS6335884A/en
Priority to EP19870902700 priority patent/EP0262230A4/en
Priority to US07/155,935 priority patent/US4966809A/en
Priority to PCT/JP1987/000208 priority patent/WO1987005860A1/en
Publication of JPS6335884A publication Critical patent/JPS6335884A/en
Pending legal-status Critical Current

Links

Landscapes

  • Laminated Bodies (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Insulated Conductors (AREA)

Abstract

(57)【要約】本公報は電子出願前の出願データであるた
め要約のデータは記録されません。
(57) [Abstract] This bulletin contains application data before electronic filing, so abstract data is not recorded.

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は吸水性繊維の製造方法に関し、特に電気通信ケ
ーブル、光フアイバー通信ケーブル等の伝導ケーブルに
用いられる吸水性m維の製造方法に関する。 (従来の技術) 電気通信ケーブルや光フアイバー通信ケーブル等のいわ
ゆる伝導ケーブルでは、外部からの水分または湿気など
の浸入は絶対に許されないため、ケーブル相互の接続部
分には特に綿密な防水被覆が施されている。 この防水被覆は、接続部分に施した防水性被覆材の外表
面に、更に吸水及び吸湿材を捲き付
[Industrial Application Field] The present invention relates to a method for producing water-absorbing fibers, and particularly to a method for producing water-absorbing m-fibers used in conductive cables such as telecommunication cables and optical fiber communication cables. (Prior technology) So-called conductive cables such as telecommunication cables and fiber optic communication cables absolutely do not allow water or moisture to enter from the outside, so the joints between the cables must be coated with a particularly thorough waterproof coating. has been done. This waterproof coating is made by wrapping a water-absorbing and moisture-absorbing material on the outer surface of the waterproof coating applied to the connection part.

【プ、その上にゴム
などの防水材を被覆したもので、この最外表面の防水材
を通過して被覆囮内に浸入した水分笠は、上記吸水及び
吸湿材に吸収されて、ケーブルまで達することがないよ
うにしている。 ここに用いられる吸水、吸湿材としては、ポリエチレン
グリコール含浸のボリア【]ピレン製υ1繊維、ジエチ
レングリコール含浸紙などのほか、ポリオレフィン製解
繊糸の表面を溶融状態として、高分子吸水剤、例えばポ
リアクリル酸ソーダ、或は、アクリル酸−酢酸ビニル共
重合体の微粉末を振りかけて融着したものなどがある。 〔発明が解決しようとする問題点〕 しかしながら、含浸による場合には、そこに用いられる
吸水剤が湿潤性を有することから、取扱いが煩誰となり
、また流体を構成要素とし、でいるために、被覆の再現
性が頗る困難な問題点があった。 また融着の場合には、延伸加工処理した!I維が、溶融
により延伸効果を失い、ケーゾル施設作業時の引張りな
どの応力に耐えず破損し易いばかりか、高分子吸水剤の
融着らXにも問題を(iしている。 これらの諸問題を解決するための手段として、ポリオレ
フィンの押出時に、粉末状の高分子吸水剤を添加混練し
、押出成形されたフィルムを延伸処理後に割繊Nt8理
などして防水性をイ」与づ−ることも考えられるが、−
殻内に高分子吸水剤は熱に弱く、ポリオレフィン等の合
成樹脂の溶融温度下であっても、押出成形までの長い時
間、そのままの状態にあると、吸水能力の低下5と来I
こすばかりか、押出成形されたのちの高分子吸−7j(
剤は、そのほとんどが樹脂中に埋設し、表面にZS出づ
るFft’y”tきわめて僅かどなるために、吸水効果
を・充分に発揮し得&2い大魚が4うり、そのままでは
全く実用に1)亀することができない。したがって取扱
や被覆の再現性、吸水効果4(どの上からは、融着のも
のが最も好ましい。 上記粉末状の高分子吸水剤を融着させた吸水性繊維の問
題熱は、引張強疾の劣化ど高分子吸水剤の添加効率の低
さにあり、これらを改善すれば、湿潤性の吸水剤を含浸
させた吸水材よりし一段と優れた吸水性l1tI6が得
られることに本発明当らは着眼し、説、α研究を重ねた
結果、先に吸水性繊維の基材としては、少なくとも2層
以上の融点が巽tする合成樹脂の薄層I?4層体または
複合繊維体による解繊糸がよく、この解繊糸の外層を形
成する低融点樹脂に粉末状の高分子吸水剤を融盾した吸
水性繊維が、伝導ケー・プル用防水竹被覆材として、き
4つめて0効Cあることを見出しIこ。 この新たな吸水性繊維(・は、解繊糸を加熱したのらに
おいてb延伸性(,1失われるごどはない。しかし、高
分子吸水剤の融4状態や串にまだ問題があり、さらに研
究を続け!!肴手段を改善することにより、吸水効果が
更に一段と向上すうこと自−月]見した。 本発明は上記の知見に基づいてなされたしので高分子吸
水剤の准看効率が高く、融着ち均等に行われて、使用量
の節減をも図ることができる吸水性繊維の製造方法を提
供することを目的と1−る。 〔問題点を解決するための手段〕 本発明は上記の目的を達成すべくなされたものでその要
旨は、少なくとも2層以上の融点が異なる合成樹脂の薄
図積苦体または複合繊維体から低融点樹脂層が外層とな
った解繊糸を製造し、そのw?織糸を低融点樹脂層の融
点近傍まで加熱した後、予め吸水効果が損われない温度
範囲に加熱した粉末状の高分子吸水剤を添加して、1亥
11分子吸収剤を上記低融点樹脂層に融着し、次いで漏
電が60〜90%の雰囲気下で′fI謀糸を加i!ii
!処理することを特徴とする吸水性W&雑の製造方法に
ある。 〔発明の具体的構成および作用〕 以下、本発明を説明する。 本発明における解繊糸は、融点に高低差がある合成樹脂
のシー[−状またはフィルム状v4層体を、主とし−H
一方向に延伸して方向性を付与し、これをスブリッ1−
日一ルにかけて延伸方向に多数の割裂部を形成して網状
にしたり、または完全に引裂いて繊維状にし)、〜もの
、或は融点が異イ【62つの合成樹脂をフィラメント状
またはマルヂフィラメント状IQ押出成形して得られる
複合U&雑体などを束ねて、i・つにしたものを指す。 この騙合、積層体や押合111体の層数には特に制限は
ないが、3箇以上のものにあっては、高融点樹脂を内層
とし、【の内層の両側に低隨点樹脂が外層として存在す
ることが好ましい。また融点の差は大きい程好土しいが
、融点が鋭敏にあられれるものは僅かの差−r“もよい
。 上記積層体におりる各合成樹脂の組合せは、通常2苦と
3居とがあり、2苦の場合を下記に例承すると、 低融点樹脂層7/高融点樹脂留 低害度ポリエチレン/ アイソタクチックボリブロビレン 低密度線状ポリエチレン/′ アイソタクチックポリプロピ!ノン 高密度ボリエヂ1ノン/ アイソタクチプクポリプロピレン 低密度線状ポリエチレン/高密度ポリエチL/ンJヂレ
ンー酢酸ビニル共重合体/ アイソタクヂツクボリプロピレン などであり、3層は上記高融点樹脂層の反対側に更に上
記低融点樹脂層か、他の樹脂層が外旨として重ねられる
。 また高融点樹脂層にはポリアミド系樹脂を用い、低融点
樹脂層としてポリエチレンまたはポリプロピレンを用い
ることもでき、このとき(は接着剤別を要するが、ての
いずれの場合であっても延伸後には1,000〜10,
000デニールという伝導ケーーブル用として耐えるも
のとなる。 上記解繊糸への高分子吸水剤の融着は、低融点樹脂苦の
融点近傍まで解繊糸を加熱して行う、この加熱により外
薯を形成1−る低融点樹脂層の表面は溶融するが、高融
点樹脂層には加熱による変化は起らず、延伸によって与
えられた引張強度はそのまま維持される。したがって、
溶融によって低融点樹脂層の物性が変化したとしても、
wl織糸としてはその変化に左右されず、伝導ケーブル
用としての耐久性を保つ。 上記高分子吸水剤の添加に際しては、予め防水効果が損
われない温度範囲(たとえば60〜・100℃)に高分
子吸水剤を加熱してnく。また低融点樹脂層への融着は
、粉末状の高分子吸水剤を充填した容器の内または粉末
の霧状雰囲気中を、解繊糸を過通させて行うのが好まし
いが、仙にtll、tiまたは吹付けなどの手段をもっ
て行ってもよい。 また融着効果を一段と向上さ+!:6ためには、解繊糸
を幅広く拡げて行うのがJ、く、かくすれば更「均一に
15分子吸水剤の@青をなずことができる。 このように高分子吸水剤を予め加熱して置いて添加を行
った場合(には、低融点樹脂苦ど高分子吸水剤との間の
温度m lメ小さいことから、高分子吸水剤の接触によ
って低融点樹脂層が急冷されるようなことがなく、低融
点樹脂苦の温度低下による融着の困難さが除かれて、融
着状態は均一と4木る。 本発明に用いられる高分子吸水〜1としでは、吸水倍率
(吸収量 (!? > 、、/吸水剤(J))が500
−へ−1000のものが好:tしく、ポリアクリル酸ソ
ー・ダ、アクリル酸と酢酸ビニルの共重合体、デンプン
・アクリル酸グラフト重合体、イソブチレン・無水マレ
インMu重合体、或はモのケン化物の粉末が好ましく用
いられる。 平均粒径は、10= 100μm 、好ましくは2O−
50u mのものが使用され、解繊糸表面に稠密に被覆
出来ることが好まlノい。しかし、熱融贅工程だけでは
、あとで剥離することが多く、良く接61ノだ状態とは
ならなかった。しかし、高分子吸水剤を融へ後の解繊糸
を加湿処理する事により接着性が良く後でも剥1IIl
tすることが少なくなる事がわかった。与える湿度(水
分)(よ60〜90%、特に75−85%が好適である
。湿度が90%を超える場合は、高分子吸水剤が付着(
〕すぎて、ボビン等に巻いた場合、高分子吸水剤11糸
)同士が接着する問題が起り、又、60%未満で蚤よ高
分子吸水剤の付着ら1が少なく吸水倍率が低下し1」的
を達すど)ことが出来ない。高分子吸水剤を融着後の解
繊糸の加湿処理【、Ll例えば加古a器によって行、<
kわれ、加湿帛は1時間当り0.1−o、5tの水分を
与えるように行なうことがQrましい。 〔X滴例〕 次に実施例、比較例を示して本発明の詳細な説明する。 第1図は、本発明の方法により製造される吸水性繊維へ
の組成を示ケ所面図で、1は′M繊糸、2は高融点樹脂
A、3,3は外響を形成する低融点樹脂層、4は低融点
樹脂1’、”i 3に融着した粉末状の高分子吸水剤で
ある。 第2図は、上記吸水性繊維Aを製造づ−る1稈の−・例
を示すもので、高融点樹脂層2をアイソタクヂックボリ
ブに】ピレンにより形成し、また低融点樹脂苦3を低密
度ボリエヂ1ノ〕/に上り形成1ノだ解繊糸1を、まず
加熱装置10に通して 100へ・120℃の加熱空気
により、上記低融点樹脂層30表面を溶融状態に近く加
熱する。 次にこの解繊糸1を、直ちに平均粒径が20μm程度の
高分子吸水剤4を充填した添加装置11に送り出す。上
記高分子吸水剤4は公知の手段をもって70〜80℃の
温度範囲に加熱され、この高分子吸水剤4の中を解繊糸
1は[]−ル12により支持されて通過する。この通過
時に適度な押出力の下に高分子吸水剤4の添加が行われ
、添加した高分子吸水剤4は、それ自体が加熱されてい
ることから、溶融状態に近くまで軟化された低融点樹脂
層3の表面温度を低下させることはなく、融着された状
態となり、添加装置11から送り出されたのちにおいて
も高分子吸水剤4は、低融点樹脂層3の表面に稠密に融
着している。 この高分子吸水剤4の融着量を増す必要がある場合には
、解繊糸1を幅広治具13を用いて幅広に拡げた後、上
記添加装置11に導入する。これは網状或はm帷状のも
のを束ねた状態にあるw1m糸1では、送り出の際の引
張力によって幅が縮まり易く、それだけ高分子吸水剤4
との接触面積が減少して、高分子吸水剤4のa着部分に
制限を受けるからで、幅広に拡げて行った場合には、そ
の拡がった部分にも高分子吸水剤4の融4が行われ、融
着部分が必然的に多くなるからである。 融着後、シボリ装置(図示せず)を通して過剰な高分子
吸水剤を除き、加湿器14によって湿度を与えると、高
分子吸水剤が強固に付谷した肌の良好な吸水性111!
Aが得られる。この吸水性繊維はボビン15に巻取られ
る。 実施例1〜3、比較例1〜2 上記装置を用い、与える湿度および高分子吸水剤として
ポリアクリル酸ソーダく平均粒径20μm)の14着^
1を種々変えて、吸水性繊維をつくり、これの吸水倍率
および接着性をしらべた。結果を第1表に示す。 なお、吸水倍率の測定は、1グの吸水性繊維を150m
1の蒸留水に5分間浸漬1ノ、次いでこれを2順目の金
網とJKワイパーの上に注き゛、10分間水切りを行な
い、流れた水のヤを求め次式により51口した。 最初の本漬(CC)−流れ出た水+11(cc)吸水倍
率−□□−−一一−−一□− (cc/9)     サンプルの重量(g)また接着
性は、ボビンに巻取った吸水性m雑を、10時間接にボ
ビンから送り出し、その時の状況によって判定し下記の
記号によって示した。 記Y) ○・・・高分子吸収剤と解繊糸との接4がよく
、ボビンによりスムースに取出せ、 表面状態良好。 Δ・・・高分子吸収剤と解繊糸の接着性不足であるがボ
ビンによりスムースに取 出せ、表面状態やや不良。 ×・・・水分が多すぎたり、少な過ぎたりしてボビンに
から送り出した場合、切 断して取出せない。 第    1    表 〔発明の効果〕 以上述べたように、本発明の方法によって%f Tjh
された吸水性11維は従来のものよりも吸水で倍率が優
り、また引張強度をも+4 するばかりか、取扱いも含
浸のものに比べて容易であり、伝りケーブル用防水被覆
材としてきわめて有益なものである。 しかも、簡@な手段によって高分子吸水N1の@盾を均
一になすことができ、製造におりる高分子吸水剤の無駄
も少なく、コス1−の節減を図ることができるなどの長
所を有する。
[The water cap is coated with a waterproof material such as rubber on top of it, and any moisture that passes through this outermost waterproof material and enters the coating decoy is absorbed by the water and moisture absorbing material and reaches the cable. I try not to reach it. The water-absorbing and moisture-absorbing materials used here include polyethylene glycol-impregnated boria[]pyrene υ1 fibers, diethylene glycol-impregnated paper, and polymeric water-absorbing agents such as polyacrylic. Examples include those made by sprinkling and fusing acid soda or fine powder of acrylic acid-vinyl acetate copolymer. [Problems to be solved by the invention] However, in the case of impregnation, the water-absorbing agent used therein has wettability, making it cumbersome to handle. The problem was that the reproducibility of the coating was extremely difficult. In addition, in the case of fusion, we applied stretching processing! Not only does the fiber lose its stretching effect due to melting and cannot withstand stress such as tension during work at the Kasol facility and is easily damaged, but it also causes problems such as fusing of the polymeric water absorbing agent. As a means to solve these problems, a powdered polymeric water-absorbing agent is added and kneaded during polyolefin extrusion, and the extruded film is subjected to a split Nt8 treatment after stretching to impart waterproof properties. -It is possible that -
The polymeric water-absorbing agent inside the shell is sensitive to heat, and even at the melting temperature of synthetic resins such as polyolefin, if it remains in that state for a long time before extrusion molding, the water-absorbing ability will decrease5.
Not only is it rubbed, but it is also extruded and then extruded.
Most of the agent is embedded in the resin, and very little ZS protrudes on the surface, so it can fully exert its water absorption effect and absorb 2 large fish, making it completely unusable as it is. 1) It cannot be fused. Therefore, the reproducibility of handling and coating, water absorption effect 4 (from which top, fused ones are the most preferable. The problem lies in the deterioration of tensile strength and the low addition efficiency of the polymeric water absorbing agent, and if these problems are improved, a water absorbing material l1tI6 that is even better than a water absorbing material impregnated with a wettable water absorbing agent can be obtained. The inventor of the present invention focused on this fact, and as a result of repeated theory and α research, we found that at least two thin layers of synthetic resin with a melting point of t or more are used as a base material for water-absorbing fibers. Alternatively, a fibrillated yarn made of composite fibers is preferred, and a water-absorbing fiber made by fusing a powdered polymeric water-absorbing agent with a low-melting point resin that forms the outer layer of the fibrillated yarn is used as a waterproof bamboo covering material for conductive cables and pulls. , and found that it has an effect of 0.This new water-absorbing fiber (・) does not seem to lose b-stretchability (,1) when the fibrillated yarn is heated. There were still problems with the melting state and skewering of the molecular water-absorbing agent, so we continued our research and found that the water-absorbing effect could be further improved by improving the serving method.The present invention is based on the above findings. The purpose of the present invention is to provide a method for producing water-absorbing fibers that has a high absorption efficiency of polymeric water-absorbing agents, can be uniformly fused, and can reduce the amount used. 1- [Means for solving the problems] The present invention has been made to achieve the above-mentioned object, and the gist thereof is to provide a thin bulk body or a composite body made of at least two layers of synthetic resins having different melting points. A fibrillated yarn with a low melting point resin layer as an outer layer is produced from the fiber body, the w?woven yarn is heated to near the melting point of the low melting point resin layer, and then powder is heated in advance to a temperature range that does not impair the water absorption effect. 1 to 11 molecules of the absorbent were fused to the low melting point resin layer, and then a 'fI plot was added in an atmosphere with a current leakage of 60 to 90%.
! A method for producing water-absorbing W & miscellaneous fabrics, which is characterized by a treatment. [Specific structure and operation of the invention] The present invention will be explained below. The defibrated yarn in the present invention is mainly made of a sheet-like or film-like V4 layer of synthetic resin with different melting points.
Stretch it in one direction to give it directionality, and then
It can be made into filaments or multifilaments by forming a large number of split parts in the stretching direction over the course of a day, or completely torn into fibers), or having different melting points. It refers to a composite U and miscellaneous bodies obtained by extrusion molding into I-I. There is no particular limit to the number of layers in this deception, laminate or pressed body, but if there are three or more, the inner layer is a high melting point resin, and the outer layer is a low melting point resin on both sides of the inner layer. Preferably, it exists as Also, the larger the difference in melting point, the better it is, but if the melting point can be sharply determined, a slight difference -r'' is also good. The following is an example of a two-pronged case: Low-melting point resin layer 7 / High-melting point resin-retained low-toxicity polyethylene / Isotactic polypropylene low-density linear polyethylene / ' Isotactic polypropylene! Non-high-density polyethylene 1 Non/isotactic polypropylene low-density linear polyethylene/high-density polyethylene L/N dylene-vinyl acetate copolymer/isotactic polypropylene, etc., and the three layers are on the opposite side of the high melting point resin layer. A low melting point resin layer or another resin layer is layered as an outer layer.Also, polyamide resin can be used as the high melting point resin layer, and polyethylene or polypropylene can be used as the low melting point resin layer. However, in any case, after stretching, the
000 denier, which can withstand use in conductive cables. The polymer water-absorbing agent is fused to the fibrillated yarn by heating the fibrillated yarn to near the melting point of the low-melting resin.This heating melts the surface of the low-melting resin layer that forms the outer shell. However, no change occurs in the high melting point resin layer due to heating, and the tensile strength imparted by stretching is maintained as it is. therefore,
Even if the physical properties of the low melting point resin layer change due to melting,
As a wl woven yarn, it is not affected by the change and maintains its durability for use in conductive cables. When adding the above-mentioned polymeric water-absorbing agent, the polymeric water-absorbing agent is heated in advance to a temperature range (for example, 60 to 100° C.) where the waterproofing effect is not impaired. In addition, it is preferable that the fusion to the low melting point resin layer is carried out by passing the fibrillated thread through a container filled with a powdered polymeric water absorbing agent or through a powder mist atmosphere. , ti or spraying may be used. Also, the fusion effect is further improved! :6 In order to do this, it is necessary to spread the defibrated thread widely. In this way, it is possible to uniformly form 15 molecules of water absorbing agent @blue. In this way, the polymeric water absorbing agent is When adding after heating (because the temperature between the low melting point resin and the polymeric water absorbing agent is small, the low melting point resin layer is rapidly cooled by contact with the polymeric water absorbing agent). This eliminates the difficulty of fusion caused by the temperature drop associated with low melting point resins, and the fusion state is uniform. Absorption amount (!? > ,,/Water absorbing agent (J)) is 500
-1000 is preferable: polyacrylic acid soda, acrylic acid and vinyl acetate copolymer, starch/acrylic acid graft polymer, isobutylene/maleic anhydride Mu polymer, or monoken Compound powder is preferably used. The average particle size is 10 = 100 μm, preferably 2O-
It is preferable that 50 um is used so that the surface of the defibrated yarn can be covered densely. However, if only the heat melting process was used, peeling often occurred afterwards, and a good contact state was not achieved. However, by humidifying the fibrillated yarn after melting the polymeric water-absorbing agent, it has good adhesion and can be peeled off afterwards.
I found that I had less to do. Humidity (moisture) to be applied (60-90%, especially 75-85% is preferable. If the humidity exceeds 90%, the polymeric water absorbing agent will adhere (
] If it is too high, when it is wound around a bobbin etc., there will be a problem that the polymeric water absorbing agent 11 threads will adhere to each other, and if it is less than 60%, there will be less fleas and adhesion of the polymeric water absorbing agent 1, and the water absorption capacity will decrease. ” cannot reach the target). Humidification treatment of the defibrated yarn after fusing the polymeric water-absorbing agent.
However, it is preferable to use a humidifying cloth to provide 0.1-o, 5t of moisture per hour. [Example of X Droplets] Next, the present invention will be explained in detail by showing Examples and Comparative Examples. FIG. 1 is a plan view showing the composition of the water-absorbent fiber produced by the method of the present invention, where 1 is a 'M fiber, 2 is a high melting point resin A, and 3 and 3 are low-resistance fibers that form an external sound. The melting point resin layer 4 is a powdered polymeric water absorbing agent fused to the low melting point resin 1', i3. Fig. 2 shows an example of one culm for producing the above water absorbent fiber A. The high melting point resin layer 2 is made of isotactic bodied polypyrene, and the low melting point resin layer 2 is added to a low density bodied layer 1. The surface of the low melting point resin layer 30 is heated to a nearly molten state by heating air at 100° C. and 120° C. through the heating device 10. Next, the defibrated yarn 1 is immediately heated to a polymer having an average particle size of about 20 μm. The water absorbing agent 4 is sent to the addition device 11 filled with the water absorbing agent 4. The polymeric water absorbing agent 4 is heated to a temperature range of 70 to 80°C by known means, and the defibrated yarn 1 is fed through the polymeric water absorbing agent 4. - The polymer water-absorbing agent 4 is added under an appropriate extrusion force during this passage, and since the added polymer water-absorbing agent 4 itself is heated, The surface temperature of the low melting point resin layer 3 which has been softened to a near molten state is not lowered, and even after being in a fused state and sent out from the addition device 11, the polymeric water absorbing agent 4 remains in the low melting point resin. It is densely fused to the surface of the layer 3. If it is necessary to increase the amount of fused polymer water absorbing agent 4, after spreading the defibrated yarn 1 wide using a wide jig 13, The w1m yarn 1 is introduced into the above-mentioned addition device 11. This is because the width of the w1m yarn 1, which is in the form of a net or m-thread bundle, tends to shrink due to the tensile force during feeding, and the polymer water absorbing agent 4
This is because the contact area with the polymeric water-absorbing agent 4 is reduced, and the area where the polymeric water-absorbing agent 4 is attached is limited.If it is spread wide, the fusion 4 of the polymeric water-absorbing agent 4 will also be applied to the expanded area. This is because the number of fused parts will inevitably increase. After fusion, excess polymeric water-absorbing agent is removed through a shibori device (not shown) and humidity is applied with a humidifier 14, resulting in good water-absorbing properties of the skin where the polymeric water-absorbing agent is firmly attached!
A is obtained. This water absorbent fiber is wound onto a bobbin 15. Examples 1 to 3, Comparative Examples 1 to 2 Using the above-mentioned apparatus, the humidity provided and the polymeric water absorbing agent (sodium polyacrylate (average particle size 20 μm)) were applied to 14 samples.
Water-absorbing fibers were prepared by changing various amounts of 1, and their water absorption capacity and adhesiveness were examined. The results are shown in Table 1. In addition, to measure the water absorption capacity, 1 gram of water-absorbing fiber was measured for 150 m.
The sample was immersed in distilled water (1) for 5 minutes, then poured onto the second wire mesh and JK wiper, drained for 10 minutes, and calculated the amount of water that had flowed out using the following formula. Initial pickling (CC) - Flowing water + 11 (cc) Water absorption capacity - □□ - - 11 - - 1□ - (cc/9) Sample weight (g) and adhesion were measured after winding on a bobbin. The water absorbency was sent out from the bobbin after 10 hours, and the results were determined according to the conditions at that time and indicated by the symbols below. Y) ○...Polymer absorbent and defibrated thread have good contact 4, can be taken out smoothly from the bobbin, and the surface is in good condition. Δ...The adhesion between the polymer absorbent and the defibrated thread is insufficient, but it can be taken out smoothly with the bobbin, and the surface condition is somewhat poor. ×...If there is too much or too little moisture and it is sent out from the bobbin, it cannot be cut and removed. Table 1 [Effects of the invention] As stated above, the method of the present invention can reduce %f Tjh
The water-absorbing 11 fibers have superior water absorption and magnification compared to conventional ones, and not only do they have a tensile strength of +4, but they are also easier to handle than impregnated ones, making them extremely useful as waterproof covering materials for transmission cables. It is something. Moreover, it has the advantage that it is possible to make the @shield of polymeric water absorption N1 uniform by a simple means, there is little waste of polymeric water absorbing agent during manufacturing, and it is possible to reduce costs. .

【図面の簡単な説明】[Brief explanation of drawings]

第1図は吸水性繊維の横面面図、第2図は本発明に係る
製造方法を実施する工程の一例を示す略示図である。 1・・・・・・wIm糸、   2・・・・・・高融点
樹脂層、3・・・・・・低融点樹脂層、4・・・・・・
高分子吸水剤、10・・・・・・加熱装置、 11・・
・・・・添加装置、12・・・・・・ロール、  13
・・・・・・幅広治具、14・・・・・・加湿器、  
15・・・・・・ボビン、A・・・・・・吸水性繊維。
FIG. 1 is a side view of a water-absorbing fiber, and FIG. 2 is a schematic view showing an example of a process for carrying out the manufacturing method according to the present invention. 1... wIm thread, 2... high melting point resin layer, 3... low melting point resin layer, 4...
Polymer water absorbing agent, 10... Heating device, 11...
... Addition device, 12 ... Roll, 13
...Wide jig, 14...Humidifier,
15...Bobbin, A...Water absorbent fiber.

Claims (1)

【特許請求の範囲】[Claims] 少なくとも2層以上の融点が異なる合成樹脂の薄層積層
体または複合繊維体から低融点樹脂層が外層となった解
繊糸を製造し、その解繊糸を低融点樹脂層の融点近傍ま
で加熱した後、予め吸水効果が損われない温度範囲に加
熱した粉末状の高分子吸水剤を添加して、該高分子吸収
剤を上記低融点樹脂層に融着し、次いで湿度が60〜9
0%の雰囲気下で解繊糸を加湿処理することを特徴とす
る吸水性繊維の製造方法。
A fibrillated yarn with a low melting point resin layer as an outer layer is produced from a thin layer laminate or composite fiber body of at least two layers of synthetic resins with different melting points, and the fibrillated yarn is heated to near the melting point of the low melting point resin layer. After that, a powdered polymer water absorbing agent heated in advance to a temperature range that does not impair the water absorption effect is added to fuse the polymer absorbent to the low melting point resin layer, and then the humidity is 60 to 9.
A method for producing water-absorbing fibers, which comprises humidifying defibrated yarn in a 0% atmosphere.
JP61179224A 1986-04-02 1986-07-30 Production of water absorbable fiber Pending JPS6335884A (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP61179224A JPS6335884A (en) 1986-07-30 1986-07-30 Production of water absorbable fiber
EP19870902700 EP0262230A4 (en) 1986-04-02 1987-04-02 Water-absorbent composite and process for its preparation
US07/155,935 US4966809A (en) 1986-04-02 1987-04-02 Water-absorbing composite body
PCT/JP1987/000208 WO1987005860A1 (en) 1986-04-02 1987-04-02 Water-absorbent composite and process for its preparation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP61179224A JPS6335884A (en) 1986-07-30 1986-07-30 Production of water absorbable fiber

Publications (1)

Publication Number Publication Date
JPS6335884A true JPS6335884A (en) 1988-02-16

Family

ID=16062103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP61179224A Pending JPS6335884A (en) 1986-04-02 1986-07-30 Production of water absorbable fiber

Country Status (1)

Country Link
JP (1) JPS6335884A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164813A (en) * 2004-12-09 2006-06-22 Fujikura Ltd Cable

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006164813A (en) * 2004-12-09 2006-06-22 Fujikura Ltd Cable

Similar Documents

Publication Publication Date Title
US4966809A (en) Water-absorbing composite body
DE3788472T2 (en) Ribbon with reinforcement threads.
JP3751025B2 (en) Abrasive nonwoven fiber web material and process for its production
US5246770A (en) Composite material which is capable of swelling in the presence of water, supports which can be used for manufacture of same and uses thereof
JPH064246B2 (en) Flexible composite material and manufacturing method thereof
US5409765A (en) Nonwoven webs made from ionomers
US4840847A (en) Conjugate fibers and nonwoven molding thereof
US20030181119A1 (en) Nonwoven- fabric laminate and use thereof
US4143655A (en) Method and apparatus for applying heat softenable orthopedic cast
JPS63235558A (en) Steaming adhesive nonwoven cloth and its production
JPS6335884A (en) Production of water absorbable fiber
JPH01156578A (en) Production of water absorbable composite
US3695984A (en) Novel micaceous insulation
US3586557A (en) Micaceous insulation and electrical apparatus insulated therewith
JPS62237613A (en) Manufacture of moisture-proof covering of conducting cable
JPS6335881A (en) Production of water absorbable fiber
JPS6335882A (en) Production of water absorbable fiber
JPS6335883A (en) Production of water absorbable fiber
MXPA02004821A (en) Method for improving creep resistance of a substrate composite.
JP6982314B2 (en) Polyglutamic acid nanofiber composite sheet
JPS62233014A (en) Conductive cable covering material
JPS6318421Y2 (en)
JP3687986B2 (en) Method for producing ink occlusion body for writing instrument
JPS6335867A (en) Production of water absorbable web and water absorbable sheet like nonwoven fabric
JPS62264504A (en) Water stopping tape for communication cable and manufacture thereof