JPH01299496A - Reactivity control of light water cooled and light water moderated nuclear reactor core - Google Patents

Reactivity control of light water cooled and light water moderated nuclear reactor core

Info

Publication number
JPH01299496A
JPH01299496A JP63129949A JP12994988A JPH01299496A JP H01299496 A JPH01299496 A JP H01299496A JP 63129949 A JP63129949 A JP 63129949A JP 12994988 A JP12994988 A JP 12994988A JP H01299496 A JPH01299496 A JP H01299496A
Authority
JP
Japan
Prior art keywords
water
light water
reactivity
boric acid
reactor core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP63129949A
Other languages
Japanese (ja)
Inventor
Yasuo Komano
駒野 康男
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP63129949A priority Critical patent/JPH01299496A/en
Priority to EP88306621A priority patent/EP0300745A3/en
Publication of JPH01299496A publication Critical patent/JPH01299496A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To suppress an output peaking to a low level, by substituting effluents in a plurality of substitutable regions at a high temperatured core condition, with light water, heavy water, boric acid water or other effluents, correspondingly to a reactor core conditions. CONSTITUTION:Prior to a start up, all substituting pipes 14 in 8 regions are filled with boric acid water. Afterward, a lid of a reactor vessel 22 is placed and a primary coolant is heated up, and when a hot shutdown condition is attained, valves V16 and V2, connected to a substitutable region D, are opened to transfer the boric acid water to a boric acid tank 26. In this process, water in the substituting pipes 14 falls down by flushing and a water head difference. Then a valve V6 is opened and a heavy water feed pump 30 is actuated to inject heavy water into the substituting pipes 14 and to substitute boric water in substitutable regions C, B2, B1 and A4, with heavy water. From this situation, control rods are withdrawn to increase an output and a reactivity decrement resulting from a Xenon storage is compensated by substitution of the boric acid water in the substitutable regions A3, A2 and A1 with heavy water. With this procedures, a reactivity control can be executed without any addition of control rods.

Description

【発明の詳細な説明】 「産業上の利用分野」 この発明は発電用原子炉の、特に軽水冷却軽水減速加圧
水型原子炉の炉心の反応度制御方法に関づるbのである
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for controlling the reactivity of a core of a nuclear power reactor, particularly a light water cooled, light water moderated, pressurized water reactor.

[従来の技術] 加圧水型原子炉における反応度制御設備としては、制御
棒、1次冷却材中硼木(ケミカルシムと称する)及びバ
ーナプルポイズンがある。
[Prior Art] Reactivity control equipment in a pressurized water nuclear reactor includes a control rod, a primary coolant medium (referred to as a chemical shim), and a burner pull poison.

このうちケミカルシムの役目としては、■低温状態と高
温状態との変化に対応した反応度補償 ■キレノン、サマリウム蓄積・崩壊の反応度補償■燃料
の燃焼による反応1良補償 がある。このケミカルシムは、1次冷却材中の硼素濃度
を変更することにより反応度調整する。このだめの設備
としては、犬容開の硼酸タンク、硼酸ポンプ、硼酸混合
器、硼酸回収Vt置、配管等の設備が必要となり、装置
が大型化、複雑化し、かつコストも高くなる。
Among these, the role of the chemical shim is to compensate for reactivity in response to changes between low-temperature and high-temperature conditions; compensate for reactivity of xyrenone and samarium accumulation/decay; and compensate for reaction 1 due to fuel combustion. This chemical shim adjusts the reactivity by changing the boron concentration in the primary coolant. Equipment such as an open boric acid tank, a boric acid pump, a boric acid mixer, a boric acid recovery Vt, piping, etc. are required for this purpose, which increases the size and complexity of the equipment and increases the cost.

一方、ケミカルシムを削除した炉心もあるが、その場合
には、ケミカルシム使用の炉心に比べ、制御棒数が約3
.5倍必要となり、逆にコスト増加になる。
On the other hand, there are cores in which chemical shims have been removed, but in that case the number of control rods is approximately 3 compared to cores using chemical shims.
.. This will require five times as much, which will actually increase the cost.

このため、前記ケミカルシムの役目のうち、■。For this reason, among the roles of the chemical shim, ■.

■をバーナプルポイズンの増加及び制御棒数の増加によ
り補い、■の役目を簡単なボロン系で補えれば、制御棒
数も約1.5倍程度にでき、全体のコストの低減をはか
るという考えもある(特願昭62−251839)。こ
の簡単なボロン系としては、炉心を冷却材領域と、置換
領域とに分離し、この置換領域の限られた範囲のみ、硼
酸水と軽水の置換を実施する小容量の設備が考えられて
いる。
If (■) can be compensated for by increasing burner-pulled poison and increasing the number of control rods, and if the role of (■) can be supplemented by a simple boron system, the number of control rods can be increased by about 1.5 times, reducing the overall cost. I have an idea (patent application No. 62-251839). As a simple boron system, a small-capacity facility is being considered that separates the core into a coolant region and a replacement region, and replaces boric acid water and light water only in a limited range of this replacement region. .

それでも制御棒数は1.5倍になる。Even so, the number of control rods will be 1.5 times greater.

[発明が解決しようとする課題] mlスト低減のために、ケミカルシム削除をした場合、
制御棒数が、ケミカルシム使用の場合の約3.5倍必要
となる。また、ケミカルシムの役[]のうち低温状態と
高温状態との変化の反応度1eft償を簡単なボロン系
で補う場合でも、制御棒数は約1.5倍と増加する必要
がある。
[Problems to be solved by the invention] When chemical shims are removed to reduce ml stroke,
Approximately 3.5 times the number of control rods is required than when using chemical shims. In addition, even if a simple boron system is used to compensate for the reactivity of the chemical shim due to the change between a low temperature state and a high temperature state, the number of control rods needs to be increased by about 1.5 times.

更に、ケミカルシムの役目である、燃焼ににる反応度補
償を、バーナプルポイズン及び制御棒増加により補う場
合、ケミカルシム使用の場合に比べ、出力ビーキングが
大幅に大きくなる。これはケミカルシムは、炉心−様に
反応度調整を行うのに対して、強い中性子吸収体ぐある
制御棒移動により反応度調整を行った場合、中性子の歪
が人さくなり、しいては、出力分布の歪を大きくするた
めである。
Furthermore, if the role of chemical shims is to compensate for the reactivity during combustion by increasing the number of burner pull poisons and control rods, the output peaking will be significantly larger than when chemical shims are used. This is because chemical shims adjust reactivity like a reactor core, but when reactivity is adjusted by moving control rods with strong neutron absorbers, the neutron distortion becomes less sensitive. This is to increase the distortion of the output distribution.

この発明は−F記の如き事情に鑑みてなされたものであ
って、ケミカルシムを用いない炉心において、上記のよ
うな制御棒数の増加及び出力ビーキング増加の問題点を
解決する反応度制御方法を1?供づることを目的とする
ものである。
This invention was made in view of the circumstances as described in -F, and provides a reactivity control method that solves the above-mentioned problems of an increase in the number of control rods and an increase in power peaking in a reactor core that does not use chemical shims. 1? The purpose is to provide.

[課題を解決するための手段] この目的に対応して、この発明の軽水冷却軽水減速型原
子炉炉心の反応度制御方法は、軽水冷却軽水減速型原子
炉の炉心を冷却材が通る冷却材領域と流体の置換が可能
な複数の置換領域群に分割し、炉心の高温状態において
複数の前記置換領域群内の流体を、炉心状態に応じて、
軽水と小水と硼酸水と若しくはその他の流体とを、置換
することを特徴としている。
[Means for Solving the Problem] Corresponding to this object, a method for controlling the reactivity of a light water-cooled light water-moderated nuclear reactor core of the present invention provides a method for controlling the reactivity of a light water-cooled light water-moderated nuclear reactor core. Divide into a plurality of replacement region groups in which regions and fluids can be replaced, and in a high temperature state of the core, fluid in the plurality of replacement region groups is changed according to the core state.
It is characterized by replacing light water, small water, boric acid water, or other fluids.

[作用] 炉心状態に応じて、複数系統に分けられた流体の置換が
可能な置換領域の流体を、硼酸水、軽水より中性子減速
能力の劣る液体または気体(例えば(重水、He、Ar
ガス客)、軽水に変える口とにより、低温から高温状態
、キセノン変化及び燃焼による反応度の変化の調整を行
う。
[Operation] Depending on the reactor core state, the fluid in the replacement area where fluids can be replaced divided into multiple systems may be replaced with a liquid or gas (for example (heavy water, He, Ar
Gas customers) and light water can be used to adjust the temperature from low to high temperatures, changes in xenon, and changes in reactivity due to combustion.

これにより、ケミカルシムを削除した炉心においても、
制御棒を追加することなく反応度制御が可能となり、建
設費低減が可能となる。また、この反応1a制御/J式
により、強い吸収体である制御棒の大きな移動の必要が
なくなり、出力ビーキングを低く抑えることがrlJ能
となる。
As a result, even in the core where chemical shims have been removed,
It becomes possible to control the reactivity without adding control rods, making it possible to reduce construction costs. Moreover, this Reaction 1a control/J formula eliminates the need for large movements of the control rod, which is a strong absorber, and makes it possible to suppress output peaking to a low level.

[実施例j 以モ、この発明の詳細を一実施例を示す図面について説
明する。
[Embodiment j] The details of this invention will now be explained with reference to the drawings showing one embodiment.

第1図には、この発明の軽水冷却軽水減速型原子炉炉心
の反応度制御方法を実施する場合に使用する反応度制御
設備が示されている。
FIG. 1 shows reactivity control equipment used when implementing the reactivity control method for a light water-cooled, light water-moderated nuclear reactor core of the present invention.

第1図において1は反応度制御設備であり、反応度制御
段(ilは燃料集合体2と置換系3とを備えている。
In FIG. 1, 1 is a reactivity control facility, and a reactivity control stage (il) is equipped with a fuel assembly 2 and a displacement system 3.

燃料集合体2は、上部ノズル7、下部ノズル8、支持格
子11と制御棒案内シングル12゛C構造材を成し、上
部ノズル7と下部ノズル8の間に燃料棒13ど置換管1
4及び炉内計装用管6が納められる1゜ 置換管14は1燃料束合体あたり1本または複数本有り
、上端は密閉された中空管である。水置換管は複数本ご
とに1組をなし、1組における水首換管は下部ノズル8
のレッグ部分で連結管15によって連結されている。連
結管15は、軽水または硼酸水または重水の注入、排出
のための接続[116を持つ。一方、置換系3は注入管
17a。
The fuel assembly 2 comprises an upper nozzle 7, a lower nozzle 8, a support grid 11 and a control rod guide single 12'C structural member, and between the upper nozzle 7 and the lower nozzle 8, the fuel rods 13 and the displacement pipe 1 are connected.
There is one or more 1° displacement tubes 14 for each fuel bundle, in which the in-core instrumentation tubes 6 and 4 are housed, and are hollow tubes with their upper ends sealed. Multiple water displacement pipes form one set, and the water head exchange pipe in one set is the lower nozzle 8.
The legs are connected by a connecting pipe 15. The connecting pipe 15 has a connection [116] for injecting and discharging light water, boric acid water, or heavy water. On the other hand, the replacement system 3 has an injection pipe 17a.

17b、Il給t140.l耐水給排系50.小水給排
系60を有する。
17b, Il pay t140. lWaterproof supply and drainage system50. It has a small water supply and drainage system 60.

第2図は炉心100の断面における集合体2の相分けを
明示したものである。各集合体は、置換された場合の出
力ビーキング悪化が小さくなるように、同−組の集合の
和は、炉心中心軸X、Yに対称性を持ち、炉心内に均等
配置するように複数組に相分(〕され、それぞれの注入
口18は下部炉心板21の下側でその相分は毎に連結さ
れ、その相分は数に応じた数の注入管17aに接続され
る。
FIG. 2 clearly shows the phase division of the assembly 2 in the cross section of the core 100. In order to reduce the deterioration of power peaking when each assembly is replaced, the sum of the sets of the same set has symmetry with respect to the core central axes Each injection port 18 is connected to the lower side of the lower core plate 21, and each phase is connected to a corresponding number of injection pipes 17a.

粗分は数に応じた数の注入管17bは原子炉容器22を
貫通しバルブv16を経て軽水給排系40と硼酸水給排
系50と重水給排系60とに接続されている。軽水給排
系40は軽水タンク24及び軽水供給ポンプ25を備え
ている。硼酸水給排系5)0は硼酸水タンク26及び硼
酸水供給ボン−A27を(i^えている。重水給排系6
0は重水タンク29及び中水供給ポンプ30を備えてい
る。
A number of injection pipes 17b corresponding to the number of coarse portions penetrate the reactor vessel 22 and are connected to the light water supply and discharge system 40, the boric acid water supply and discharge system 50, and the heavy water supply and discharge system 60 via the valve v16. The light water supply and drainage system 40 includes a light water tank 24 and a light water supply pump 25. Boric acid water supply/drainage system 5) 0 includes a boric acid water tank 26 and boric acid water supply bomb-A27. Heavy water supply/drainage system 6
0 is equipped with a heavy water tank 29 and a gray water supply pump 30.

第3図は、この炉心に用いられる燃料集合体2の横断面
の一例である。
FIG. 3 is an example of a cross section of the fuel assembly 2 used in this core.

第2図の例においては、相分りは、121体の集合体を
領域A :8体、領域へ :8体、領域A318体、領
域A :8体、領VlB:17体、領域B :16体、
領域C:28体、領t/i[):28体の8組に分けて
いる。それぞれの買換領域の流体を硼酸水ど重水を置換
した場合は、A1゜A2.A3.A4は約1%Δに/に
、B  、F32 :は約2%Δに/]く、C,Dは約
3.5%Δに/にの反応度変化が111られる。この場
合のImW水どしではボロン−10を90W10に濃縮
した約ioooppma度のものを使用するが、運転中
一定で良く、現行のケミカルシムのような淵磨変更は必
要ではない。また、重水と軽水を置換した場合、へ− 
、A2 ” 3 ” 4は約0.2%Δに/に、B、[
32:は約0.4%Δに/に、C。
In the example in Figure 2, the division is to move the collection of 121 bodies to area A: 8 bodies, to area: 8 bodies, area A: 318 bodies, area A: 8 bodies, territory VlB: 17 bodies, area B: 16 bodies. body,
It is divided into 8 groups: area C: 28 bodies, area t/i [): 28 bodies. If the fluid in each replacement area is replaced with heavy water such as boric acid solution, A1°A2. A3. A4 has a reactivity change of about 1% Δ, B, F32: has a reactivity change of about 2% Δ, and C and D have a reactivity change of about 3.5% Δ. In this case, the ImW water drainer uses boron-10 concentrated to 90W10 and has a concentration of about ioooppma, but it can be kept constant during operation, and there is no need to change the depth of water like current chemical shims. Also, when replacing heavy water with light water,
, A2 ” 3 ” 4 is about 0.2% Δ/to, B, [
32: about 0.4% Δ/to, C.

Dは約0.7%Δに/Kが得られる。ここで各領域にお
ける流体置換により、B  、B2.C,Dは、主に低
温から高温の反応疾変化の補償及び燃。
D is approximately 0.7%Δ/K. Here, due to fluid displacement in each region, B, B2. C and D mainly compensate for reaction speed changes from low to high temperatures and combustion.

籾経済性向上のためのスペクトルシフ1〜に利用される
。A  、A  、△ 、A4は、主に、低温から高温
の反応度変化の補償、キセノンによる反応度変化の補償
及び臨界にするための反応度調整に利用する。
It is used for spectrum shifting 1 to improve the economic efficiency of paddy. A, A, Δ, and A4 are mainly used to compensate for changes in reactivity from low to high temperatures, to compensate for changes in reactivity due to xenon, and to adjust reactivity to make it critical.

この発明の反応度制御方法は以上のように構成された設
備を使用して次のようになされる。
The reactivity control method of the present invention is carried out as follows using the equipment configured as described above.

a、起動前、最も反応度が高く、抑制すべき反応度が大
きいため、8領域すべての置換管14は6!水で充満さ
れている。
a. Before startup, the reactivity is the highest and the reactivity to be suppressed is large, so the displacement pipes 14 in all 8 areas are 6! filled with water.

b、原子炉容器22の蓋をして、1次冷却材をn温し、
高温停止状態になったところで、置換領域りにつながる
バルブV16と■2を開ぎ、置換領域りに含まれる置換
管14内の硼酸水を硼酸タンク26の中に移動させる。
b. Cover the reactor vessel 22 and heat the primary coolant to n temperature.
When the high temperature is stopped, the valves V16 and 2 connected to the replacement area are opened, and the boric acid water in the replacement pipe 14 contained in the replacement area is moved into the boric acid tank 26.

この際、置換管14内の水は、フラッシング及び水頭差
によって落下することとなる。置換管14内のfffi
酸水がなくなったら、バルブV2を閉じる。
At this time, the water in the replacement pipe 14 will fall due to flushing and water head difference. fffi in the replacement tube 14
When the acid water is gone, close valve V2.

次にバルブV6を聞き、重水供給ポンプ3゜を作動させ
て、置換管14内に重水を注入する。
Next, listen to the valve V6, operate the heavy water supply pump 3°, and inject heavy water into the displacement pipe 14.

「1換管14内を重水で充満させた後、バルブV6を閉
じる。
“After filling the single exchange pipe 14 with heavy water, close the valve V6.

次に同じように、置換領域C,B、B1゜A4の硼酸水
を次々と重水に置換する。
Next, in the same way, the boric acid solutions in the replacement areas C, B, and B1°A4 are successively replaced with heavy water.

C0この状態より、制御棒を用法いて臨界とし、出力を
上野スる。出力上背に伴うキセノン蓄積による反応度低
下を、上記と同じように、置換領域A3.A、、、A1
の硼酸水を小水に置換す”ることにより補償する。更に
、反応度調整としては、A1.A、、Δ3.A4の流体
を重水と重水を適宜置換することにより行う。但し、こ
の反応1a調整は、大きくないが連続調整が行えないの
で、微調整は制御棒により行う。
C0 From this state, use the control rod to make it critical and output to Ueno. The reduction in reactivity due to xenon accumulation associated with the output upper back is reduced in the same manner as above in the substitution region A3. A,,,A1
This is compensated for by replacing the boric acid solution with small water.Furthermore, the reactivity is adjusted by appropriately replacing the fluids A1.A, Δ3.A4 with heavy water.However, this reaction The adjustment 1a is not large, but since continuous adjustment cannot be performed, fine adjustment is performed using a control rod.

d、燃焼における核分裂性物質の減少による反応度変化
は、基本的にバーナプルポイズンの利用にJ:り補償η
るように設計するが、定格出力で1度臨界とすることは
難しいため、A1.A2゜A 、A4の買換領域の流体
を、適宜、重水と軽水に置換すること及び制御棒の微調
整により、反応度調整を行う。
d. The change in reactivity due to the reduction of fissile material during combustion is basically compensated by J:ri compensation η
However, it is difficult to achieve criticality once at the rated output, so A1. The reactivity is adjusted by appropriately replacing the fluid in the A2°A and A4 replacement areas with heavy water and light water and by finely adjusting the control rods.

第4図においては、燃焼における炉心の中性子増倍率K
。、[の変化例及び各置換領域の炉心状態を示すもので
ある。燃焼度「。からFlまでは、プルトニウムの生成
を多くするのに中性エネルギースペク[−ルを高エネル
ギー側にシフトするために、領域B  、B  、C,
Dには、軽水より中性予の減速をしにくい手水を満たし
ている。この状、態での燃焼度F から11間の燃料及
びバーナプルポイズンの燃焼によるK。1.の変化が曲
線Gのようになると覆ると、■の状態では、領域△1及
び八 は軽水に、領域A 及びA4は重水で満だし、反
応度の微調整を制御棒で行うことにより炉心を臨界に保
つ。この■の状態から■の状態になると領域A2が軽水
より手水に置換を行う。更に■の状態となると領域A1
の軽水を手水に置換するというように、炉心の反応度に
応じて領域△1゜A2.A3.A4の軽水と重水の置換
を行う。
In Figure 4, the neutron multiplication factor K of the core during combustion is
. , [] and the core state of each replacement area are shown. From burnup "." to Fl, in order to increase the production of plutonium and shift the neutral energy spectrum to the high energy side,
D is filled with water, which is less likely to slow down neutral water than light water. In this state, the burnup is between F and 11 and K due to combustion of fuel and burner pull poison. 1. When the change in curve G becomes like curve G, in the state of ■, areas △1 and 8 are filled with light water, areas A and A4 are filled with heavy water, and by finely adjusting the reactivity with the control rods, the core can be adjusted. Keep it critical. When the state changes from the state (■) to the state (2), the area A2 replaces light water with hand water. Furthermore, when the state becomes ■, area A1
Depending on the reactivity of the reactor core, the area △1°A2. A3. Replace A4 light water with heavy water.

C0燃焼が進み、反応度が減少し、領域Δ1゜△ 、Δ
 、A4の反応度調整で臨界を保持できなくなる燃焼度
F1において、領域りの小水を軽水に置換し、反応度を
高める。このとき、反応度調整は、領域△ 、△ 、A
3.A4の()¥水と重水への置換及び制御棒の微調整
で行う。
As CO combustion progresses, the reactivity decreases, and the area Δ1゜△, Δ
, At the burnup F1 where criticality cannot be maintained by adjusting the reactivity of A4, the small water in the area is replaced with light water to increase the reactivity. At this time, the reactivity adjustment is performed in the areas △, △, A
3. This will be done by replacing A4 () with water and heavy water and fine-tuning the control rod.

f、更に燃焼が進むと、領域A、A2.Δ3゜A4と順
次に重水より軽水に置換を行い反応度調整を行う。更に
燃焼が進み燃焼度F2となって時領域Cを、燃焼度F 
となった時領ViB 2及び領域[31を手水より軽水
に置換りる。(の際、領域Δ 、A 、Δ 、A4及び
若干の制御    2   3 御棒の移動により反応度調整を行う。
f. As combustion progresses further, areas A, A2. The reactivity is adjusted by replacing heavy water with light water in order of Δ3°A4. Combustion further progresses to burnup F2, which changes time region C to burnup F2.
When the time became ViB 2 and the area [31 was replaced with light water instead of hand water. (At this time, the reactivity is adjusted by moving the control rod in the areas Δ , A , Δ , A4 and some control.

Q、プラン1〜を停止覆る場合は、制御棒により高温停
止状態としたところで、置換管14の軽水を17j酸水
に置換する。この後、1次冷却系の冷却を開始し、プラ
ンi〜を低温停止状態とする。
Q. If Plan 1~ is to be stopped and covered, the light water in the replacement pipe 14 will be replaced with 17j acid water when the control rod brings it to a high temperature shutdown state. After that, cooling of the primary cooling system is started, and Plan i~ is brought into a low temperature shutdown state.

第5図はケミカルシム削除時における、本発明による反
応度制御方式及び制御棒のみによる反応度制御方式によ
る制御棒挿入度の比較を示す。この制御棒としては、第
2図に示ず制御用バンク04体を使用した例を示し、こ
の制御棒価値としては約1%Δに/Kをもつ。この第5
図において曲線Pは、本発明の反応度制御方式による制
御用バンクDの挿入度を、曲線Qは、制御棒のみによる
反応度制御による制御用バンクDの挿入度である。
FIG. 5 shows a comparison of control rod insertion degrees between the reactivity control method according to the present invention and the reactivity control method using only control rods when chemical shims are removed. As this control rod, an example using a control bank 04 not shown in FIG. 2 is shown, and the value of this control rod is approximately 1% Δ/K. This fifth
In the figure, a curve P represents the degree of insertion of the control bank D by the reactivity control method of the present invention, and a curve Q represents the degree of insertion of the control bank D by the reactivity control using only control rods.

これより本発明方式では、制御棒挿入度は小さいことが
わかる。
From this, it can be seen that in the method of the present invention, the control rod insertion degree is small.

第6図においては、上記ケースでの3次元的ピーキング
の変化を示す。曲線Rは本発明によるピーキング変化を
、曲線Sは制御棒のみによる反応度制御方式のピーキン
グの変化を示すが、本発明のピーVングは低く保たれて
いることがわかる。
FIG. 6 shows changes in three-dimensional peaking in the above case. Curve R shows the change in peaking according to the present invention, and curve S shows the change in peaking in the reactivity control method using only control rods, and it can be seen that the peak V-ing of the present invention is kept low.

これは、本発明の場合、制御棒挿入度が小さいため出力
分布の歪が小さいのに対し、制御棒による反応度制御を
実施すると強い吸収体である制御棒が大きく移動し出力
分布の歪が大きくなることによる。
This is because, in the case of the present invention, the degree of insertion of the control rod is small, so the distortion in the output distribution is small, whereas when the control rod is used to control the reactivity, the control rod, which is a strong absorber, moves significantly and the distortion in the output distribution is small. By getting bigger.

この例では重水を利用しているが、重水のかわりに、中
性子減速能力の低いHeやArガスのようt3気体を使
用す−ることがIiJ能、である。
Although heavy water is used in this example, it is possible to use t3 gas such as He or Ar gas, which has a low neutron moderation ability, instead of heavy water.

[発明の効果] この発明により、ケミカルシムを削除した炉心におい℃
も、制御棒を追加りることイfく反応度制御がF+J能
どなり、建設費低減が可能となる。また、この反応度制
御方式により、定格出力運転中に、強い吸収体である制
御棒の大さな移動の心霊がなくなり、出力ビー11−ン
グを低く抑えることがi’iJ能ど/、する。
[Effects of the invention] With this invention, the reactor core odor from which chemical shims have been removed is
In addition, by adding control rods, reactivity control becomes F+J function, making it possible to reduce construction costs. In addition, this reactivity control method eliminates the large movement of the control rods, which are strong absorbers, during rated power operation, making it possible to keep the power output low. .

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反応度制御設備の構成説明図、第2図は[ζ1
換領域の相分は図、第3図は燃料集合体の横断面説明図
、第4図は燃焼に伴う買換領域の流体状態図、第5図は
制御棒挿入度の比較図、及び第6図はビー−1ングの変
化の比較図である。 1・・・反応電制tll設備 2・・・燃ね集合体 3・・・置換系 6・・・炉内計装用管 7・・・上部ノズル 8・・・下部ノズル 11・・・支持格子 12・・・制御棒案内シンプル 13・・・燃料棒 14・・・置換管 15・・・連結管 16・・・接続口 17a、17b−・・注入管 18・・・注入口 21・・・下部炉心板 22・・・原子炉容器 23・・・接続位置 24・・・軽水タンク 25・・・軽水供給ポンプ 26・・・硼酸水タンク 27・・・硼酸水供給ポンプ 28a−f・・・分岐管 219・・・手水タンク 30・・・Φ水fバ給ポンプ 、’31.32,33,34,35.36・・・配管/
l O・・・軽水給Uj系 50・・・(贋酸水給排系 60・・・中水給排系 100・・・炉心 1、″1訂出願人      三菱原子力T業株式会ネ
1−代理人ブ?埋十               川
  井  冶  刀第2図 × 第3図 第5図 焔埠尾 第6図
Figure 1 is an explanatory diagram of the configuration of the reactivity control equipment, and Figure 2 is [ζ1
The phase components of the replacement area are shown in the figure, Figure 3 is a cross-sectional explanatory diagram of the fuel assembly, Figure 4 is a diagram of the fluid state in the replacement area accompanying combustion, Figure 5 is a comparison diagram of control rod insertion degree, and Figure 6 is a comparison diagram of changes in be-1. 1... Reaction electric control TLL equipment 2... Combustion assembly 3... Replacement system 6... In-furnace instrumentation tube 7... Upper nozzle 8... Lower nozzle 11... Support grid 12... Control rod guide simple 13... Fuel rod 14... Displacement pipe 15... Connecting pipe 16... Connection ports 17a, 17b... Injection pipe 18... Injection port 21... Lower core plate 22...Reactor vessel 23...Connection position 24...Light water tank 25...Light water supply pump 26...Boric acid water tank 27...Boric acid water supply pump 28a-f... Branch pipe 219...Hand water tank 30...Φ water supply pump, '31.32, 33, 34, 35.36...Piping/
l O...Light water supply Uj system 50...(Poor acid water supply/discharge system 60...Grey water supply/discharge system 100...Core 1, ``1st edition Applicant: Mitsubishi Nuclear Power Co., Ltd. Ne1- Agent bu? Uju Kawai Osamu Sword Figure 2 x Figure 3 Figure 5 Homurabu Figure 6

Claims (3)

【特許請求の範囲】[Claims] (1)軽水冷却軽水減速型原子炉の炉心を冷却材が通る
冷却材領域と流体の置換が可能な複数の置換領域群に分
割し、炉心の高温状態において複数の前記置換領域群内
の流体を、炉心状態に応じて、軽水と重水と硼酸水と若
しくはその他の流体とを、置換することを特徴とする軽
水冷却軽水減速型原子炉炉心の反応度制御方法
(1) The core of a light water-cooled light water-moderated nuclear reactor is divided into a coolant region through which the coolant passes and a plurality of displacement region groups in which fluid can be replaced, and the fluid in the plurality of displacement region groups in the high temperature state of the reactor core. A method for controlling the reactivity of a light water-cooled, light water-moderated nuclear reactor core, characterized by replacing light water, heavy water, boric acid water, or other fluids with each other depending on the core state.
(2)前記重水のかわりに、軽水より減速能力の劣る流
体、例えばヘリウムやアルゴンガスを用いることを特徴
とする特許請求の範囲第1項記載の軽水冷却軽水減速型
原子炉炉心の反応度制御方法
(2) Reactivity control of a light water-cooled, light water-moderated nuclear reactor core according to claim 1, characterized in that, in place of the heavy water, a fluid having a moderating capacity inferior to that of light water, such as helium or argon gas, is used. Method
(3)前記それぞれの置換領域群に含まれる置換領域は
炉心の横断面に含まれるX、Y軸に対称に位置させるこ
とを特徴とする特許請求の範囲第1項記載の軽水冷却軽
水減速型原子炉炉心の反応度制御方法
(3) The light water-cooled light water moderation type according to claim 1, wherein the replacement regions included in each of the replacement region groups are located symmetrically with respect to the X and Y axes included in the cross section of the reactor core. Reactivity control method for nuclear reactor core
JP63129949A 1987-07-23 1988-05-27 Reactivity control of light water cooled and light water moderated nuclear reactor core Pending JPH01299496A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP63129949A JPH01299496A (en) 1988-05-27 1988-05-27 Reactivity control of light water cooled and light water moderated nuclear reactor core
EP88306621A EP0300745A3 (en) 1987-07-23 1988-07-20 Reactivity control method of light-water cooled, lightwater moderated nuclear reactor core and apparatus therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63129949A JPH01299496A (en) 1988-05-27 1988-05-27 Reactivity control of light water cooled and light water moderated nuclear reactor core

Publications (1)

Publication Number Publication Date
JPH01299496A true JPH01299496A (en) 1989-12-04

Family

ID=15022422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63129949A Pending JPH01299496A (en) 1987-07-23 1988-05-27 Reactivity control of light water cooled and light water moderated nuclear reactor core

Country Status (1)

Country Link
JP (1) JPH01299496A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111373486A (en) * 2017-11-28 2020-07-03 韩国水力原子力株式会社 Method for saving nuclear fuel of heavy water reactor

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111373486A (en) * 2017-11-28 2020-07-03 韩国水力原子力株式会社 Method for saving nuclear fuel of heavy water reactor
CN111373486B (en) * 2017-11-28 2023-11-03 韩国水力原子力株式会社 Method for saving nuclear fuel of heavy water reactor

Similar Documents

Publication Publication Date Title
Zhang et al. Design aspects of the Chinese modular high-temperature gas-cooled reactor HTR-PM
Forsberg et al. Molten-salt-cooled advanced high-temperature reactor for production of hydrogen and electricity
CN101315815B (en) Method and device for fast breeding and converting nuclear fuel
KR101834845B1 (en) Small, fast neutron spectrum nuclear power plant with a long refueling interval
Schulenberg et al. Review of R&D for supercritical water cooled reactors
CN103858174B (en) Realize the method for automatic axial power distributed controll
US20190206580A1 (en) Small modular reactor power plant with load following and cogeneration capabilities and methods of using
JP5364424B2 (en) Reactor
Wu et al. A load following control strategy for Chinese modular high-temperature gas-cooled reactor HTR-PM
Schulenberg et al. SuperCritical Water-cooled Reactors (SCWRs)
GB792972A (en) Control of atomic power reactors
US3247074A (en) Steam cooled reactor reactor arrangement
JPH01299496A (en) Reactivity control of light water cooled and light water moderated nuclear reactor core
US3211623A (en) Neutronic reactor and fuel element therefor
Nikiforova et al. Lead-cooled flexible conversion ratio fast reactor
US3247072A (en) Nuclear reactor and method of operating to variably moderate and control same
Wu et al. A feedforward-feedback-based reactor power decoupling control strategy for multi-modular nuclear power plants
EP0300745A2 (en) Reactivity control method of light-water cooled, lightwater moderated nuclear reactor core and apparatus therefor
US3151031A (en) Method of regulating the operation of homogeneous nuclear reactors
US3211624A (en) Method and means for controlling the start of a homogeneous nuclear reactor
Zhang et al. On load-following operations of small modular reactors
Ciurluini Design and thermal-hydraulic transient analysis of primary cooling systems for tokamak fusion reactors
Cameron et al. The heavy-water-moderated reactor
Taylor et al. Advanced light-water reactor development in the United States
Oka et al. Reactor design and safety