JPH0194293A - Reactivity control of reactor core of light water cooled and light water speed reduced type nuclear reactor - Google Patents

Reactivity control of reactor core of light water cooled and light water speed reduced type nuclear reactor

Info

Publication number
JPH0194293A
JPH0194293A JP62251839A JP25183987A JPH0194293A JP H0194293 A JPH0194293 A JP H0194293A JP 62251839 A JP62251839 A JP 62251839A JP 25183987 A JP25183987 A JP 25183987A JP H0194293 A JPH0194293 A JP H0194293A
Authority
JP
Japan
Prior art keywords
water
boric acid
pipe
valve
reactor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62251839A
Other languages
Japanese (ja)
Inventor
Yasuo Komano
駒野 康男
Hiroshi Sano
宏 佐野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Atomic Power Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Atomic Power Industries Inc filed Critical Mitsubishi Atomic Power Industries Inc
Priority to JP62251839A priority Critical patent/JPH0194293A/en
Publication of JPH0194293A publication Critical patent/JPH0194293A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Monitoring And Testing Of Nuclear Reactors (AREA)

Abstract

PURPOSE:To enable the function of a reactivity compensation corresponding to the change of a boron in a primary coolant at a low temperature state to a high temperature one be substituted with a simple device in which a water in a water replacing zone is replaced with a boric acid ester in a high temp. suspension state of a reactor core. CONSTITUTION:Before the starting of a reactor, a water replacement pipe 14 is filled with boric acid water. When a primary coolant is heated and a reactor core reaches a high temp. suspension state, a valve V2 is opened, the boric acid water in the pipe 14 is transferred into a boric acid water tank 26. Subsequently, a valve V3 is opened, a water feed pump 25 is started to feed water into the pipe 14 and a reactor operation is commenced under this condition. In case at high temp. and the water in the pipe 14 is transferred to a tank 24. Then, the valve V1 is closed, a valve V4 is opened, a boric acid water feed pump 27 is started to feed said water to the pipe 14 and then the valve V4 is closed. With this condition, a cooling down of a primary cooling system is commenced and the plant is placed under a low temp. state. In this way, a reactivity compensation can be attained corresponding to the change from a low temperature state to a high temperature state of the reactor core, therefore, boron contained in a primary coolant high has been performing this function can be dispensed with.

Description

【発明の詳細な説明】 (イ)発明の目的 [産業上の利用分野] この発明は軽水冷却軽水減速型の加圧水型原子炉炉心の
反応度制御方法、特に、炉心の低温状態と高温状態との
変化に対応した反応度補償技術に関するものである。
Detailed Description of the Invention (a) Purpose of the Invention [Field of Industrial Application] This invention relates to a method for controlling the reactivity of a light water-cooled, light water-moderated, pressurized water nuclear reactor core, in particular, The present invention relates to reactivity compensation technology that responds to changes in .

[従来の技術] 加圧水型原子炉における反応度制御設備としては、制御
棒、1次冷却材中硼素(ケミカルシムと称する)及びバ
ーナプルポイズンがある。このうち1次冷却材中硼素の
役目としては、 ■低温状態と高温状態との変化に対応した反応度補償 ■キセノン、サマリウム蓄積・崩壊の反応度補償■燃料
の燃焼による反応度補償 がある。
[Prior Art] Reactivity control equipment in a pressurized water nuclear reactor includes control rods, boron in the primary coolant (referred to as chemical shim), and burner pull poison. Among these, the roles of boron in the primary coolant include: ■ reactivity compensation corresponding to changes between low-temperature and high-temperature conditions; ■ reactivity compensation for xenon and samarium accumulation/decay; and ■ reactivity compensation due to fuel combustion.

この1次冷却材中硼素は、その濃度を変更することによ
り反応度調整する。
The reactivity of boron in this primary coolant is adjusted by changing its concentration.

[発明が解決しようとする問題点] しかるに、この1次冷却材中硼素による反応度制御技術
は、これを実施するための設備としては、大容量の硼酸
タンク、硼酸ポンプ、硼酸混合器、硼酸補給タンク、l
l!!回収装置、配管等の設備が必要となり、装置が大
型化、複雑化しかつコストも高くなる。
[Problems to be Solved by the Invention] However, the reactivity control technology using boron in the primary coolant requires a large-capacity boric acid tank, a boric acid pump, a boric acid mixer, and a boric acid mixer. supply tank, l
l! ! Facilities such as a collection device and piping are required, making the device larger and more complex, and increasing the cost.

そこで、次にコスト低減のために、ケミカルシムを削除
することが考えられる。この時、前記のケミカルシムの
役目を他の手段で補う必要があるが、これをバーナプル
ポイズン棒の増加及び制御棒体数の増加で補った場合、
バーナプルポイズンの増加はあまり問題とならないが、
高価な制御棒体数が現行の約3.5倍程度必要となり、
逆にコスト増加になってしまう。
Therefore, in order to reduce costs, the next option is to eliminate the chemical shim. At this time, it is necessary to supplement the role of the chemical shim with other means, but if this is supplemented by an increase in the number of burner pull poison rods and an increase in the number of control rods,
Although the increase in burnup poison is not much of a problem,
The number of expensive control rods will be approximately 3.5 times the current number,
On the contrary, the cost will increase.

このように、制御棒体数が大幅に増加する理由は、高温
から低温への反応度変化が大きいことに加え、低温状態
では、高温状態に比べ制御棒及びバーナプルポイズンの
反応度抑制効果が小さくなることによる。小さくなる理
由は、低温状態では水の密度が高くなり、そこで中性子
が減速散乱及び吸収される確率が増え、制御棒やバーナ
プルポイズンに吸収される確率が減り、反応度抑制効果
が小さくなるためのである。しかし、前記役目の■、■
をバーナプルポイズンの増加及び制御棒体数の増加によ
り補い、■の役目を簡単な設備で補えれば、制御棒体数
の増加も約1.5倍程度で済み、全体のコストの低減を
はかることができる。
The reason for the large increase in the number of control rods is that in addition to the large change in reactivity from high temperature to low temperature, the reactivity suppression effect of control rods and burner pull poisons is less effective in low temperature conditions than in high temperature conditions. By becoming smaller. The reason why it becomes smaller is because the density of water increases at low temperatures, increasing the probability that neutrons will be decelerated and scattered and absorbed, decreasing the probability of being absorbed by control rods and burner poisons, and reducing the reactivity suppression effect. It is. However, the above roles ■,■
If this can be compensated for by increasing the burner pull poison and increasing the number of control rods, and if the role of It can be measured.

このようなことからケミカルシムの■の役目を簡単な設
備で代替できる技術の開発が望まれている。
For this reason, there is a desire to develop a technology that can replace the role of chemical shims with simple equipment.

この発明は上記の如き事情に鑑みてなされたものであっ
て、簡単な設備でケミカルシムの低温状態と高温状態と
の変化に対応した反応度補償の機能を肩代りすることが
できる反応度制御方法を提供することを目的とするもの
である。
This invention has been made in view of the above-mentioned circumstances, and is a reactivity control that can take over the function of reactivity compensation corresponding to the change between a low temperature state and a high temperature state of a chemical shim using simple equipment. The purpose is to provide a method.

(ロ)発明の構成 U問題を解決するための手段] この目的に対応して、この発明の軽水冷却軽水減速型原
子炉炉心の反応度制御方法は、軽水冷却軽水減速型原子
炉の炉心を冷却材が通る冷却材領域と水と硼酸水との置
換が可能な水置換領域に分離し、炉心の高温停止状態に
おいて前記水置換領域内の水を硼酸水と置換することを
特徴としている。
(B) Structure of the Invention Means for Solving Problem U] Corresponding to this objective, a method for controlling the reactivity of a light water-cooled light water-moderated nuclear reactor core of the present invention provides a method for controlling the reactivity of a light water-cooled light water-moderated reactor core. It is characterized in that it is separated into a coolant region through which coolant passes and a water replacement region where water and boric acid water can be replaced, and water in the water replacement region is replaced with boric acid water when the core is in a high temperature shutdown state.

以下、この発明の詳細を一実施例を示す図面について説
明する。
Hereinafter, details of the present invention will be explained with reference to the drawings showing one embodiment.

第1図にはこの発明の軽水冷却軽水減速型原子炉炉心の
反応度制御方法を実施する場合に使用する反応度制御設
備が示されている。
FIG. 1 shows reactivity control equipment used when implementing the reactivity control method for a light water-cooled, light water-moderated nuclear reactor core of the present invention.

第1図において1は反応度制御設備であり、反応度制御
設備1は燃料集合体2と水置換系3とを備えている。
In FIG. 1, 1 is a reactivity control facility, and the reactivity control facility 1 is equipped with a fuel assembly 2 and a water displacement system 3.

燃料集合体2は、上部ノズル7、下部ノズル8、支持格
子11と制御棒案内シンプル12で構造材を成し、上部
ノズル7と下部ノズル8の間に燃料棒13と水置換管1
4及び炉内計装用管6が納められる。
The fuel assembly 2 includes an upper nozzle 7, a lower nozzle 8, a support grid 11, and a control rod guide simple 12 as structural members, and between the upper nozzle 7 and the lower nozzle 8, a fuel rod 13 and a water displacement pipe 1 are arranged.
4 and an in-furnace instrumentation pipe 6 are housed therein.

水置換管14は1燃料束合体あたり1本または複数本有
り、上端は密閉された中空管である。水置換管は複数本
ごとに1組をなし、1組における水置換管は下部ノズル
8のレッグ部分で連結管15によって連結されている。
There is one or more water displacement pipes 14 per fuel bundle, and the water displacement pipes 14 are hollow pipes whose upper ends are sealed. A plurality of water displacement pipes constitute one set, and the water displacement pipes in one set are connected by a connecting pipe 15 at a leg portion of the lower nozzle 8.

連結管15は、水または硼酸水の注入、排出のための接
続口16を持つ。一方、水置換系3は注入管17a、1
7b、水給排系20、硼酸水給排系30を有する。
The connecting pipe 15 has a connection port 16 for injecting and discharging water or boric acid solution. On the other hand, the water displacement system 3 has injection pipes 17a, 1
7b, a water supply/drainage system 20, and a boric acid water supply/drainage system 30.

下部炉心構造物側の注入管17aは、各燃料集合体への
注入口18を持ち、下部炉心板21の下側で連結されて
原子炉容器22側の注入管17bと接続位置23で接続
している。
The injection pipe 17a on the lower core structure side has an injection port 18 to each fuel assembly, is connected under the lower core plate 21, and is connected to the injection pipe 17b on the reactor vessel 22 side at a connection position 23. ing.

注入管17bは、原子炉容器22を貫通しバルブ■7を
経て水給排系20と硼酸水給排系3oが接続されている
。水給排系20は水タンク24及び水供給ポンプ25を
備えている。硼酸水給排系30は硼酸水タンク26及び
硼酸水供給ポンプ27を備えている。
The injection pipe 17b penetrates the reactor vessel 22 and is connected to the water supply and discharge system 20 and the boric acid water supply and discharge system 3o via the valve 7. The water supply and drainage system 20 includes a water tank 24 and a water supply pump 25. The boric acid water supply/drainage system 30 includes a boric acid water tank 26 and a boric acid water supply pump 27.

注入管17bは原子炉容器22を貫通した後4本の分岐
管28a−dに分岐する。
After the injection pipe 17b penetrates the reactor vessel 22, it branches into four branch pipes 28a-d.

分岐管28aはバルブV1を経て水タンク24の液相部
へ通じている。
The branch pipe 28a communicates with the liquid phase portion of the water tank 24 via the valve V1.

分岐管28bはバルブ■2を経て硼酸水タンク26の液
相部へ通じている。
The branch pipe 28b communicates with the liquid phase portion of the boric acid water tank 26 through the valve 2.

分岐管28cは水タンク24の液相部がら水供給ポンプ
25を経てバルブv3にいたり、注入管17bに接続し
ている。
The branch pipe 28c extends from the liquid phase portion of the water tank 24 through the water supply pump 25 to the valve v3, and is connected to the injection pipe 17b.

分岐管28dは硼酸水タンク26の液相部がら硼酸水供
給ポンプ27を経てバルブv4にいたり、注入管17b
に接続している。
The branch pipe 28d goes from the liquid phase part of the boric acid water tank 26 to the boric acid water supply pump 27 to the valve v4, and the injection pipe 17b.
is connected to.

−〇 − 原子炉容器22の外部の注入管17bは原子炉容器22
より下方に配置されている。これは、水置換管14内の
水または硼酸水と水タンク24または硼酸水タンク26
の間の差圧だけでなく、重力によっても水または硼酸水
が流れ落ちることを考慮したものである。
-〇- The injection pipe 17b outside the reactor vessel 22 is connected to the reactor vessel 22.
It is placed lower. This is a combination of water or boric acid water in the water displacement pipe 14 and water tank 24 or boric acid water tank 26.
This takes into consideration the fact that water or boric acid water flows down not only due to the pressure difference between the two, but also due to gravity.

なお、水タンク24は配管31を介して給水設備に接続
し、かつ配管32を介して廃棄物処理設備に接続してい
る。
Note that the water tank 24 is connected to a water supply facility via a pipe 31 and to a waste treatment facility via a pipe 32.

また硼酸水タンク26は配管33を介して硼酸水供給設
備に接続している。
Further, the boric acid water tank 26 is connected to a boric acid water supply facility via a pipe 33.

[作用] この発明の反応度制御方法は以上のように構成された設
備を使用して次のようになされる。
[Operation] The reactivity control method of the present invention is carried out as follows using the equipment configured as described above.

1次冷却材を低温状態から高温状態とすると反応度は低
くなる。これは、低温状態の方が、水の密度が高く、核
分裂を起こす確率が高い熱中性子束が多くなるからであ
る。このため、低温状態では、高温状態に比べて、反応
度を多く抑制する必要がある。
When the primary coolant is raised from a low temperature state to a high temperature state, the reactivity decreases. This is because the density of water is higher at lower temperatures, and the flux of thermal neutrons, which has a higher probability of causing nuclear fission, increases. Therefore, in a low temperature state, it is necessary to suppress the reactivity to a greater extent than in a high temperature state.

このため、低温状態では、水置換領域には硼酸水を満た
し、硼酸中の硼素の熱中性子吸収により反応度を抑制す
る。出力運転する前に高温停止状態において、減圧によ
り硼酸水を排出し、その後、水に置換する。原子炉を低
温停止にする場合、その前の高温停止状態で、同様の方
法で水を硼酸水に置換する。
Therefore, in a low temperature state, the water replacement region is filled with boric acid water to suppress the reactivity by thermal neutron absorption of boron in the boric acid. Before output operation, boric acid water is discharged under reduced pressure in a high-temperature stopped state, and then replaced with water. When a nuclear reactor is brought into low-temperature shutdown, the water is replaced with boric acid water in a similar manner during the previous high-temperature shutdown state.

この操作は具体的には次のステップによって行う。Specifically, this operation is performed by the following steps.

a、起動前、水置換管14は硼酸水で充満されている。a. Before startup, the water displacement pipe 14 is filled with boric acid water.

b、原子炉容器22の蓋をして、1次冷却材を昇温し、
高温停止状態になったところでバルブV2を開き、水置
換管14内の硼酸水を硼酸水タンク26の中に移動させ
る。この際、水置換管14内の水は、フラッシング及び
水頭差によって落下することとなる。水置換管14内の
硼酸水がなくなったら、バルブv2を閉じる。
b. Cover the reactor vessel 22 and raise the temperature of the primary coolant;
When the high temperature is stopped, the valve V2 is opened to move the boric acid water in the water displacement pipe 14 into the boric acid water tank 26. At this time, the water in the water displacement pipe 14 will fall due to flushing and water head difference. When the boric acid solution in the water replacement pipe 14 is exhausted, close the valve v2.

C1次にバルブV3を開き、水供給ポンプ25を作動さ
せて、水置換管14内に水を注入する。
C1 Next, open the valve V3, operate the water supply pump 25, and inject water into the water displacement pipe 14.

水置換管14内を水で充満させた後バルブ■3を閉じる
After filling the water displacement pipe 14 with water, close the valve 3.

d、この状態で、運転を開始する。運転中は、水置換系
3の圧力は、圧力計P1で監視し、1次系の圧力よりも
高くなったらバルブv1を開いて水置換管14内の水を
水タンク24に移動させることにより減圧し、逆に1次
系の圧力よりも低くなったらバルブV3を開き、水供給
ポンプ25を作動させることによって加圧する。
d. Start operation in this state. During operation, the pressure in the water displacement system 3 is monitored by the pressure gauge P1, and when the pressure becomes higher than the pressure in the primary system, the water in the water displacement pipe 14 is moved to the water tank 24 by opening the valve v1. The pressure is reduced, and when the pressure becomes lower than the primary system pressure, the valve V3 is opened and the water supply pump 25 is operated to increase the pressure.

e、プラントを停止する場合は、高温停止状態になった
ところで、バルブV、を開き、水置換管171内の水を
水タンク24の中に移動させる。
e. When shutting down the plant, open the valve V when the plant reaches a high-temperature shutdown state and move the water in the water replacement pipe 171 into the water tank 24.

水置換管14内の水がなくなったらバルブV1を閉じる
When the water in the water displacement pipe 14 runs out, close the valve V1.

f0次にバルブ■4を開き、硼酸水供給ポンプ27を作
動させて水置換管14内に硼酸水を注入する。水置換管
14内を硼酸水で充満させた後、バルブV4を閉じる。
f0 Next, open the valve 4 and operate the boric acid water supply pump 27 to inject boric acid water into the water replacement pipe 14. After filling the water displacement pipe 14 with boric acid water, the valve V4 is closed.

q、この状態で1次冷却系の冷却を開始し、プラントを
低温停止状態とする。
q. In this state, cooling of the primary cooling system is started to bring the plant into a low temperature shutdown state.

(ハ)発明の効果 このように、この発明の反応度制御方法によれば、炉心
の低温状態と高温状態との変化に対応した反応度補償を
することが出来るので、この機能を果していた従来のケ
ミカルシムを削除でき、これに伴って、大容量の硼酸タ
ンク、硼酸ポンプ、硼酸補給タンク、硼酸回収装置等を
削除できる。
(c) Effect of the invention As described above, according to the reactivity control method of the present invention, it is possible to perform reactivity compensation corresponding to the change between the low temperature state and the high temperature state of the reactor core. Chemical shims can be removed, and along with this, large-capacity boric acid tanks, boric acid pumps, boric acid supply tanks, boric acid recovery equipment, etc. can be removed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は反応度制御設備の構成説明図、及び第2図は燃
料集合体の横断面説明図である。 1・・・反応度制御設備  2・・・燃料集合体  3
・・・水置換系  6・・・炉内計装用管  7・・・
上部ノズル  8・・・下部ノズル  11・・・支持
格子12・・・制御棒案内シンプル  13・・・燃料
棒14・・・水@換管  15・・・連結管  16・
・・接続口  17a、17b・・・注入管  18・
・・注入口20・・・水給排系  21・・・下部炉心
板  22・・・原子炉容器  23・・・接続位置 
 24・・・水タンり  25・・・水供給ポンプ  
26・・・硼酸水タンク  27・・・硼酸水供給ポン
プ  28a〜d・・・分岐管  30・・・硼酸水給
排系  31,32゜33・・・配管
FIG. 1 is an explanatory diagram of the configuration of the reactivity control equipment, and FIG. 2 is an explanatory cross-sectional diagram of the fuel assembly. 1... Reactivity control equipment 2... Fuel assembly 3
...Water replacement system 6...In-furnace instrumentation pipe 7...
Upper nozzle 8... Lower nozzle 11... Support grid 12... Simple control rod guide 13... Fuel rod 14... Water @ exchange pipe 15... Connecting pipe 16.
...Connection port 17a, 17b...Injection pipe 18.
... Inlet 20 ... Water supply and exhaust system 21 ... Lower core plate 22 ... Reactor vessel 23 ... Connection position
24...Water tank 25...Water supply pump
26...Boric acid water tank 27...Boric acid water supply pump 28a-d...Branch pipe 30...Boric acid water supply and discharge system 31, 32° 33... Piping

Claims (1)

【特許請求の範囲】[Claims] 軽水冷却軽水減速型原子炉の炉心を冷却材が通る冷却材
領域と水と硼酸水との置換が可能な水置換領域に分離し
、炉心の高温停止状態において前記水置換領域内の水を
硼酸水と置換することを特徴とする軽水冷却軽水減速型
原子炉炉心の反応度制御方法
The core of a light water-cooled, light water-moderated reactor is separated into a coolant region through which the coolant passes and a water replacement region where water and boric acid can be replaced, and when the core is in a high-temperature shutdown state, the water in the water replacement region is replaced with boric acid. A method for controlling the reactivity of a light water-cooled light water-moderated nuclear reactor core characterized by replacing water with water
JP62251839A 1987-10-06 1987-10-06 Reactivity control of reactor core of light water cooled and light water speed reduced type nuclear reactor Pending JPH0194293A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62251839A JPH0194293A (en) 1987-10-06 1987-10-06 Reactivity control of reactor core of light water cooled and light water speed reduced type nuclear reactor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62251839A JPH0194293A (en) 1987-10-06 1987-10-06 Reactivity control of reactor core of light water cooled and light water speed reduced type nuclear reactor

Publications (1)

Publication Number Publication Date
JPH0194293A true JPH0194293A (en) 1989-04-12

Family

ID=17228692

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62251839A Pending JPH0194293A (en) 1987-10-06 1987-10-06 Reactivity control of reactor core of light water cooled and light water speed reduced type nuclear reactor

Country Status (1)

Country Link
JP (1) JPH0194293A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119840A1 (en) * 2009-04-14 2010-10-21 三菱重工業株式会社 Reactor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010119840A1 (en) * 2009-04-14 2010-10-21 三菱重工業株式会社 Reactor
JP2010249618A (en) * 2009-04-14 2010-11-04 Mitsubishi Heavy Ind Ltd Nuclear reactor
CN102396033A (en) * 2009-04-14 2012-03-28 三菱重工业株式会社 Reactor
KR101317962B1 (en) * 2009-04-14 2013-10-14 미츠비시 쥬고교 가부시키가이샤 Reactor

Similar Documents

Publication Publication Date Title
US10950358B2 (en) PWR decay heat removal system in which steam from the pressurizer drives a turbine which drives a pump to inject water into the reactor pressure vessel
KR101242746B1 (en) Integrated passive safety system outside containment for nuclear power plants
US3431168A (en) Reactor cooling system
US9406408B2 (en) Passive system for cooling the core of a nuclear reactor
EP2421005B1 (en) Nuclear reactor
KR20150023678A (en) Small modular reactor safety systems
KR102211463B1 (en) Method and apparatus for refueling a nuclear reactor having an instrumentation penetration flange
JPH04276596A (en) Method and apparatus for chemical decontamination of primary system of atomic reactor
US3318777A (en) Cooling process for fuel elements of a nuclear reactor of the swimming-pool type and nuclear reactor according to this process
JPH0194293A (en) Reactivity control of reactor core of light water cooled and light water speed reduced type nuclear reactor
JP2899979B2 (en) High temperature gas furnace
JP6381839B1 (en) Reactor shutdown device, reactor shutdown method, and core design method
JP2011052970A (en) Reactor water cooling method and nuclear power plant
CN113241200B (en) Fuel salt loop system and operation method
JPH04109197A (en) Reactor core decay heat removing device for pressurized water reactor
Murao et al. A Concept of Passive Safety, Pressurized Water Reactor System with Inherent Matching Nature of Core Heat Generation and Heat Removal
JP3244747B2 (en) Equipment for cooling the core of a pressurized water reactor
JPH0718942B2 (en) Heavy water bubbling reactor emergency stop device
Leipunskii et al. The BN-350 and the BOR fast reactors
CN110970140A (en) Boron implantation system
JPH01162194A (en) Load following operation of nuclear reactor
JPH021591A (en) Piping structure for controlling reactivity of nuclear reactor
JPH0344274B2 (en)
JPS6111395B2 (en)
Heo et al. Preliminary design of optimized reactor insulator for severe accident mitigation of APR1400