JPH01156578A - Production of water absorbable composite - Google Patents

Production of water absorbable composite

Info

Publication number
JPH01156578A
JPH01156578A JP62311007A JP31100787A JPH01156578A JP H01156578 A JPH01156578 A JP H01156578A JP 62311007 A JP62311007 A JP 62311007A JP 31100787 A JP31100787 A JP 31100787A JP H01156578 A JPH01156578 A JP H01156578A
Authority
JP
Japan
Prior art keywords
water
low
melting point
melting
synthetic resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62311007A
Other languages
Japanese (ja)
Inventor
Katsuji Ohira
大平 克次
Toyoaki Tanaka
豊秋 田中
Masamichi Nakajima
中嶋 正道
Ryosuke Kamei
亀井 良祐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP62311007A priority Critical patent/JPH01156578A/en
Publication of JPH01156578A publication Critical patent/JPH01156578A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/14Extreme weather resilient electric power supply systems, e.g. strengthening power lines or underground power cables

Landscapes

  • Absorbent Articles And Supports Therefor (AREA)
  • Sealing Material Composition (AREA)
  • Materials Applied To Surfaces To Minimize Adherence Of Mist Or Water (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Insulated Conductors (AREA)

Abstract

PURPOSE: To produce an excellent water absorbent composite having a high mechanical strength by fusing a water-soluble resin powder to the other surface of a low-melting layer such as a tapelike laminate comprising a high-melting and a low-melting synthetic resin layers and then carrying out a cross-linking treatment of the water-soluble resin. CONSTITUTION: A tapelike laminate comprising a layer 2 of, e.g. a high-melting synthetic resin (e.g. a crystalline polypropylene) and a layer 3 of a low-melting synthetic resin (e.g. a polyolefin graft modified with an unsaturated carboxylic acid) and exposing the low-melting layer to the surface e.g. laminated three layers of the low-melting/high-melting/low-melting layers or an opened yarn or a composite fiber material prepared by splitting the laminate is prepared and heated at a temperature in the vicinity of the melting point of the low- melting resin to fuse a water-soluble resin fine powder (e.g. polyacrylic acid and its copolymer) to the outer surface of the low-melting layer exposed to the surface with an electrostatic charge coating machine. The water-soluble resin is subsequently subjected to a cross-linking reaction with a cross-linking agent (e.g. sorbitol polyglycidyl ether) to afford a water absorbent composite having high water absorbing performances.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は主として熱可凰性合成樹脂から構成される吸水
性複合体の製造方法に関し、さらに用途的には、電気通
信ケーブルや光フアイバー通信ケーブルなど伝導ケーブ
ルの防水被覆材として、また農園芸用保水シート、土木
建築用の各種止水材、諸工業用脱水材、衛生材、医療材
などの素材として重要な用途を有する吸水性複合体の製
造方法に関する。
[Detailed Description of the Invention] [Field of Industrial Application] The present invention relates to a method for producing a water-absorbing composite mainly composed of a thermoplastic synthetic resin, and more particularly to a method for producing a water-absorbing composite composed of a thermoplastic synthetic resin. A water-absorbing composite material that has important uses as a waterproof coating material for conductive cables, water-retaining sheets for agriculture and horticulture, various water-stopping materials for civil engineering and construction, dehydration materials for various industries, sanitary materials, medical materials, etc. Relating to a manufacturing method.

〔従来の技術〕[Conventional technology]

吸水性または保水性の材料を利用した防水性被覆材はこ
れまでにも多くの分野で用いられている。
Waterproof covering materials using water-absorbing or water-retaining materials have been used in many fields.

たとえば、電気通信ケーブルや元ファイノ々−通信ケー
ブル等のいわゆる伝導ケーブルでは、外部からの水分や
湿気の浸入は絶対に許されないため、ケーブル相互の接
続部分には特に綿密な防水被覆が施されている。
For example, in so-called conductive cables such as telecommunication cables and original communication cables, the ingress of water or moisture from the outside is absolutely not allowed, so the joints between the cables are particularly carefully coated with waterproof coatings. There is.

この防水被覆は、接続部分に施した防水性被覆材の外表
面にさらに吸水材および吸湿材を巻きつけ、その上にゴ
ムなどの防水材を被覆したものである。この最外表面の
防水材を通過して被覆層内に浸入した水分等は、上記の
吸水材および吸湿材に吸収されて、ケーブルまで達する
ことがないようにしである。
This waterproof coating is obtained by further wrapping a water-absorbing material and a moisture-absorbing material around the outer surface of the waterproof coating material applied to the connection part, and coating the waterproof material such as rubber on top of the water-absorbing material. Moisture or the like that has passed through the waterproof material on the outermost surface and entered the coating layer is absorbed by the water-absorbing material and the moisture-absorbing material, and is prevented from reaching the cable.

ここに用いられる吸水材、吸湿材としては、ポリエチレ
ングリコール含浸のポリプロピレン製割繊維、ジエチレ
ングリコール含浸の紙などがある。
Examples of water-absorbing materials and moisture-absorbing materials used here include polypropylene split fibers impregnated with polyethylene glycol and paper impregnated with diethylene glycol.

しかしながら、これらの吸水材、吸湿材は湿潤性を有す
ることから取扱いが煩雑となり、また流体を構成要素と
しているために、被覆の再現性が頗る困難であるという
問題点があった。
However, since these water-absorbing materials and moisture-absorbing materials have wettability, they are complicated to handle, and since they contain a fluid, there are problems in that the reproducibility of coating is extremely difficult.

また、単層のポリオレフィン製解繊糸の表面を溶融状態
にして、それにポリアクリル酸ソーダ架橋体やアクリル
酸−酢酸ビニル共重合体などの高分子吸水剤の微粉末を
振シかけ、融着せしめた吸水材や吸湿材の使用が試みら
れている。
In addition, the surface of a single-layer polyolefin fibrillated yarn is melted, and fine powder of a polymeric water-absorbing agent such as crosslinked polysodium acrylate or acrylic acid-vinyl acetate copolymer is sprinkled onto it and fused. Attempts have been made to use dampened water-absorbing materials and moisture-absorbing materials.

しかし、この吸水材および吸湿材は、延伸加工処理した
繊維が溶融によシ延伸効果を失ない、ケーブル施設作業
時の引張などの応力に耐えず、破損し易いばかりか、高
分子吸水剤の融着量にも問題を有している。
However, these water-absorbing materials and moisture-absorbing materials do not lose their stretching effect when the stretched fibers are melted, cannot withstand stress such as tension during cable facility work, and are easily damaged. There is also a problem with the amount of fusion.

一方、多層のポリオレフィン製解繊糸を、その表面を溶
融状態にしてから高分子吸水剤の微粉末を充填した容器
内を通過せしめて、高分子吸水剤の微粉末を融着させる
方法も試みられている。しかし、この方法は引張強度や
吸水倍率などは良好である反面、高分子吸水剤の微粉末
の融着量の制御が困難であるという難点がある。
On the other hand, we also tried a method of melting the surface of a multilayer polyolefin fibrillated yarn and then passing it through a container filled with fine powder of a polymeric water absorbing agent to fuse the fine powder of the polymeric water absorbing agent. It is being However, while this method has good tensile strength and water absorption capacity, it has the disadvantage that it is difficult to control the amount of fused fine powder of the polymeric water absorbing agent.

これらの諸問題を解決するだめの手段として、ポリオレ
フィンの押出成形時に粉末状の高分子吸水剤を添加混練
し、押出成形されたフィルムに延伸処理後に割繊維処理
などを施して防水性を付与することが提案されたが、一
般的に高分子吸水剤は熱に弱く、ポリオレフィンの溶融
温度以下であっても押出成形までの長い時間そのままの
状態にあると、吸水能力の低下をきたすのみならず、押
出成形されたのち高分子吸水剤はその殆どが樹脂中に埋
没し、表面に露出する量はきわめて僅かとなるので、吸
水効果を充分に発揮し得ない難点がある。
As a means to solve these problems, a powdered polymeric water absorbing agent is added and kneaded during extrusion molding of polyolefin, and the extruded film is subjected to split fiber treatment after stretching to give it waterproof properties. However, in general, polymeric water absorbing agents are sensitive to heat, and if they remain in that state for a long time before extrusion molding, even if the temperature is below the melting temperature of polyolefin, not only will their water absorbing ability decrease, but they will also deteriorate. After extrusion molding, most of the polymeric water-absorbing agent is buried in the resin, and only a very small amount is exposed on the surface, so there is a problem that the water-absorbing effect cannot be fully exerted.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

本発明の目的は、従来よシも高い吸水性能を有し且つ良
好な機械的強度を有する吸水性複合体の製造方法を提供
することにある。
An object of the present invention is to provide a method for producing a water-absorbing composite that has higher water-absorbing performance and good mechanical strength than ever before.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の吸水性複合体の製造方法は、高融点合成樹脂の
少なくとも一つの層と低融点合成樹脂の少なくとも一つ
の層とからなシ、該低融点合成樹脂の層が少なくとも一
部の表面に露出しているテープ状積層体もしくはこれを
割裂して得られる解繊糸または複合繊維体を製造し、前
記積層体もしくは解繊糸または複合繊維体を低融点合成
樹脂の融点近傍まで加熱してから帯電コーテング機によ
って水溶性樹脂粉末を表面に露出せる低融点合成樹脂層
の外表面に融着せしめるか、または前記積層体もしくは
解繊糸または複合繊維体に帯電コーテング機によって水
溶性樹脂粉末を付着させてから該積層体もしくは解繊糸
または複合繊維体を低融点合成樹脂の融点近傍まで加熱
して、水溶性樹脂粉末を表面に露出せる低融点合成樹脂
層の外表面に融着せしめ、次いで融着した水溶性樹脂に
架橋剤を接触せしめて水溶性樹脂に架橋処理を施し、さ
らに乾燥処理を行なうことを特徴とする。
The method for producing a water absorbent composite of the present invention comprises at least one layer of high melting point synthetic resin and at least one layer of low melting point synthetic resin, the layer of low melting point synthetic resin is on at least a part of the surface. The exposed tape-like laminate or a defibrated yarn or composite fiber body obtained by splitting the exposed tape-like laminate is produced, and the laminate, defibrated yarn, or composite fiber body is heated to near the melting point of the low-melting point synthetic resin. Then, the water-soluble resin powder is fused to the outer surface of the exposed low-melting point synthetic resin layer using a charging coating machine, or the water-soluble resin powder is applied to the laminate, fibrillated yarn, or composite fiber body using a charging coating machine. After adhering, the laminate, fibrillated yarn or composite fiber body is heated to near the melting point of the low melting point synthetic resin to fuse the water-soluble resin powder to the outer surface of the exposed low melting point synthetic resin layer, Next, the fused water-soluble resin is brought into contact with a crosslinking agent to crosslink the water-soluble resin, and is further dried.

以下、本発明の製造方法をさらに詳しく説明する。The manufacturing method of the present invention will be explained in more detail below.

本発明では、まず高融点合成樹脂の少なくとも一つの層
と低融点合成樹脂の少なくとも一つの層とからなシ、該
低融点合成樹脂の層が少なくとも一部の表面に露出して
いるテープ状積層体もしくはこれを割裂して得られる解
繊糸または複合繊維体を製造することが必要である。
In the present invention, first, the tape-shaped laminate is made of at least one layer of high-melting point synthetic resin and at least one layer of low-melting point synthetic resin, and the layer of low-melting point synthetic resin is exposed on at least a portion of the surface. It is necessary to produce a fiber body or a fibrillated yarn or a composite fiber body obtained by splitting the fiber body.

テープ状積層体は、高融点合成樹脂と低融点合成樹脂を
共押出してフィルム状積層体とするか、または高融点合
成樹脂と低融点合成樹脂とからラミネーション法によシ
フィルム状積層体を得、次いでフィルム状積層体を所定
の細幅にスリットし長手方向に延伸するか、または長手
方向に延伸したのちに所定の細幅にスリットする方法に
よって得られ、テープの太さは500−10,000デ
ニール、特に1,000〜4,000デニールの範囲が
好ましい。
The tape-like laminate can be produced by co-extruding a high-melting point synthetic resin and a low-melting point synthetic resin to form a film-like laminate, or by a lamination method using a high-melting point synthetic resin and a low-melting point synthetic resin. Then, the film-like laminate is slit into a predetermined narrow width and stretched in the longitudinal direction, or the film-like laminate is stretched in the longitudinal direction and then slit into a predetermined narrow width, and the thickness of the tape is 500-10. 000 denier, particularly in the range of 1,000 to 4,000 denier.

解繊糸は、上記テープ状積層体をたとえばスプリントロ
ールにかけて網状にしたシ完全に繊維状にしたもので、
その単糸幅は好ましくは0.03〜0.2■、よシ好ま
しくは0.03〜0.11■、最も好ましくは0603
〜0.07■である。解繊糸単糸の割裂幅が0.2■を
超えると、後述する水溶性樹脂粉末の付着量または融着
量が少なく、また得られた吸水性複合体は風合に劣る。
The fibrillated yarn is made by applying the above tape-like laminate to a net shape by applying it to a splint roll, and making it completely fibrous.
The single yarn width is preferably 0.03 to 0.2 cm, more preferably 0.03 to 0.11 cm, and most preferably 0.603 cm.
~0.07■. If the splitting width of the single filament of the fibrillated yarn exceeds 0.2 square centimeters, the amount of adhesion or fusion of the water-soluble resin powder described below will be small, and the resulting water-absorbing composite will have poor texture.

また割裂幅が0.03■未満のものはスプリットが困難
である。
Moreover, if the splitting width is less than 0.03 square meters, it is difficult to split.

解繊糸は500〜I O,000デニール、特に1,0
00.4,000デニールの太さの糸束まま用いること
ができる。
The fibrillated yarn has a denier of 500 to IO,000, especially 1,0
It is possible to use the yarn bundle with a thickness of 0.4,000 denier as it is.

なお、テープ状積層体および解繊糸の製造に用いられる
フィルム状積層体の好ましい例としては、高融点合成樹
脂層/低融点合成樹脂層の2層積層体(以下、高/低と
略称)、低/高/低の3層積層体および低/高/低/高
/低の5層積層体が挙げられる。
In addition, as a preferable example of the film-like laminate used for manufacturing the tape-like laminate and the defibrated yarn, a two-layer laminate of a high melting point synthetic resin layer/low melting point synthetic resin layer (hereinafter abbreviated as high/low) is preferred. , a low/high/low three-layer laminate and a low/high/low/high/low five-layer laminate.

次に、複合繊維体は、高融点合成樹脂と低融点合成樹脂
とのサイド・パイ・サイド型コンツユゲート繊維または
高融点合成樹脂を芯とし低融点合成樹脂を鞘とするシス
・コア凰コンジュゲート繊維を紡糸し、これを延伸する
ことによυつくられる。繊度は単糸で10〜60デニー
ルの範囲が好ましい。
Next, the composite fiber body is a side-pie-side type conjugate fiber of a high-melting point synthetic resin and a low-melting point synthetic resin, or a cis-core conjugate fiber with a high-melting point synthetic resin as a core and a low-melting point synthetic resin as a sheath. υ is created by spinning and drawing it. The fineness of the single yarn is preferably in the range of 10 to 60 deniers.

テープ状積層体、解繊糸および複合繊維体における合成
樹脂層の数は特に制限を受けないが、高融点合成樹脂が
内層を構成し低融点合成樹脂が外層を構成するものが好
ましい・ 高融点合成樹脂と低融点合成樹脂の融点差は大きbはど
好ましく、一般には10℃以上であることが望ましい。
The number of synthetic resin layers in the tape-like laminate, defibrated yarn, and composite fiber body is not particularly limited, but it is preferable that the high melting point synthetic resin constitutes the inner layer and the low melting point synthetic resin constitutes the outer layer. It is preferable that the difference in melting point between the synthetic resin and the low melting point synthetic resin be large, and it is generally desirable that the difference is 10° C. or higher.

たソし、融点が鋭敏に現われる合成樹脂では融点差は僅
かであってもよい。
However, for synthetic resins whose melting points appear sharply, the difference in melting points may be small.

本発明では、高融点合成樹脂としては一般に結晶性ポリ
プロピレン、高密度ポリエチレン、ポリエステル、ナイ
ロン6およびナイロン66等の熱可塑性樹脂が用いられ
る。
In the present invention, thermoplastic resins such as crystalline polypropylene, high density polyethylene, polyester, nylon 6 and nylon 66 are generally used as the high melting point synthetic resin.

また、低融点合成樹脂としては、高融点合成樹脂と良好
な接合性を示すものが用いられる。その具体例としては
、低密度ポリエチレン、直鎖状低密度ポリエチレン、高
密度ポリエチレン、ポリプロピレン等のポリオレフィン
;マレイン酸、フマル酸、イタコン酸、無水マレイン酸
、無水イタコン酸等の不飽和カルメン酸もしくはその無
水物でグラフト変性したポリオレフィン(ER樹脂、特
に高密度ポリエチレンおよび直鎖状低密度ポリエチレン
のグラフト変性物が好ましく、そのグラフト率は0.3
〜0.36重量係が好ましい);エチレン−無水マレイ
ン酸−メチルメタクリレート三元共重合体(ET樹脂)
、エチレン−アクリル酸共重合体(FAA樹脂)、エチ
レン−エチルアクリレート共重合体(IJA樹脂)のよ
うなエチレン−7クリレートまたはメタクリレート共重
合体;エチレン−メタクリル酸共重合体をナトリウム、
亜鉛等の金属で部分的に中和した熱可塑性樹脂(アイオ
ノマー樹脂)が挙げられる。これら低融点合成樹脂のう
ち、特にカルボニル基またはカルがキシル基を有する熱
可塑性樹脂が好ましい。なぜなら、このような低融点合
成樹脂を使用すれば、後述する水溶性樹脂を架橋処理す
る際に、架橋剤が水溶性樹脂と反応すると共に、低融点
合成樹脂中の上記官能基とも反応して、水溶性樹脂の架
橋物と低融点合成樹脂の結合をよシ強固なものにし、架
橋処理物の脱落を防止できるからである。
Furthermore, as the low melting point synthetic resin, one that exhibits good bonding properties with the high melting point synthetic resin is used. Specific examples include polyolefins such as low-density polyethylene, linear low-density polyethylene, high-density polyethylene, and polypropylene; unsaturated carmenic acids such as maleic acid, fumaric acid, itaconic acid, maleic anhydride, and itaconic anhydride; Polyolefins graft-modified with anhydride (ER resins, particularly graft-modified products of high-density polyethylene and linear low-density polyethylene are preferred, the grafting ratio is 0.3
~0.36 weight coefficient is preferable); ethylene-maleic anhydride-methyl methacrylate terpolymer (ET resin)
, ethylene-7 acrylate or methacrylate copolymers, such as ethylene-acrylic acid copolymer (FAA resin), ethylene-ethyl acrylate copolymer (IJA resin);
Examples include thermoplastic resins (ionomer resins) partially neutralized with metals such as zinc. Among these low melting point synthetic resins, thermoplastic resins having a carbonyl group or a xyl group are particularly preferred. This is because if such a low melting point synthetic resin is used, when crosslinking the water soluble resin described below, the crosslinking agent will react with the water soluble resin and also react with the above functional groups in the low melting point synthetic resin. This is because the bond between the crosslinked water-soluble resin and the low-melting point synthetic resin can be strengthened and the crosslinked product can be prevented from falling off.

本発明における高融点合成樹脂と低融点合成樹脂との好
ましい組合せは、次のとおシである。
A preferred combination of high melting point synthetic resin and low melting point synthetic resin in the present invention is as follows.

結晶性ポリプロピレンと酸グラフト変性直鎖状低密度ぼ
りエチレンとの組合せ、結晶性ポリゾロピレンと酸グラ
フト変性高密度ぼりエチレンとの組合せ、結晶性ポリプ
ロピレンとエチレン−無水マレイン酸−メチルメタクリ
レート三元共重合体の組合せ、および結晶性ポリプロピ
レンとアイオノマー樹脂との組合せ。
Combination of crystalline polypropylene and acid-grafted linear low-density ethylene, combination of crystalline polyzolopylene and acid-grafted modified high-density ethylene, crystalline polypropylene and ethylene-maleic anhydride-methyl methacrylate terpolymer and combinations of crystalline polypropylene and ionomer resins.

さて、前述したようにテープ状積層体もしくはこれを割
裂して得られる解繊糸または複合繊維体を製造したら、
次にこれらのテープ状積層体もしくは解繊糸または複合
繊維体の表面に露出せる低融点合成樹脂層の外表面に水
溶性樹脂粉末を融着させる。その方法には2通シがある
Now, after manufacturing the tape-like laminate or the fibrillated yarn or composite fibrous body obtained by splitting the tape-like laminate as described above,
Next, a water-soluble resin powder is fused to the outer surface of the low-melting point synthetic resin layer exposed on the surface of the tape-like laminate, defibrated yarn, or composite fiber. There are two ways to do this.

その1つは、まずテープ状積層体もしくは解繊糸または
複合繊維体を低融点合成樹脂の融点近傍まで加熱してか
ら、帯電コーテング機にょシ水溶性樹脂粉末を表面に露
出せる低融点合成樹脂層の外表面に融着させる方法であ
シ、もう1つはテープ状積層体もしくは解繊糸または複
合繊維体に帯電コーテング機によシ水溶性樹脂粉末を付
着させてから、該積層体もしくは解繊糸または複合繊維
体を低融点合成樹脂の融点近傍まで加熱して、水溶性樹
脂を表面に露出せる低融点合成樹脂層の外表面に融着さ
せる方法である。いづれの方法を用いても、テープ状積
層体もしくは解繊糸または複合繊維体の表面に露出せる
低融点合成樹脂層の外表面に水溶性樹脂粉末が均一に融
着し、単に水溶性樹脂粉末が付着または融着している状
態に比べて両者の結合がよシ強固になる。
One method is to first heat the tape-shaped laminate, fibrillated yarn, or composite fiber body to near the melting point of the low-melting synthetic resin, and then use a charging coating machine to expose the water-soluble resin powder on the surface of the low-melting synthetic resin. One method is to fuse it to the outer surface of the layer, and the other is to apply water-soluble resin powder to the tape-like laminate, defibrated yarn, or composite fiber using a charged coating machine, and then apply the water-soluble resin powder to the laminate or composite fiber. This is a method in which the fibrillated yarn or composite fiber body is heated to near the melting point of the low-melting synthetic resin, and the water-soluble resin is fused to the outer surface of the exposed low-melting synthetic resin layer. No matter which method is used, the water-soluble resin powder is uniformly fused to the outer surface of the low-melting point synthetic resin layer exposed on the surface of the tape-like laminate, defibrated yarn, or composite fiber, and the water-soluble resin powder is simply fused. The bond between the two becomes stronger than when they are attached or fused together.

たソし、上記2つの方法において加熱によシ溶融するの
は低融点合成樹脂のみであシ、高融点合成樹脂の方は加
熱によって大きな変化を受けないから、延伸されている
テープ状積層体、解繊糸、複合繊維体は配合状態を失な
うことがなく、良好な引張強度を維持できる。
However, in the above two methods, only the low melting point synthetic resin is melted by heating, and the high melting point synthetic resin does not undergo much change due to heating, so the stretched tape-shaped laminate , fibrillated yarns, and composite fibers do not lose their blended state and can maintain good tensile strength.

本発明で用いる水溶性樹脂粉末とは、カルがキシル基、
スルホン酸基またはそれらの塩等を有する水溶性高分子
の粉末であシ、具体例としてはポリアクリル酸およびそ
の共重合体、ポリアクリル酸塩、ポリアクリルアミド部
分加水分解物、ポリスチレンスルホン酸、ポリアクリル
アミドプロパンスルホン酸およびその共重合体等の粉末
である。
The water-soluble resin powder used in the present invention has a xyl group,
Powders of water-soluble polymers having sulfonic acid groups or their salts, specific examples include polyacrylic acid and its copolymers, polyacrylates, polyacrylamide partial hydrolysates, polystyrene sulfonic acids, polystyrene, etc. It is a powder of acrylamide propane sulfonic acid and its copolymer.

その平均粒径としては前記テープ状積層体もしくは解繊
糸または複合繊維体の低融点合成樹脂層の露出面にでき
るだけ稠密に被覆し得るよう小さいほど好ましい。一般
にその平均粒径はlO〜500μ、好ましくはlO〜3
00μ、よシ好ましくは10〜50μの範囲が選択され
る。平均粒径が500μを超えると、水溶性樹脂粉末が
稠密な被覆を形成しないのみならず、目的の吸水性複合
体の表面肌が悪くなる。また、平均粒径が104未満の
場合は水溶性樹脂粉末の製造および取扱いが困難で、価
格も高い。水溶性樹脂粉末の付着量または融着量はテー
プ状積層体もしくは解繊糸または複合繊維体の重量に対
し10〜60重量係が適当である。その付着量または融
着量がlO重量係未満の場合は、充分な吸水性が得られ
ず、また60重量幅を超えた場合は、表面肌が悪いばか
シではなく、擦すると水溶性樹脂が脱落するという問題
がある。
The average particle diameter is preferably as small as possible so that the exposed surface of the low melting point synthetic resin layer of the tape-shaped laminate, defibrated yarn or composite fiber can be coated as densely as possible. Generally the average particle size is lO~500μ, preferably lO~3
00μ, preferably in the range of 10 to 50μ. If the average particle size exceeds 500μ, not only will the water-soluble resin powder not form a dense coating, but the surface texture of the target water-absorbing composite will deteriorate. Furthermore, if the average particle size is less than 104, it is difficult to produce and handle the water-soluble resin powder, and the price is high. The amount of the water-soluble resin powder adhered or fused is suitably 10 to 60% by weight relative to the weight of the tape-like laminate, fibrillated yarn, or composite fiber. If the amount of adhesion or fusion is less than the 1O weight ratio, sufficient water absorption cannot be obtained, and if it exceeds 60 weight range, the surface is not a bad stain, and when rubbed, the water-soluble resin is removed. There is a problem with it falling off.

本発明では前述したように水溶性樹脂粉末の付着または
融着に帯電コーテング機を使用する。
In the present invention, as described above, a charged coating machine is used for adhering or fusing the water-soluble resin powder.

これは、コロナ放電を空間内に発生させ、その空間で水
溶性樹脂粉末を正または負に帯電させ、これを圧力空気
によってテープ状積層体もしくは解繊糸または複合繊維
体上に噴射する機能を有するもので、なかでも70 k
V前後の高電圧で用いるガンを有し、ガン内部と出口と
に2極以上の電極を設け、これら電極の電圧差によって
電場を発生せしめ、水溶性樹脂粉末を帯電させる静電粉
体塗装機が好ましい。帯電コーテング機によると、水溶
性樹脂粉末の付着作業が自動的に行なえるばかりでなく
、クーロンの吸引力によシ該粉末がテープ状積層体もし
くは解繊糸または複合繊維体上に非常に均一に付着また
は融着でき、かつその付着量または融着量を自由にコン
トロールできる利点がある。
This has the function of generating a corona discharge in a space, positively or negatively charging water-soluble resin powder in that space, and injecting it onto a tape-shaped laminate, defibrated yarn, or composite fiber body using pressurized air. Among them, 70k
An electrostatic powder coating machine that has a gun that uses a high voltage around V, has two or more electrodes inside the gun and at the outlet, and uses the voltage difference between these electrodes to generate an electric field to charge water-soluble resin powder. is preferred. The charged coating machine not only automatically attaches the water-soluble resin powder, but also allows the powder to be applied very uniformly onto the tape-shaped laminate, defibrated yarn, or composite fiber by the Coulomb suction force. It has the advantage that it can be attached or fused to the surface of the substrate, and that the amount of attachment or fusion can be freely controlled.

前工程で水溶性樹脂粉末が融着したテープ状積層体、解
繊糸または複合繊維体は、次に架橋処理工程に送られ、
融着している水溶性樹脂に架橋処理が施される。
The tape-shaped laminate, defibrated yarn or composite fiber body to which water-soluble resin powder has been fused in the previous process is then sent to a crosslinking process,
The fused water-soluble resin is crosslinked.

この架橋処理には、通常、架橋剤の水溶液が用いられる
。この水溶液を上記水溶性樹脂に接触させればよいが、
その実施方法としてはたとえばオイリングロールを使用
するオイリング法が好ましい。
In this crosslinking treatment, an aqueous solution of a crosslinking agent is usually used. This aqueous solution may be brought into contact with the water-soluble resin, but
As a method for carrying out this method, for example, an oiling method using an oiling roll is preferred.

本発明において用いられる架橋剤は、前記水溶性樹脂中
のカルブキシル基、スルホン酸基またはそれらの塩と反
応し得るような官能基を2個以上有するものであシ、か
つ水溶性を示すものであればいずれをも使用することが
できる。このような架橋剤の代表例としては、ソルビト
ールポリグリシゾルエーテル、ポリグリセロールポリグ
リシジルエーテル、ジグリセロールポリグリシジルエー
テル、グリセロールポリグリシジルエーテル、エチレン
グリコールジグリシジルエーテル、ポリエチレングリコ
ールジグリシジルエーテル等のごとき多官能エポキシ化
合物があげられる。これらの架橋剤は、水溶性樹脂中の
カルボキシル基、スルホン酸基またはそれらの塩との反
応を容易にし、かつ架橋密度を均一にするために水溶液
として使用することが好ましい。
The crosslinking agent used in the present invention must have two or more functional groups capable of reacting with the carboxyl group, sulfonic acid group, or a salt thereof in the water-soluble resin, and must be water-soluble. You can use any of them if you have them. Typical examples of such crosslinking agents include polyfunctional crosslinkers such as sorbitol polyglycidyl ether, polyglycerol polyglycidyl ether, diglycerol polyglycidyl ether, glycerol polyglycidyl ether, ethylene glycol diglycidyl ether, polyethylene glycol diglycidyl ether, etc. Examples include epoxy compounds. These crosslinking agents are preferably used in the form of an aqueous solution in order to facilitate the reaction with carboxyl groups, sulfonic acid groups, or their salts in the water-soluble resin and to make the crosslinking density uniform.

架橋剤の使用量は、前記水溶性樹脂の重量に対して0.
01〜2重量係であることが好ましい。架橋剤の使用量
が0.01重量幅未満では、架橋度が低く、充分な吸水
性能が得られず溶解してしまう。
The amount of crosslinking agent to be used is 0.0% based on the weight of the water-soluble resin.
It is preferable that the weight ratio is 01 to 2. If the amount of the crosslinking agent used is less than 0.01 weight range, the degree of crosslinking will be low, and sufficient water absorption performance will not be obtained, resulting in dissolution.

また、架橋剤の使用量が2重量係よシ多い場合は、架橋
度が高すぎるために吸水能力が不充分となる。
Furthermore, if the amount of crosslinking agent used is more than 2 parts by weight, the degree of crosslinking will be too high and the water absorption capacity will be insufficient.

架橋処理されたテープ状積層体、解繊糸または複合繊維
体は、次に乾燥工程に送られる。
The crosslinked tape-like laminate, defibrated yarn or composite fiber body is then sent to a drying process.

この乾燥工程において、または乾燥工程に移される前に
、水溶性樹脂中のカルボキシル基、スルホン酸基または
それらの塩は架橋剤中の官能基と反応して、テープ状積
層体、解繊糸または複合繊維体上に水溶性樹脂の架橋処
理物が形成される。
In this drying step or before being transferred to the drying step, the carboxyl groups, sulfonic acid groups, or their salts in the water-soluble resin react with the functional groups in the crosslinking agent to form a tape-like laminate, defibrated yarn, or A crosslinked product of water-soluble resin is formed on the composite fiber body.

この際、低融点合成樹脂として予めカルテニル基または
カルボキシル基を有するものを用いた場合は、これらの
官能基と架橋剤中の官能基とが同時に反応する結果、水
溶性樹脂の架橋処理物と低融点合成樹脂との結合はよシ
強固なものとなり、架橋処理物の脱落が防止される。
At this time, if a low melting point synthetic resin having a cartenyl group or a carboxyl group is used, these functional groups and the functional group in the crosslinking agent will react simultaneously, resulting in a crosslinked product of the water-soluble resin and a low melting point synthetic resin. The bond with the melting point synthetic resin becomes very strong and the crosslinked product is prevented from falling off.

乾燥温度は特に高温でなければ制限を受けず、テープ状
積層体、解繊糸または複合繊維体の種類、水溶性樹脂の
種類および付着量、架橋剤の種類および添加量等によシ
ー概には決められないが、乾燥時間が1時間以上と特に
長時間である場合は120℃以下が好ましい。
The drying temperature is not limited unless it is particularly high, and generally depends on the type of tape-shaped laminate, defibrated yarn or composite fiber, the type and amount of water-soluble resin attached, the type and amount of crosslinking agent added, etc. Although it cannot be determined, if the drying time is particularly long, such as 1 hour or more, the temperature is preferably 120° C. or lower.

また乾燥温度が200℃前後と比較的高温である場合は
、乾燥時間を短かくとればよい。
Further, when the drying temperature is relatively high, such as around 200° C., the drying time may be shortened.

このように乾燥時間も乾燥温度等によって変ってくるが
、一般的には乾燥器内の通過時間は4〜10分間、好ま
しくは6〜9分間の範囲である。
As described above, the drying time also varies depending on the drying temperature, etc., but generally the passage time in the dryer is in the range of 4 to 10 minutes, preferably 6 to 9 minutes.

乾燥方法としては、連続式乾燥法に限らず、パッチ式乾
燥法も採用できる。
The drying method is not limited to a continuous drying method, and a patch drying method can also be adopted.

以上の諸工程を経て吸水性複合体が得られるがこの吸水
性複合体はたとえば不織布の製造に用いられる。
A water-absorbing composite is obtained through the above steps, and this water-absorbing composite is used, for example, in the production of nonwoven fabrics.

まず、架橋処理物が付着したテープ状積層体はスプリッ
トロール等を介して解繊糸がつくられる。
First, the tape-like laminate to which the cross-linked product is attached is passed through a split roll or the like to form fibrillated yarns.

架橋処理物の付着した解繊糸または複合繊維体はコーミ
ングロール等によシ短繊維化せしめ、この短繊維をスク
リーンネット上にパキュウムによって吸引沈積させてウ
ェブとなし、このウェブを熱ロール等に通して熱圧着さ
せると、シート状の不織布が得られる。この不織布は高
い吸水性と弾力性と機械的強度を有し、たとえば土木建
築用の各種上水材や農園芸用保水シートとして好適なも
のである。
The defibrated yarn or composite fiber body to which the cross-linked material has been adhered is made into short fibers by using a combing roll, etc., and the short fibers are deposited on a screen net by suction using a pacuum to form a web, and this web is placed on a hot roll, etc. A sheet-like nonwoven fabric is obtained by thermocompression bonding. This nonwoven fabric has high water absorption, elasticity, and mechanical strength, and is suitable, for example, as a variety of water supply materials for civil engineering and construction, and as a water retaining sheet for agriculture and horticulture.

〔実施例〕〔Example〕

以下、実施例および比較例をあげて本発明をさらに詳細
に説明する。
Hereinafter, the present invention will be explained in more detail with reference to Examples and Comparative Examples.

なお、得られた吸水性複合体の吸水倍率の測定は、Il
lの吸水性複合体を150dの蒸留水に5分間浸漬し、
その後21IIll目の金網とJKクワイー150−8
 (テラシュ)の上に注ぎ、1o分間水切シを行ない、
流れ出た水の量を求め下式よシ計算した。
The water absorption capacity of the obtained water-absorbing composite was measured using Il
1 of the water-absorbing composite was immersed in 150 d of distilled water for 5 minutes,
After that, the 21st wire mesh and JK Kwai 150-8
Pour it on top of (Terash) and drain for 10 minutes,
The amount of water flowing out was calculated using the formula below.

実施例1 下記組成、処決によシ、三層インフレーションフィルム
を製膜後、このフィルムを下記に示すごとく、スリット
し、熱ロールで延伸後、スゲリットロールで割裂して解
繊糸を得た。
Example 1 After forming a three-layer blown film with the following composition and treatment, this film was slit as shown below, stretched with a hot roll, and split with a sugerite roll to obtain a fibrillated yarn. Ta.

最外層 スクリュー径 40■φ シリンダー温度 C1:170℃ C2:190℃ C,:200℃ L −LDPE (直鎖状低密度ポリエチレン、密度0
.92011/cm3、MFR3,0y/lO分、融点
120”C)ベースER樹脂(無水マレイン酸グラフト
率0.35重量係、融点122℃)を溶融押出。
Outermost layer screw diameter 40■φ Cylinder temperature C1: 170℃ C2: 190℃ C,: 200℃ L-LDPE (Linear low density polyethylene, density 0
.. 92011/cm3, MFR 3.0y/lO min, melting point 120''C) base ER resin (maleic anhydride graft ratio 0.35 weight ratio, melting point 122°C) was melt extruded.

中  間  層 スクリュー径 65+wφ シリンダー温度 C1:180℃ C,:200℃ C3:210℃ pp(結晶性ポリプロピレン、密度0.90177cm
”、MFR3,0#/10分、融点160℃)を溶融押
出。
Intermediate layer screw diameter 65+wφ Cylinder temperature C1: 180℃ C,: 200℃ C3: 210℃ pp (crystalline polypropylene, density 0.90177cm
”, MFR 3.0#/10 minutes, melting point 160°C) was melt extruded.

最内層 スクリュー径 40wmφ 他条件は最外層に同じ。innermost layer Screw diameter 40wmφ Other conditions are the same as for the outermost layer.

ダイリッジを1.2 wm 、引取速度31.5m/分
、で厚さがER樹脂層(20μ)/PP層(10μ)/
ER樹JIIi層(20μ)の三層インフレーションフ
ィルムを引取後、フィルムをテープ幅40mにスリット
し、延伸ロール温度103℃、延伸倍率5倍で縦方向に
延伸後(3012デニール)、スプリットロールで割裂
幅0.07m5に解繊した。解繊糸は3012デニール
であった。
The die ridge was 1.2 wm, the take-up speed was 31.5 m/min, and the thickness was ER resin layer (20μ)/PP layer (10μ)/
After taking the three-layer blown film of the ER tree JIIi layer (20 μ), the film was slit into a tape width of 40 m, stretched in the longitudinal direction at a stretching roll temperature of 103°C and a stretching ratio of 5 times (3012 denier), and split with a split roll. It was defibrated to a width of 0.07 m5. The defibrated yarn had a denier of 3012.

その断面構造を模式的に示すと、第2図のようになシ、
ER樹脂層3、pp層2、ER樹脂層3からなる複合構
造体である。
The cross-sectional structure is schematically shown in Figure 2.
It is a composite structure consisting of an ER resin layer 3, a pp layer 2, and an ER resin layer 3.

得られた解繊糸に第1図に示す装置を用いて水溶性樹脂
粉末を融着せしめ、次いでこれを架橋処理せしめた。
A water-soluble resin powder was fused to the obtained fibrillated yarn using the apparatus shown in FIG. 1, and then crosslinked.

すなわち、解繊糸lをまず帯電コーテング機(静電粉体
塗装機、日本ランズパーグ(株)製、721APユニツ
ト)5に送った。この帯電コーテング機5はコーテング
槽6とガン7と水溶性樹脂粉末の貯槽8を備え、コロナ
放電によって水溶性樹脂粉末を帯電させ、これを圧力空
気によって解繊糸1上に噴射する機能を有している。
That is, the defibrated yarn 1 was first sent to a charging coating machine (electrostatic powder coating machine, 721AP unit, manufactured by Nippon Landsparg Co., Ltd.) 5. This charging coating machine 5 is equipped with a coating tank 6, a gun 7, and a water-soluble resin powder storage tank 8, and has a function of charging the water-soluble resin powder by corona discharge and injecting it onto the defibrated yarn 1 using pressurized air. are doing.

この帯電コーテング機5をガン発生電圧70kV、空気
量10 Nm’/時の条件で稼動し、ガン7から水溶性
樹脂粉末として平均粒径50μ程度のポリアクリル酸ソ
ーダ粉末を解繊糸1上に噴出せしめた。
The charging coating machine 5 was operated under conditions of a gun generation voltage of 70 kV and an air flow rate of 10 Nm'/hour, and the gun 7 applied sodium polyacrylate powder with an average particle size of about 50 μm as a water-soluble resin powder onto the fibrillated yarn 1. It erupted.

なお、解繊糸lの走行速度は3 m 7分とした。Note that the traveling speed of the defibrated yarn 1 was 3 m and 7 minutes.

この操作で、解繊糸lのKR樹脂層の表面はポリアクリ
ル酸ソーダ粉末が付着した状態となった。付着量は45
重量係であった。次に、上記粉末が付着した解繊糸l′
は130℃の加熱空気が循環している加熱装置9に送っ
た。この操作によってER樹脂層の表面は溶融状態とな
シ、ここにポリアクリル酸ソーダ粉末がよシ強固に融着
する。
With this operation, the surface of the KR resin layer of the defibrated yarn 1 was brought into a state where the sodium polyacrylate powder was adhered. The adhesion amount is 45
He was in charge of weight. Next, the defibrated thread l′ to which the powder has adhered is
was sent to a heating device 9 in which heated air at 130° C. was circulated. This operation brings the surface of the ER resin layer into a molten state, and the sodium polyacrylate powder is more firmly fused thereto.

続いて、ポリアクリル酸ソーダ粉末が融着した解繊糸I
Nは架橋処理装置10に送シ、濃度0.O1重量係のエ
チレングリコールジグリシジルエーテル水溶液を、オイ
リングロール11の回転数をlrpmに保ちながら解繊
糸l“上にオイリングした。
Next, a fibrillated yarn I to which polyacrylic acid soda powder was fused
N is sent to the crosslinking treatment device 10, and the concentration is 0. An aqueous solution of ethylene glycol diglycidyl ether having a weight ratio of O1 was oiled onto the defibrated yarn l'' while maintaining the rotational speed of the oiling roll 11 at lrpm.

なお、オイリング量はポリアクリル酸ソーダの重量に対
して0.O1重量係とした。
The amount of oiling is 0.0% based on the weight of sodium polyacrylate. I was in charge of O1 weight.

こ、の架橋処理した解繊糸1“′は続いて温度200℃
の乾燥器12に送)、ロール13・・・間でジグザグに
8分間走行せしめて乾燥処理し、最後にボビン14に巻
き取った。
This cross-linked defibrated yarn 1'' was then heated to a temperature of 200°C.
(to a dryer 12) and rolls 13 for 8 minutes in a zigzag pattern for drying, and finally wound onto a bobbin 14.

得られた吸水性複合体の模式的断面構造は第3図に示す
とおシであシ、ER樹脂層3の表面に架橋処理物4が均
一に付着し、これは電子顕微鏡による観察でも確められ
た。なお、吸水性複合体の特性を表1に示す。
The schematic cross-sectional structure of the obtained water-absorbent composite is shown in FIG. It was done. The properties of the water absorbent composite are shown in Table 1.

実施例2 帯電コーテング機の空気量を5 Nm37時、ポリアク
リル酸ソーダ粉末の付着量を20重量幅としたこと以外
は実施例1と同様にして吸水性複合体を製造した。その
特性を表1に示す。
Example 2 A water-absorbing composite was produced in the same manner as in Example 1, except that the amount of air in the charging coating machine was 5 Nm37, and the amount of sodium polyacrylate powder deposited was 20 weight range. Its characteristics are shown in Table 1.

実施例3 下記組成、処決によシサイド・パイ・サイド盤二層複合
繊維体を紡糸した。
Example 3 A two-layer conjugate fiber body of side-pie-side disk was spun with the following composition and treatment.

サイド1 スクリュー径  40瓢φ シリンダー温度  at   170℃c、   24
0℃ Cs   230℃ L−LDPE(直鎖状低密度ポリエチレン、密度0.9
18117cm3、MFR9,0,9/10分、融点 
120℃)ペーy、 ERm n (無水マレイン酸グ
ラフト率0.35重量係、融点122℃) サイド2 スクリュー径  40■φ シリンダー温度  CI   180℃c、   24
0℃ cs   270℃ pp (結晶性ポリプロピレン、密度0.901/cr
m”、MFR10II/10分、融点162℃)ER樹
脂とPPは孔径1.0瓢φのノズルからドラフト100
で複合紡糸した。ER樹脂とppの比率は50対50(
重量比)であった。次いで、延伸ロール温度130℃、
延伸倍高2倍で延伸し、繊度3020デニ一ル760本
の複合繊維体を得た。
Side 1 Screw diameter 40mm Cylinder temperature at 170℃, 24
0℃ Cs 230℃ L-LDPE (linear low density polyethylene, density 0.9
18117cm3, MFR9,0,9/10min, melting point
120℃)Page, ERm n (Maleic anhydride graft ratio 0.35 weight ratio, melting point 122℃) Side 2 Screw diameter 40■φ Cylinder temperature CI 180℃c, 24
0℃ cs 270℃ pp (crystalline polypropylene, density 0.901/cr
m", MFR10II/10 minutes, melting point 162℃) ER resin and PP were subjected to draft 100 from a nozzle with a hole diameter of 1.0mm.
Composite spinning was performed. The ratio of ER resin and pp is 50:50 (
weight ratio). Next, the stretching roll temperature was 130°C,
Stretching was carried out at a stretching ratio of 2 to obtain 760 composite fibers having a fineness of 3020 denier.

この複合繊維体を第1図に示す装置に供給し、ポリアク
リル酸ソーダ粉末の付着量を35重量係としたことを除
いて、以下実施例1と同様にして吸水性複合体を得た。
This composite fiber body was supplied to the apparatus shown in FIG. 1, and a water-absorbing composite was obtained in the same manner as in Example 1, except that the amount of sodium polyacrylate powder attached was 35% by weight.

その特性を表1に示す。Its characteristics are shown in Table 1.

*rf!リアクリル酸ソーダ付着量 *牢 エチレングリコールジグリシジルエーテル添加量
〔発明の効果〕 以上述べたように、本発明の方法によって製造された吸
水性複合体は従来のものよシも吸水量倍率が優シ、また
引張強度をも有するばかシか、取扱いも含浸のものに比
べて容易である。しかも、簡単な手段によって水溶性樹
脂の架橋処理物の付着を均一になすことができ、製造時
の水溶性樹脂の無駄も少なく、コストの節減を図ること
ができるなどの長所を有する。
*rf! Amount of sodium lyacrylate attached*Amount of ethylene glycol diglycidyl ether added [Effects of the invention] As described above, the water-absorbing composite produced by the method of the present invention has a superior water absorption ratio compared to the conventional one. It also has good tensile strength and is easier to handle than impregnated ones. Moreover, it has the advantage that the crosslinked material of the water-soluble resin can be uniformly adhered by a simple means, there is little wastage of the water-soluble resin during production, and costs can be reduced.

したがってこの吸水性複合体は伝導ケーブル用防水被覆
材としてきわめて有益であるばかシか、農園芸用保水シ
ート、土木建築用の止水材、諸工業用脱水材、衛生材等
の素材として重要な用途を有するものである。
Therefore, this water-absorbing composite is extremely useful as a waterproof covering material for conductive cables, and is also an important material for water-retaining sheets for agriculture and horticulture, water-stopping materials for civil engineering and construction, dewatering materials for various industries, sanitary materials, etc. It has a purpose.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例で採用されるフローチャート
、第2図は同実施例で用いる解繊糸の模式的横断面図、
第3図は同実施例によって得られる吸水性複合体の模式
的横断面図である。 1・・・解繊糸、2・・・pp層、3・・・ER樹脂層
、4・・・架橋処理物、5・・・帯電コーテング機、7
・・・ガン、9・・・加熱装置、10・・・架橋処理装
置、11・・・オイリングロール、12・・・乾燥器、
 l 4・・・ボヒン。
FIG. 1 is a flowchart adopted in one embodiment of the present invention, FIG. 2 is a schematic cross-sectional view of a defibrated yarn used in the same embodiment,
FIG. 3 is a schematic cross-sectional view of a water-absorbing composite obtained by the same example. DESCRIPTION OF SYMBOLS 1... Defibrated yarn, 2... PP layer, 3... ER resin layer, 4... Crosslinked product, 5... Charged coating machine, 7
... gun, 9 ... heating device, 10 ... crosslinking treatment device, 11 ... oiling roll, 12 ... dryer,
l 4...Bohin.

Claims (2)

【特許請求の範囲】[Claims] (1)高融点合成樹脂の少なくとも一つの層と低融点合
成樹脂の少なくとも一つの層とからなり、該低融点合成
樹脂の層が少なくとも一部の表面に露出しているテープ
状積層体もしくはこれを割裂して得られる解繊糸または
複合繊維体を製造し、前記積層体もしくは解繊糸または
複合繊維体を低融点合成樹脂の融点近傍まで加熱してか
ら帯電コーテング機によって水溶性樹脂粉末を表面に露
出せる低融点合成樹脂層の外表面に融着せしめるか、ま
たは前記積層体もしくは解繊糸または複合繊維体に帯電
コーテング機によって水溶性樹脂粉末を付着させてから
該積層体もしくは解繊糸または複合繊維体を低融点合成
樹脂の融点近傍まで加熱して、水溶性樹脂粉末を表面に
露出せる低融点合成樹脂層の外表面に融着せしめ、次い
で融着した水溶性樹脂に架橋剤を接触せしめて水溶性樹
脂に架橋処理を施し、さらに乾燥処理を行なうことを特
徴とする吸水性複合体の製造方法。
(1) A tape-shaped laminate consisting of at least one layer of high-melting point synthetic resin and at least one layer of low-melting point synthetic resin, in which the layer of low-melting point synthetic resin is exposed on at least a part of the surface, or the same. The laminate, the fibrillated yarn, or the composite fiber body is heated to near the melting point of the low-melting point synthetic resin, and then a water-soluble resin powder is coated with a charged coating machine. Either by fusing the outer surface of the low melting point synthetic resin layer exposed on the surface, or by attaching water-soluble resin powder to the laminate, fibrillated yarn or composite fiber body using a charged coating machine, and then applying the laminate or fibrillation. The thread or composite fiber body is heated to near the melting point of the low melting point synthetic resin to fuse the water soluble resin powder to the outer surface of the exposed low melting point synthetic resin layer, and then a crosslinking agent is applied to the fused water soluble resin. 1. A method for producing a water-absorbing composite, which comprises cross-linking a water-soluble resin by contacting with a water-soluble resin, and further drying the water-soluble resin.
(2)前記帯電コーテング機が、コロナ放電によって水
溶性樹脂粉末を正または負に帯電させ、これを圧力空気
によってテープ状積層体もしくは解繊糸または複合繊維
体上噴射する機能を有する特許請求の範囲第(1)項記
載の吸水性複合体の製造方法。
(2) The charging coating machine has a function of positively or negatively charging water-soluble resin powder by corona discharge, and spraying it onto a tape-shaped laminate, defibrated yarn, or composite fiber body using pressurized air. A method for producing a water-absorbing composite according to scope (1).
JP62311007A 1987-12-10 1987-12-10 Production of water absorbable composite Pending JPH01156578A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62311007A JPH01156578A (en) 1987-12-10 1987-12-10 Production of water absorbable composite

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62311007A JPH01156578A (en) 1987-12-10 1987-12-10 Production of water absorbable composite

Publications (1)

Publication Number Publication Date
JPH01156578A true JPH01156578A (en) 1989-06-20

Family

ID=18012002

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62311007A Pending JPH01156578A (en) 1987-12-10 1987-12-10 Production of water absorbable composite

Country Status (1)

Country Link
JP (1) JPH01156578A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1996017569A3 (en) * 1994-12-08 1996-11-21 Kimberly Clark Co Method of forming a particle size gradient in an absorbent article
US5814570A (en) * 1994-06-27 1998-09-29 Kimberly-Clark Worldwide, Inc. Nonwoven barrier and method of making the same
US5821178A (en) * 1994-12-30 1998-10-13 Kimberly-Clark Worldwide, Inc. Nonwoven laminate barrier material
US5830810A (en) * 1995-07-19 1998-11-03 Kimberly-Clark Worldwide, Inc. Nonwoven barrier and method of making the same
US5834384A (en) * 1995-11-28 1998-11-10 Kimberly-Clark Worldwide, Inc. Nonwoven webs with one or more surface treatments
US5998308A (en) * 1994-02-22 1999-12-07 Kimberly-Clark Worldwide, Inc. Nonwoven barrier and method of making the same

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5998308A (en) * 1994-02-22 1999-12-07 Kimberly-Clark Worldwide, Inc. Nonwoven barrier and method of making the same
US5814570A (en) * 1994-06-27 1998-09-29 Kimberly-Clark Worldwide, Inc. Nonwoven barrier and method of making the same
WO1996017569A3 (en) * 1994-12-08 1996-11-21 Kimberly Clark Co Method of forming a particle size gradient in an absorbent article
US5807366A (en) * 1994-12-08 1998-09-15 Milani; John Absorbent article having a particle size gradient
US5916204A (en) * 1994-12-08 1999-06-29 Kimberly-Clark Worldwide, Inc. Method of forming a particle size gradient in an absorbent article
US5821178A (en) * 1994-12-30 1998-10-13 Kimberly-Clark Worldwide, Inc. Nonwoven laminate barrier material
US5830810A (en) * 1995-07-19 1998-11-03 Kimberly-Clark Worldwide, Inc. Nonwoven barrier and method of making the same
US5834384A (en) * 1995-11-28 1998-11-10 Kimberly-Clark Worldwide, Inc. Nonwoven webs with one or more surface treatments

Similar Documents

Publication Publication Date Title
US4966809A (en) Water-absorbing composite body
ES2248949T3 (en) EMPLOYMENT OF AN ADHESIVE TAPE BASED ON A NON-FABRICED VELO THERMALLY FIXED WITH BLOWED EXTRUDED FIBERS.
US5143786A (en) Composite fibers, water-absorbing material using the composite fibers as a base material and method for producing the same
CZ20002060A3 (en) Swab for woman's hygiene or sanitary purposes and process for producing thereof
US6063492A (en) Adhesive tape and its base fabric
US20030181119A1 (en) Nonwoven- fabric laminate and use thereof
JPH01156578A (en) Production of water absorbable composite
JP2006509660A (en) Low cost non-woven fabric laminate that has high wet peelability and improved barrier properties and can be sterilized with ethylene oxide
JPS63235558A (en) Steaming adhesive nonwoven cloth and its production
US3307992A (en) Process of manufacturing a web product using an adhesive plastisol
JP2000158570A (en) Method for manufacturing composite web
JPS6335883A (en) Production of water absorbable fiber
JPS6335884A (en) Production of water absorbable fiber
JPS62237613A (en) Manufacture of moisture-proof covering of conducting cable
JPS6335881A (en) Production of water absorbable fiber
JP2006204377A (en) Sticking material and sticking preparation using it
JPS6335867A (en) Production of water absorbable web and water absorbable sheet like nonwoven fabric
JPS62233014A (en) Conductive cable covering material
JPS6335882A (en) Production of water absorbable fiber
JPS5922979A (en) Hot-melt adhesive coated yarn
JP3529628B2 (en) Optical cable manufacturing method
JP4402055B2 (en) Adhesive tape
JPH01145002A (en) Water-absorptive insole
JPS63283526A (en) Agricultural nonwoven fabric
JPS62161841A (en) Method for maintaining treatment effect of processing substrate treated with corona discharge