JPH01162194A - Load following operation of nuclear reactor - Google Patents

Load following operation of nuclear reactor

Info

Publication number
JPH01162194A
JPH01162194A JP62320319A JP32031987A JPH01162194A JP H01162194 A JPH01162194 A JP H01162194A JP 62320319 A JP62320319 A JP 62320319A JP 32031987 A JP32031987 A JP 32031987A JP H01162194 A JPH01162194 A JP H01162194A
Authority
JP
Japan
Prior art keywords
water
reactivity
following operation
nuclear reactor
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62320319A
Other languages
Japanese (ja)
Inventor
Yoshiaki Makihara
義明 牧原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP62320319A priority Critical patent/JPH01162194A/en
Priority to EP88306621A priority patent/EP0300745A3/en
Publication of JPH01162194A publication Critical patent/JPH01162194A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To compensate a reactivity change caused by a load following operation of a nuclear reactor, by providing a water rejecting tube in a fuel assembly and exchanging a fluid in the water rejecting tube from water to a water rejecting material. CONSTITUTION:In a fuel assembly 2 of a pressurized water nuclear reactor, its structural members consist of an upper nozzle and a lower nozzle 7 and 8, a support grid 11 and a control rod guide thimble 12. Between the nozzles 7 and 8, a number of fuel rods (only one rod is shown in the attached figure) and one or more water rejecting tubes 14 are housed. A pressurized gas or heavy water is filled in a tank 25 by closing a valve V1 of an injection device of a water rejection material. When valve V2 is opened, water in the tube 14 is flushed with a pressure decrease in the tube and the water in the tube 14 flows out from a junction tube 24. With closing the valve V2 and opening the valve V1, the water rejecting material in the tank 24 is injected into the tube 14 through an injection tubes 17a and 17b and also an injection inlet 18. Thereby, an H/U ratio changes and then compensation of a reactivity can be executed. The similar procedure can be applied for exchanging the water rejecting material with water.

Description

【発明の詳細な説明】 (イ)発明の目的 [産業上の利用分野] この発明は、原子炉の負荷追従運転時の出力及び反応度
制御をするための負荷追従運転方法に関するものである
Detailed Description of the Invention (a) Purpose of the Invention [Field of Industrial Application] The present invention relates to a load following operation method for controlling output and reactivity during load following operation of a nuclear reactor.

[従来の技術] 一般に、原子炉の出力を変化させた場合には、減速材温
度の変化による反応度変化A、燃料温度変化によるドツ
プラー反応度変化B及びキセノン量の変化による反応度
変化Cがある。第7図に原子炉の負荷追従運転時の出力
及び反応度変化の例を示す。
[Prior Art] Generally, when the output of a nuclear reactor is changed, there are a change in reactivity A due to a change in moderator temperature, a change in Doppler reactivity B due to a change in fuel temperature, and a change in reactivity C due to a change in xenon amount. be. Figure 7 shows an example of changes in output and reactivity during load following operation of a nuclear reactor.

これらの反応度変化を補償するように反応度制御設備を
作動させる必要がある。
Reactivity control equipment must be operated to compensate for these reactivity changes.

第8図に加圧水型炉の原子炉容器22の断面を示す。炉
心10には燃料が装荷されているが、炉心の反応度を制
御する設備として制御棒32と一次冷却材に混入された
硼酸33がある。
FIG. 8 shows a cross section of the reactor vessel 22 of the pressurized water reactor. The reactor core 10 is loaded with fuel, and there are control rods 32 and boric acid 33 mixed in the primary coolant as equipment for controlling the reactivity of the reactor core.

制御棒32には、出力制御に使用する反応度価値の大き
い出力制御用制御棒と、負荷追従運転時、出力制御用制
御棒の補助として使用する出力制御用制御棒より反応度
価値の小さい弱吸収の制御棒とがある。
The control rods 32 include an output control control rod with a high reactivity value used for output control, and a weak reactivity control rod with a lower reactivity value than the output control control rod used as an auxiliary to the output control control rod during load following operation. There is an absorption control rod.

[発明が解決しようとする問題点] 加圧水型炉で反応度制御に制御棒に加えて硼酸を使用す
る場合、硼酸の濃縮と希釈を頻繁に行う必要がある。硼
酸の濃縮または希釈は、−次系ループの通常は一次冷却
材ボンブの入口側に硼酸水または純水を注入することに
よって行うが、−次冷却材中の硼酸m度を平均的に変化
させる必要があるため、反応度の変化率が小さい。従っ
て、早い出力変化にともなう早い反応度変化の制御に使
用するのは困難であり、−膜内にはキセノン量の変化に
対する反応度補償を行う。また、硼酸濃度の変化に伴う
水処理量が増大し、水処理系のコストが増大する。弱吸
収の制御棒は、硼酸使用による前述のような問題点を解
決する方策として考えられたもので、硼酸の濃縮、希釈
の代りに炉心に出し入れして反応度制御を行うが出力分
布への影響が大きいこと、及び駆動装置や制御棒案内管
が必要となり、やはりコストアップとなる。また駆動部
があるということで信頼性や耐久性が問題となる。
[Problems to be Solved by the Invention] When boric acid is used in addition to control rods for reactivity control in a pressurized water reactor, it is necessary to frequently concentrate and dilute the boric acid. Concentration or dilution of boric acid is usually performed by injecting boric acid water or pure water into the inlet side of the primary coolant bomb in the secondary system loop, but this method changes the boric acid degree in the secondary coolant on average. Because of this, the rate of change in reactivity is small. Therefore, it is difficult to use it to control rapid changes in reactivity due to rapid changes in output; Furthermore, the amount of water to be treated increases as the boric acid concentration changes, increasing the cost of the water treatment system. Weak absorption control rods were devised as a solution to the aforementioned problems caused by the use of boric acid, and instead of concentrating or diluting boric acid, they are moved in and out of the reactor core to control reactivity, but they do not affect the power distribution. The impact is large, and a drive device and control rod guide tube are required, which also increases costs. Also, since there is a drive section, reliability and durability become issues.

また、制御棒のみで出力制御を行おうとすれば制御棒の
挿入、引抜によって炉心内の出力分布が悪化することと
なり、安全余裕が減少する。
Furthermore, if an attempt is made to control the output using only the control rods, the power distribution within the reactor core will deteriorate due to the insertion and withdrawal of the control rods, reducing the safety margin.

炉心内の反応度を制御する方法として、上記のように炉
心内の中性子吸収物質の世を変化させる方法の他に、水
素対ウラン原子数比(H/U)を変化させる方法がある
。これはH/Uを変えることによって炉心内の中性子エ
ネルギースペクトルを変化させ、反応度を制御する方法
である。
As a method of controlling the reactivity in the reactor core, in addition to the method of changing the neutron absorbing material in the core as described above, there is a method of changing the hydrogen to uranium atomic ratio (H/U). This is a method of controlling reactivity by changing the neutron energy spectrum within the reactor core by changing H/U.

加圧水型炉では特願昭62−184390の発明に示さ
れているように炉心内のH/Ll比を変える機能をもつ
原子炉の提案はなされているが、それは運転サイクル前
半と後半とでH/Ll比を変えることによってウラン使
用量減少を図るものであり負荷変化にともなう反応度制
御を行うものではない。
As for pressurized water reactors, a nuclear reactor with a function of changing the H/Ll ratio in the core has been proposed, as shown in the invention of Japanese Patent Application No. 184390/1982. The purpose is to reduce the amount of uranium used by changing the /Ll ratio, and it is not intended to control the reactivity as the load changes.

この発明は上記の如き事情に鑑みてなされたものであっ
て、炉心内の出力分布を悪化させることなく、負荷変化
に伴う反応度制御を容易に行うことができる運転方法を
提供することを目的とするものである。
This invention was made in view of the above circumstances, and an object of the present invention is to provide an operating method that can easily control reactivity in response to load changes without deteriorating the power distribution within the reactor core. That is.

(ロ)発明の構成 [問題を解決するための手段] この目的に対応して、この発明の原子炉の負荷追従運転
方法は、炉心内の燃料要素が占める領域以外の領域にお
いて冷却材領域と水排除領域に分離した軽水冷却軽水減
速型原子炉において、前記水排除領域の流体を水と水排
除材との間で入れ替えることによって負荷追従運転にと
もなう反応度変化を補償することを特徴としている。
(B) Structure of the Invention [Means for Solving the Problem] In response to this objective, the load following operation method for a nuclear reactor of the present invention provides a method for operating a nuclear reactor in which a coolant region is used in an area other than the area occupied by fuel elements in the reactor core. A light water-cooled, light water-moderated nuclear reactor separated into a water exclusion area, characterized in that the fluid in the water exclusion area is replaced between water and a water exclusion material to compensate for changes in reactivity due to load following operation. .

以下、この発明の詳細を一実施例を示す図面について説
明する。
Hereinafter, details of the present invention will be explained with reference to the drawings showing one embodiment.

第1図において1は水排除材注入設備であり、水排除材
注入設備1は燃料集合体2と流体給排装@3とを備えて
いる。
In FIG. 1, reference numeral 1 denotes a water removal material injection facility, and the water removal material injection facility 1 includes a fuel assembly 2 and a fluid supply/discharge device @3.

燃料集合体2は、上部ノズル7、下部ノズル8、支持格
子11とi制御棒案内シンプル12で構造材を成し、上
部ノズル7と下部ノズル8の間に燃料棒13と水排除管
14が納められる。
The fuel assembly 2 includes an upper nozzle 7, a lower nozzle 8, a support grid 11, and an i-control rod guide simple 12 as structural members, and between the upper nozzle 7 and the lower nozzle 8, a fuel rod 13 and a water drainage pipe 14 are installed. It can be paid.

水排除管14は1燃料束合体あたり1本または複数本有
り、上端は密閉された中空管である。水排除管は複数本
ごとに1組をなし、1組における水排除管は下部ノズル
8のレッグ部分で連結管15によって連結されている。
There is one or more water discharge pipes 14 per fuel bundle, and the water discharge pipes 14 are hollow pipes whose upper ends are sealed. A plurality of water discharge pipes constitute one set, and the water discharge pipes in one set are connected by a connecting pipe 15 at a leg portion of the lower nozzle 8.

連結管15は、水排除材の注入、排出のための接続口1
6を持つ。
The connecting pipe 15 is a connection port 1 for injecting and discharging water removal material.
Has 6.

下部炉心構造物側の水排除材注入管17aは、各燃料集
合体への注入口18を持ち、5部炉心板21の下側で連
結されて原子炉容器22側の水排除材注入管17bと接
続位!I23で接続している。
The water exclusion material injection pipe 17a on the lower core structure side has an injection port 18 to each fuel assembly, and is connected below the five-part core plate 21 to the water exclusion material injection pipe 17b on the reactor vessel 22 side. And connection position! It is connected via I23.

水排除材注入管17bは、原子炉容器22を貫通し流体
給排装置3の分岐管24上流側のバルブ■1を経て水排
除材注入タンク25に接続している。水排除材注入タン
ク25には、水排除材注入系27と水注入系28が接続
されている。また、加圧系31がついており、水排除系
を加圧することが出来る。
The water removal material injection pipe 17b penetrates the reactor vessel 22 and is connected to the water removal material injection tank 25 via the valve 1 on the upstream side of the branch pipe 24 of the fluid supply and discharge device 3. A water exclusion material injection system 27 and a water injection system 28 are connected to the water exclusion material injection tank 25 . Additionally, a pressurizing system 31 is attached, and the water removal system can be pressurized.

分岐管24にはバルブ■2が取り付けられており、その
先はブローダウン系へと繋がっている。
A valve 2 is attached to the branch pipe 24, and the end thereof is connected to the blowdown system.

この発明では炉心内の燃料要素以外の領域を冷却材が流
れる領域と水排除材または水が流入される領域に分離し
た燃料集合体を用いる。
In this invention, a fuel assembly is used in which a region other than the fuel elements in the core is separated into a region through which coolant flows and a region into which a water removal material or water flows.

第2図にこの発明で使用する燃料集合体2の水平断面図
を示す。この実施例では19X19配列の燃料棒13(
すなわち、燃料棒束)の中に制御棒案内シンプル12と
水排除管14及び計装用案内管19がある。制御棒案内
シンプル12は、上端が解放された中空管であり、上側
から制御棒が挿入され、制御棒が引抜状態では水が入っ
ている。
FIG. 2 shows a horizontal sectional view of the fuel assembly 2 used in the present invention. In this embodiment, the fuel rods 13 (
That is, a control rod guide simple 12, a water discharge pipe 14, and an instrumentation guide pipe 19 are included in the fuel rod bundle. The control rod guide simple 12 is a hollow tube with an open upper end, into which a control rod is inserted from the upper side, and contains water when the control rod is pulled out.

水排除管14は上端が封止されており、下端で原子炉容
器の外側にある流体給排装置3と連結されている。
The water discharge pipe 14 is sealed at its upper end and connected at its lower end to the fluid supply and discharge device 3 located outside the reactor vessel.

水排除材としてはヘリウム、アルゴン等の気体、または
重水が用いられる。
A gas such as helium or argon, or heavy water is used as the water removal material.

炉心内の反応度制御は細かく行う必要があるため、燃料
集合体は複数のグループに分けられる。
Because reactivity within the core must be precisely controlled, fuel assemblies are divided into multiple groups.

第4図に炉心断面図と燃料集合体のグループ分けの例を
示す。この例では燃料集合体は第1グループから第4グ
ループまでの4グループに分割され、各グループの水排
除管内の流体はグループ毎に独立に入れ替えることがで
きる。
Figure 4 shows a cross-sectional view of the core and an example of grouping of fuel assemblies. In this example, the fuel assembly is divided into four groups from the first group to the fourth group, and the fluid in the water discharge pipes of each group can be replaced independently for each group.

[作用] 次に以上の構成の原子炉における負荷追従運転方法を説
明する。
[Operation] Next, a load following operation method in the nuclear reactor having the above configuration will be explained.

負荷が変動した場合に、負荷追従運転時の反応度制御は
制御棒と炉心内の水排除割合の変化を用いて行う。水排
除割合の変化は、次のようにして行う。
When the load fluctuates, reactivity control during load following operation is performed using changes in the water removal rate in the control rods and core. The water removal rate is changed as follows.

a)燃料集合体2は炉心10に装荷し、原子炉容器22
に図示していない蓋をした後、1次冷却材は約157気
圧に加圧され、また温度は約290℃になるまで加熱さ
れる。この時水排除管14内は水に満たされており、水
排除系はバルブ■2は閉じ、バルブv1は開として1次
冷却材と同様の圧になるように加圧する。この状態で原
子炉出力はまだゼロである。
a) The fuel assembly 2 is loaded into the reactor core 10 and the reactor vessel 22 is loaded.
After putting on a lid (not shown), the primary coolant is pressurized to about 157 atmospheres and heated to about 290°C. At this time, the inside of the water discharge pipe 14 is filled with water, and the water discharge system is pressurized to the same pressure as the primary coolant by closing valve (2) and opening valve (v1). In this state, the reactor output is still zero.

b)バルブv1を閉じて水排除材注入タンク25内の水
を排除し、代りに水排除材を充満し、約157気圧に加
圧して置く。水排除材としては中性子吸収が小さくかつ
中性子減速効果が水より小さい物質であれば良いのでヘ
リウム、アルゴンのような気体でも重水でも良い。
b) Close the valve v1 to remove the water in the water removal material injection tank 25, fill it with water removal material instead, and pressurize it to about 157 atmospheres. The water exclusion material may be a gas such as helium or argon, or heavy water, as long as it has a small neutron absorption and a neutron moderation effect smaller than that of water.

C)次にバルブ■2を開く。分岐fff24はブローダ
ウンラインに繋がっており、また水排除管14は炉心1
0内の冷却材と同じ約290℃となっているので、減圧
に伴ってフラッシングがおき、水排除管14内の水は水
、排除材注入管17a。
C) Next, open valve ■2. The branch fff24 is connected to the blowdown line, and the water removal pipe 14 is connected to the reactor core 1.
Since the temperature is about 290° C., which is the same as that of the coolant in the water, flushing occurs as the pressure is reduced, and the water in the water discharge pipe 14 is water and the water in the discharge material injection pipe 17a.

17b内を流れて分岐管24からブローダウンラインへ
と流出する。
17b and flows out from the branch pipe 24 to the blowdown line.

d)水排除管14内の水が流出した時点でバルブ■2を
閉じ、バルブ■1を開くと水排除材注入タンク25内は
加圧されているのでこの中の水排除材が水排除材注入管
178.17bを通って水排除管14に注入される。
d) When the water in the water drainage pipe 14 flows out, close the valve 2 and open the valve 1. Since the inside of the water removal material injection tank 25 is pressurized, the water removal material inside the water removal material is used as a water removal material. The water is injected into the water removal pipe 14 through the injection pipe 178.17b.

e)この状態で運転を開始すれば水排除管14内は水排
除材で充満し水は排除されていることとなる。運転中は
バルブ■1を開いて水排除材注入タンク25を一次冷却
材と同様の圧力まで加圧し、水排除管14に大きな差圧
がかからないようにする。
e) If the operation is started in this state, the inside of the water discharge pipe 14 will be filled with the water discharge material and water will be discharged. During operation, the valve 1 is opened to pressurize the water removal material injection tank 25 to the same pressure as the primary coolant, so that a large pressure difference is not applied to the water removal pipe 14.

f)負荷追従運転時において、水排除管14内の水排除
材を水に置換えるには、バルブ■1を閉じて水排除材注
入タンク25内の水排除材を水に置換した後、c)、d
)、e)の操作をすればよい。
f) To replace the water removal material in the water removal pipe 14 with water during load following operation, close the valve 1 and replace the water removal material in the water removal material injection tank 25 with water, and then ), d
), e).

第4図に、H/U比の変化m対反応度変化量の典型例を
示す。この図は、H/Ll比の絶対値等によって変化す
るが、ここでは水排除領域に水を入れた場合のH/U比
が4.5である場合について示した。
FIG. 4 shows a typical example of the change m in H/U ratio versus the amount of change in reactivity. This figure changes depending on the absolute value of the H/Ll ratio, etc., but here it is shown for the case where the H/U ratio is 4.5 when water is poured into the water exclusion region.

負荷追従運転時の制御反応度mは出力の変化幅によって
異なるが、最大値は100%−〇%出力変化時で約3.
5%Δρであり、従って全反応度制御をH2O比の変化
で補償するためには水排除割合を約15%変化させる必
要がある。この値はH/U比によって異なるが、現実的
なH/Uの範囲では20%まで考えておけば十分である
The control reactivity m during load following operation varies depending on the range of output change, but the maximum value is approximately 3.0 when the output changes from 100% to 0%.
5% Δρ, and therefore it is necessary to change the water rejection rate by about 15% to compensate for the total reactivity control by changing the H2O ratio. Although this value varies depending on the H/U ratio, it is sufficient to consider up to 20% in a realistic H/U range.

また、負荷追従運転時のキセノンによる反応度変化は最
大で1%Δに程度考えておけばよく、キセノン分のみを
H/U比の変化で補償し、他の反応度変化を制御棒で補
償するとすれば水排除割合は約5%変化させてやればよ
い。
In addition, it is only necessary to consider that the reactivity change due to xenon during load following operation is about 1%Δ at most, so only the xenon component is compensated for by the change in the H/U ratio, and other reactivity changes are compensated for by the control rod. In this case, the water removal rate should be changed by about 5%.

第5図に100%出力18時間、50%出力6時間の日
負荷追従運転時に、全反応変化をH/U比の変化で補償
した場合の運転例を示す。この例では全燃料集合体の水
排除管を使用しており、水排除割合は最大約20%であ
る。
FIG. 5 shows an example of operation in which all reaction changes are compensated for by changes in the H/U ratio during daily load following operation for 18 hours at 100% output and 6 hours at 50% output. In this example, water removal pipes for the entire fuel assembly are used, and the maximum water removal rate is about 20%.

燃料集合体を4グループに分割してH/U比を5段に変
化させるようにしている。従って水排除割合の変化は連
続的にならないので、その分を制御棒を補助的に動かし
、出力を一定に保っている。
The fuel assembly is divided into four groups and the H/U ratio is changed in five stages. Therefore, since the water removal rate does not change continuously, the control rods are moved auxiliary to compensate for the change, keeping the output constant.

第5図から分るように制御棒は炉心の上端付近で出力補
正のために僅かに動いているだけであり、従って炉心内
の出力分布は非常に安定したものとなる。
As can be seen from FIG. 5, the control rods only move slightly near the top of the core for power correction, and therefore the power distribution within the core is very stable.

第6図は主としてキセノン変化をHlU比の変化で補償
する方式の運転例を示す。本例では負荷追従運転に使用
する水排除割合は最大4%である。
FIG. 6 shows an example of operation in which xenon changes are mainly compensated for by changes in the HlU ratio. In this example, the maximum water removal rate used for load following operation is 4%.

これらの水排除領域は4グループに分割され、段階的に
H/U比を変えることができる。
These water exclusion areas are divided into four groups, and the H/U ratio can be changed in stages.

出力を50%に低化させるには制御棒を炉心内の60%
位置まで挿入する。出力低下後、キセノンの蓄積に伴う
反応度補償は主として水排除割合を変えることによって
行う。低出力時に制御棒位置が移動しているのは出力分
布を制御するためであり、段差がついているのは水排除
割合を階段状に変化させるための反応度変化を補償する
ためである。6時間後、出力を100%に戻した後は、
再びキセノンによる反応度変化を補償するために段階的
に水を排除していく。
To reduce the power to 50%, move the control rods to 60% of the core.
Insert up to the position. After the power decreases, reactivity compensation due to the accumulation of xenon is mainly performed by changing the water rejection rate. The reason why the control rod position is moved at low power is to control the power distribution, and the reason why there is a step is to compensate for the change in reactivity that changes the water removal rate in a stepwise manner. After 6 hours, after returning the output to 100%,
Again, water is removed in stages to compensate for the change in reactivity due to xenon.

(ハ)発明の効果 この発明では負荷追従運転時の反応度制御のほとんどを
制御棒と炉心内の水排除割合の変化を用いて行うため、
負荷追従運転実施のための設備増加は必要ない。
(c) Effects of the invention In this invention, most of the reactivity control during load following operation is performed using control rods and changes in the water removal rate in the core.
No additional equipment is required to implement load following operation.

具体的には負荷追従運転時、硼酸の濃縮、希釈は行わな
いので、硼酸濃縮、希釈に係わる設備の増強は必要ない
Specifically, during load following operation, boric acid is not concentrated or diluted, so there is no need to strengthen equipment for boric acid concentration or dilution.

また、弱吸収の制御棒を使用する必要もないことからコ
ストアップも避けることができる。
Furthermore, since there is no need to use weakly absorbing control rods, cost increases can also be avoided.

次に、H2O比は軸方向に一様に変化させることができ
るので、制御棒を使用する場合より軸方向の出力分布の
変化を小さくおさえることができる。従って負荷追従運
転にともなって安全余裕を減少させることもない。
Next, since the H2O ratio can be changed uniformly in the axial direction, changes in the axial power distribution can be suppressed to a smaller extent than in the case of using control rods. Therefore, the safety margin does not decrease due to load following operation.

このようにこの発明では水排除領域の流体の置換によっ
て負荷変化時の反応度変化を補償しているので、制御棒
の動きを大幅に減少させると共に、−次冷却材中の硼酸
の濃度変化をほとんどゼロにすることができる。
In this way, this invention compensates for changes in reactivity due to changes in load by replacing the fluid in the water exclusion region, thereby significantly reducing movement of the control rods and reducing the concentration of boric acid in the secondary coolant. It can be reduced to almost zero.

従来の負荷追従方式ではキセノン補償を硼酸で行ってい
たために特に硼酸の希釈能力の制限から負荷追従可能期
間が制限されていた。また硼酸が早い反応度変化に対応
できないため、100%出力への即時復帰能力を制限さ
れていた。本発明では設備の増強なしでこれらの問題が
一挙に解決でき、負荷追従運転への対応能力が大幅に向
上する。
In the conventional load follow-up method, xenon compensation was performed using boric acid, so the period during which load follow-up was possible was limited due to limitations in the dilution ability of boric acid. Furthermore, since boric acid cannot respond to rapid changes in reactivity, the ability to quickly return to 100% output is limited. The present invention can solve these problems all at once without increasing equipment, and the ability to respond to load following operation is greatly improved.

また、負荷追従用の制御棒も不要であり、大幅なコスト
ダウンが可能となる。
Furthermore, there is no need for a control rod for load following, making it possible to significantly reduce costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は原子炉の水排除設備を示す構成説明図、第2図
は原子炉の燃料集合体を示す横断面説明図、第3図は原
子炉炉心を示す構成説明図、第4図はH/U比の変化量
と反応度変化量の関係を示すグラフ、第一5図は出力と
制御棒位置と水排除割合の時間変化を示すグラフ、第6
図は出力と制御棒位置と水排除割合の時間変化を示すグ
ラフ、第7図は出力及び反応度変化の例を示すグラフ、
及び第8図は原子炉容器の縦断面説明図である。 1・・・水排除材注入設備  2・・・燃料集合体3・
・・流体給排装置  4・・・流体回収タンク5・・・
ガスサージタンク  6・・・水供給ポンプ7・・・上
部ノズル  8・・・5部ノズル  10・・・炉心 
 11・・・支持格子  12・・・制御棒案内シンプ
ル  13・・・燃料棒  14・・・水排除管15・
・・連結管   16・・・接続口   17a。 17b・・・水排除材注入管  18・・・注入口19
・・・計装用案内管  21・・・下部炉心板22・・
・原子炉容器  23・・・接続位置  24・・・分
岐管  25・・・水排除材注入タンク  27・・・
水排除材注入系  28・・・水注入系  31・・・
加圧系 第2図 + 1フト じ智v1 イト 第7図 時間 時間
Figure 1 is an explanatory diagram of the configuration showing the water removal equipment of the reactor, Figure 2 is an explanatory cross-sectional diagram of the fuel assembly of the reactor, Figure 3 is an explanatory diagram of the configuration of the reactor core, and Figure 4 is an explanatory diagram of the configuration showing the reactor core. A graph showing the relationship between the amount of change in the H/U ratio and the amount of change in reactivity. Figure 15 is a graph showing the time change in output, control rod position, and water removal rate.
The figure is a graph showing changes in output, control rod position, and water removal rate over time, and Figure 7 is a graph showing an example of changes in output and reactivity.
and FIG. 8 is an explanatory longitudinal cross-sectional view of the reactor vessel. 1...Water removal material injection equipment 2...Fuel assembly 3.
...Fluid supply and discharge device 4...Fluid recovery tank 5...
Gas surge tank 6...Water supply pump 7...Upper nozzle 8...5 part nozzle 10...Reactor core
11...Support grid 12...Control rod guide simple 13...Fuel rod 14...Water removal pipe 15.
...Connecting pipe 16... Connection port 17a. 17b... Water removal material injection pipe 18... Inlet 19
...Instrumentation guide tube 21...Lower core plate 22...
・Reactor vessel 23... Connection position 24... Branch pipe 25... Water removal material injection tank 27...
Water removal material injection system 28... Water injection system 31...
Pressure system Figure 2 + 1ft Jichi v1 Ite Figure 7 Time Time

Claims (4)

【特許請求の範囲】[Claims] (1)炉心内の燃料要素が占める領域以外の領域におい
て冷却材領域と水排除領域に分離した軽水冷却軽水減速
型原子炉において、前記水排除領域の流体を水と水排除
材との間で入れ替えることによって負荷追従運転にとも
なう反応度変化を補償することを特徴とする原子炉の負
荷追従運転方法
(1) In a light water-cooled light water-moderated nuclear reactor that is separated into a coolant region and a water exclusion region in an area other than the area occupied by the fuel elements in the core, the fluid in the water exclusion area is transferred between the water and the water exclusion material. A method for load following operation of a nuclear reactor, characterized by compensating for changes in reactivity due to load following operation by replacing the parts.
(2)前記水排除領域を複数の水排除領域区分に分割し
、前記それぞれの水排除領域区分ごとに前記入れ替えを
行うことを特徴とする特許請求の範囲第1項記載の原子
炉の負荷追従運転方法
(2) Load tracking of a nuclear reactor according to claim 1, characterized in that the water exclusion area is divided into a plurality of water exclusion area sections, and the replacement is performed for each of the water exclusion area sections. how to drive
(3)前記水排除領域のうち、水排除割合が20%相当
分以下となる部分について、水排除領域を複数のグルー
プに分割し当該グループ内の流体を順次水と水排除材と
に交替し、更に補助的に制御棒を用いて反応度補償を行
うことを特徴とする特許請求の範囲第1項または第2項
記載の原子炉の負荷追従運転方法
(3) For the portions of the water exclusion area where the water removal rate is equal to or less than 20%, the water exclusion area is divided into multiple groups and the fluid in the groups is sequentially replaced with water and water removal material. A method for load following operation of a nuclear reactor according to claim 1 or 2, further comprising performing reactivity compensation using control rods in an auxiliary manner
(4)前記水排除領域のうち、水排除割合が5%相当分
以下となる部分について、水排除領域を複数のグループ
に分割し、負荷追従運転にともなうキセノン量変化によ
る反応度変化の補償及び出力変化のための制御棒による
反応度補償の補助として当該水排除領域の流体をグルー
プ毎に順次水と水排除材とで入れ替えることを特徴とす
る特許請求の範囲第1項、第2項または第3項記載の原
子炉の負荷追従運転方法
(4) For the portions of the water removal area where the water removal rate is equal to or less than 5%, the water removal area is divided into multiple groups to compensate for changes in reactivity due to changes in xenon amount due to load following operation. Claims 1, 2 or 3, characterized in that the fluid in the water exclusion region is sequentially replaced with water and a water exclusion material for each group as an aid to reactivity compensation by the control rod for output changes. Load following operation method of nuclear reactor described in Section 3
JP62320319A 1987-07-23 1987-12-18 Load following operation of nuclear reactor Pending JPH01162194A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP62320319A JPH01162194A (en) 1987-12-18 1987-12-18 Load following operation of nuclear reactor
EP88306621A EP0300745A3 (en) 1987-07-23 1988-07-20 Reactivity control method of light-water cooled, lightwater moderated nuclear reactor core and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62320319A JPH01162194A (en) 1987-12-18 1987-12-18 Load following operation of nuclear reactor

Publications (1)

Publication Number Publication Date
JPH01162194A true JPH01162194A (en) 1989-06-26

Family

ID=18120160

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62320319A Pending JPH01162194A (en) 1987-07-23 1987-12-18 Load following operation of nuclear reactor

Country Status (1)

Country Link
JP (1) JPH01162194A (en)

Similar Documents

Publication Publication Date Title
US3205144A (en) Reactor fuel hold-down assemblies
Dobashi et al. Conceptual design of a high temperature power reactor cooled and moderated by supercritical light water
GB886874A (en) Device and method for producing power
EP2421005B1 (en) Nuclear reactor
CN106205746A (en) Compact nuclear reactor with the steam generator of one
US3257286A (en) Ball-type control for a nuclear reactor
JP2019215360A (en) Apparatus and method for structurally replacing cracked weld in nuclear power plant
US4693862A (en) Gas displacement spectral shift reactor and control method
DE2625543C3 (en) Reactor plant
JPH01162194A (en) Load following operation of nuclear reactor
US5291530A (en) Enriched boron-10 boric acid control system for a nuclear reactor plant
US4169759A (en) Method for operating a nuclear reactor with scrammable part length rod
Koshizuka et al. Supercritical-pressure, light-water-cooled reactors for economical nuclear power plants
EP0170033B1 (en) Fluid moderator control system -d2o/h2o
JPH01299496A (en) Reactivity control of light water cooled and light water moderated nuclear reactor core
JPH0194293A (en) Reactivity control of reactor core of light water cooled and light water speed reduced type nuclear reactor
DE1539004C (en) Device for regulating nuclear reactors
JPS6341038B2 (en)
JPH05281380A (en) Nuclear fuel channel and inherent safety water cooling tube reactor
JPS61167894A (en) Overhauling inspection system of hydraulic pressure control unit in nuclear reactor control rod driving hydraulic pressure system
JP2013047633A (en) Boiling-water reactor and nuclear reaction control system
DE1226220B (en) Boiler reactor
JPH02184791A (en) High conversion and high combustion pressure tube type nuclear reactor
JPH021591A (en) Piping structure for controlling reactivity of nuclear reactor
Kim et al. Design concept of a light water cooled PHWR