JPH01160882A - Inorganic heat-insulation material - Google Patents

Inorganic heat-insulation material

Info

Publication number
JPH01160882A
JPH01160882A JP32086287A JP32086287A JPH01160882A JP H01160882 A JPH01160882 A JP H01160882A JP 32086287 A JP32086287 A JP 32086287A JP 32086287 A JP32086287 A JP 32086287A JP H01160882 A JPH01160882 A JP H01160882A
Authority
JP
Japan
Prior art keywords
inorganic
heat insulating
insulating material
material according
inorganic heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32086287A
Other languages
Japanese (ja)
Other versions
JPH085733B2 (en
Inventor
Masao Shinozaki
篠崎 征夫
Mamoru Shinozaki
篠崎 守
Hideo Fujinaka
藤中 英生
Fumio Oki
沖 文雄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Kasei Chemical Co Ltd
Takenaka Komuten Co Ltd
Nihon Kasei Co Ltd
Original Assignee
Nippon Kasei Chemical Co Ltd
Takenaka Komuten Co Ltd
Nihon Kasei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Kasei Chemical Co Ltd, Takenaka Komuten Co Ltd, Nihon Kasei Co Ltd filed Critical Nippon Kasei Chemical Co Ltd
Priority to JP32086287A priority Critical patent/JPH085733B2/en
Publication of JPH01160882A publication Critical patent/JPH01160882A/en
Publication of JPH085733B2 publication Critical patent/JPH085733B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain an incombustible or flame-resistant inorganic heat-insulation material having excellent workability, by compounding a curable material with an admixture composed of ultrafine hollow particles, fine fiber, synthetic resin emulsion and a thickener. CONSTITUTION:The objective heat-insulation material consists of a curable material and an admixture for light-weight mortar composed of ultrafine hollow particles, fine fiber, synthetic resin emulsion and a thickener. The ultrafine hollow particle is, e.g., an organic microballoon having particle diameter of 10-100mum or an inorganic microballoon having particle diameter of 5-200mum. The specific gravity of the ultrafine hollow material is <=0.04 for the organic microballoon and 0.3-0.7 for the inorganic microballoon. The curable material is. e.g., a hydraulic or air-setting material such as cement, gypsum, dolomite plaster, ordinary plaster, calcium silicate or magnesium silicate.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、軽量モルタルにて構成される無機質系断熱材
に関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to an inorganic heat insulating material made of lightweight mortar.

〔従来の技術〕[Conventional technology]

従来、この種の断熱材としては、板状に加工された有機
の発泡体と、現場で発泡させるものとが知られている。
Conventionally, as this type of heat insulating material, organic foams processed into plate shapes and those foamed on-site are known.

そして、前者は、断熱の施工に当たっては、予め型枠工
事で断熱材を取り付け、コンクリート打設時に必要箇所
に打ち込まれる。
In the case of the former, when constructing insulation, the insulation material is installed in advance through formwork construction, and then poured into the required locations during concrete pouring.

又、後者は、コンクリート打設後のコンクリート表面に
吹付は施工されるかコンクリート壁体と仕上材との空隙
に充填施工される。
The latter is applied by spraying onto the concrete surface after concrete placement, or by filling the gap between the concrete wall and the finishing material.

これらの有機の発泡体としては、プラスチックフオーム
が知られている。その−例を挙げると、次の通りである
Plastic foams are known as these organic foams. An example of this is as follows.

硬質ウレタンフオームの場合、比重が0.03、圧縮強
度1.4〜2.OKgf/Cポ、熱伝導率0.020〜
0.025Kcal/m、h、 ’C,又、ポリスチレ
ンフオームの場合には、比重が0.03、圧縮強度2.
5〜3.OKgf/cffl、熱伝導率0.025〜0
.030Kcal/m、h、’cである。
In the case of hard urethane foam, the specific gravity is 0.03 and the compressive strength is 1.4 to 2. OKgf/Cpo, thermal conductivity 0.020~
0.025 Kcal/m, h, 'C, and in the case of polystyrene foam, the specific gravity is 0.03 and the compressive strength is 2.
5-3. OKgf/cffl, thermal conductivity 0.025-0
.. 030Kcal/m, h, 'c.

然し、従来の断熱材では、以下に示す如く、施工上及び
耐火上の問題がある。
However, conventional heat insulating materials have problems in terms of construction and fire resistance, as described below.

即ち、施工上の問題点としては、■強度が弱い。That is, the problems in construction are: (1) The strength is weak.

■型枠取付及び打込みに費用が増加する。■型枠脱型の
際に断熱材を損傷する、ことが挙げられる。
■Costs will increase for formwork installation and driving. ■ Damage to the insulation material when removing the formwork.

又、耐火上の問題点としては、■有機の発泡体であるた
め、可燃性であり、燃焼した際に有毒ガスを発生するも
のが多い。■主材料が有機であるため、燃え易い、こと
が挙げられる。
In addition, fireproofing problems include: (1) Since they are organic foams, they are flammable, and many of them generate toxic gas when burned. ■Because the main material is organic, it is easily flammable.

又、無機質系の発泡断熱材の開発も試みられているが断
熱性能や強度的に問題があると共に、施工性、コスト面
で難がある。
Further, attempts have been made to develop inorganic foam insulation materials, but they have problems in terms of insulation performance and strength, as well as problems in terms of workability and cost.

又、従来軽量化と断熱を考慮したものとして、パーライ
トを添加したパーライトモルタルが知られている。この
パーライトモルタルの性質をセメント1に対してパーラ
イト3の場合の容積比配合に基づいて示すと次の通りと
なる。曲げ強度(4週間) 29.7Kgf/cIlN
、圧縮強さ(4週間) 116Kgf/cl、気乾比重
1.06 、熱伝導率0.18Kcal/m、h、 ’
Cとなる。
Furthermore, pearlite mortar to which pearlite is added is known as a mortar that takes weight reduction and heat insulation into consideration. The properties of this pearlite mortar are shown below based on the volume ratio of 1 part of cement to 3 parts of pearlite. Bending strength (4 weeks) 29.7Kgf/cILN
, Compressive strength (4 weeks) 116 Kgf/cl, Air dry specific gravity 1.06, Thermal conductivity 0.18 Kcal/m, h, '
It becomes C.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

然し、パーライトモルタルは、熱伝導率0.18Kca
l/m、h ’Cと上述したプラスチックフオームに比
して大きいため、プラスチックフオームに比して断熱性
が劣っている。
However, pearlite mortar has a thermal conductivity of 0.18Kca.
l/m and h'C, which are larger than those of the above-mentioned plastic foam, so the heat insulation properties are inferior to that of the plastic foam.

又、パーライト自体の比重が0.5〜0.7であるため
、通常では、比重が0.8〜1.4程度のものしか使用
されていない。そして、この軽量モルタルの比重を更に
小さくしようとすると、強度が低下し、施工上からも実
用に供し得なくなる虞がある。
Further, since the specific gravity of pearlite itself is 0.5 to 0.7, normally only pearlite with a specific gravity of about 0.8 to 1.4 is used. If an attempt is made to further reduce the specific gravity of this lightweight mortar, the strength will decrease and there is a risk that it may become unusable from a construction standpoint.

〔発明の目的〕[Purpose of the invention]

本発明は斯かる従来の問題点を解決するために為された
もので、その目的は、施工性が良く、不燃性又は難燃性
である断熱材を提供することにある。
The present invention was made to solve these conventional problems, and its purpose is to provide a heat insulating material that has good workability and is nonflammable or flame retardant.

〔問題点を解決するための手段] 本発明に係る断熱材は、超微粒中空発泡体と、微細な繊
維と、合成樹脂エマルションと、増粘剤とから成る軽量
モルタル用混和材と、硬化材料とで構成したものである
[Means for Solving the Problems] The heat insulating material according to the present invention comprises a lightweight mortar admixture comprising an ultrafine hollow foam, fine fibers, a synthetic resin emulsion, and a thickener, and a hardening material. It is composed of

本発明に於て、軽量モルタル用混和材は、半液体状を呈
しており、硬化材料と任意に混合出来るものである。
In the present invention, the lightweight mortar admixture is in a semi-liquid state and can be mixed with the hardening material as desired.

本発明に使用する軽量モルタル用混和材を構成する超微
粒中空発泡体としては、例えば粒径1゜〜100μmの
有機マイクロバルーン、粒径5〜200μmのセラミッ
クスバルーン等の無機マイクロバルーン等がある。そし
て、超微粒中空発泡体の比重は、有機マイクロバルーン
では0.04以下、無機マイクロバルーンでは0.3〜
0.7である。
Examples of the ultrafine hollow foam constituting the lightweight mortar admixture used in the present invention include organic microballoons with a particle size of 1° to 100 μm, and inorganic microballoons such as ceramic balloons with a particle size of 5 to 200 μm. The specific gravity of the ultrafine hollow foam is 0.04 or less for organic microballoons and 0.3 to 0.3 for inorganic microballoons.
It is 0.7.

又、微細な繊維としては、例えば炭素繊維、ガラス繊維
、ポリプロピレン、ビニロン、アクリロニトリル、セル
ロース等の天然又は合成の無機又は有機繊維、石綿、ア
ルミナ繊維、ロックウール等の各種天然又は合成の無機
又は有機繊維がある。
Examples of fine fibers include natural or synthetic inorganic or organic fibers such as carbon fiber, glass fiber, polypropylene, vinylon, acrylonitrile, and cellulose, and various natural or synthetic inorganic or organic fibers such as asbestos, alumina fiber, and rock wool. There are fibers.

そして、その長さは、目的によって異なるが、通常は6
mm程度である。
The length varies depending on the purpose, but is usually 6
It is about mm.

更に、合成樹脂エマルションとしては、アクリル系、酢
酸ビニール系1合成ゴム系、塩化ビニリデン系、塩化ビ
ニル系又はこれらの混合系がある。
Further, as the synthetic resin emulsion, there are acrylic type, vinyl acetate type, synthetic rubber type, vinylidene chloride type, vinyl chloride type, or a mixture thereof.

その−例を挙げると、エチレン酢酸ビニール共重合体、
アクリルスチレン共重合体、スチレンーブクジエンーラ
バー等がある。
Examples include ethylene vinyl acetate copolymer,
Examples include acrylic styrene copolymer, styrene-book-diene-rubber, etc.

又、増粘剤としては、メチルセルローズ、ポリビニルア
ルコール、ヒドロキシエチルセルローズ等の水溶性高分
子化合物がある。
In addition, examples of thickeners include water-soluble polymer compounds such as methylcellulose, polyvinyl alcohol, and hydroxyethylcellulose.

本発明に使用する軽量モルタル用混和材は、半液体状を
為している。そして、通常は例えば第1図に示す如く、
先ず、合成樹脂エマルションに、微量の水溶性高分子化
合物と水とから成る増粘材を加えて混練し、この混合物
に微細な繊維と超微粒中空発泡体を2回に分けて混合、
混練して製造される。
The lightweight mortar admixture used in the present invention is in a semi-liquid state. And usually, as shown in Figure 1, for example,
First, a thickener consisting of a trace amount of a water-soluble polymer compound and water is added to a synthetic resin emulsion and kneaded, and this mixture is mixed with fine fibers and ultrafine hollow foam in two parts.
Manufactured by kneading.

尚、微細な繊維と超微粒中空発泡体との混合。In addition, a mixture of fine fibers and ultrafine hollow foam.

混練は、2回に分けたが、1回でも或いは2回以上でも
良い。
Although the kneading was divided into two times, it may be done once or twice or more.

更に、軽量モルタル用混和材は、その用途によって配合
割合が任意に変えられるが、超微粒中空発泡体の選択に
よって次のように大別出来る。
Furthermore, although the blending ratio of the admixture for lightweight mortar can be changed arbitrarily depending on its use, it can be broadly classified into the following types depending on the selection of the ultrafine hollow foam.

即ち、超微粒中空発泡体が、有機マイクロバルーンの場
合には、合成樹脂エマルションの固形分換算100重量
部に対し、有機マイクルバルーン10〜40%と、微細
な繊維5〜25%と、微量の水溶性高分子化合物とを混
合して混練することによって製造される。
That is, when the ultrafine hollow foam is an organic microballoon, 10 to 40% of the organic microballoon, 5 to 25% of the fine fiber, and a trace amount of It is manufactured by mixing and kneading a water-soluble polymer compound.

又、超微粒中空発泡体が、無機マイクロバルーン(セラ
ミックバルーン)の場合には、合成樹脂エマルションの
固形分換算100重量部に対し、無機マイクルバルーン
100〜500%と、微細な繊維5〜25%と、微量の
水溶性高分子化合物とを混合して混練することによって
製造される。
In addition, when the ultrafine hollow foam is an inorganic microballoon (ceramic balloon), 100 to 500% of the inorganic microballoon and 5 to 25% of fine fibers are contained relative to 100 parts by weight of the solid content of the synthetic resin emulsion. and a trace amount of a water-soluble polymer compound and knead them.

一方、本発明に於て、硬化材料としては、水硬性又は気
硬性材料が挙げられる。その−例を示すと次の通りであ
る。例えば、セメント、石膏、ドロマイトプラスター、
漆喰、ケイ酸カルシウム。
On the other hand, in the present invention, examples of the hardening material include hydraulic or air hardening materials. An example of this is as follows. For example, cement, gypsum, dolomite plaster,
Plaster, calcium silicate.

炭酸マグネシウム等がある。Examples include magnesium carbonate.

次に、本発明に係る無機質系断熱材の製造方法の一例を
説明する。
Next, an example of a method for manufacturing an inorganic heat insulating material according to the present invention will be explained.

予め作成した軽量モルタル用混和材に対し、硬化材料を
、目的に応じた強度や比重、断熱性等の性能に応じた希
望の調合を選び、これに必要に応じて水又は予め希釈し
て作成した合成樹脂エマルション水溶液を加えながら、
混練して無機質系断熱材の製造を行う。
From the pre-prepared lightweight mortar admixture, select the desired mixture of hardening materials according to performance such as strength, specific gravity, and heat insulation properties according to the purpose, and then dilute this with water or pre-diluted as necessary. While adding the synthetic resin emulsion aqueous solution,
It is kneaded to produce inorganic insulation materials.

斯して製造された無機質系断熱材は、例えば次のように
使用される。
The inorganic heat insulating material thus produced is used, for example, as follows.

本発明に於ける断熱材は、湿式による利用方法と乾式に
よる利用方法とがある。
The heat insulating material in the present invention can be used in a wet manner or in a dry manner.

先ず、湿式による利用方法について説明する。First, we will explain how to use the wet method.

■現場で所定の厚さにモルタルを吹き付け、壁面等の内
装仕上げを行なう。この場合には、施工過程で、断熱材
が損傷することがない。09391回りの充填モルタル
として使用できる。又、本発明に係る無機質系断熱材は
、粘性流動体であるため、窓枠と躯体の空隙を密実に充
填すると共に、窓回り間の結露防止として機能する。
■Spray mortar to a specified thickness on site to finish interior surfaces such as walls. In this case, the insulation material will not be damaged during the construction process. Can be used as filling mortar around 09391. Further, since the inorganic heat insulating material according to the present invention is a viscous fluid, it densely fills the gap between the window frame and the frame and functions to prevent condensation between the window frame and the frame.

次に、乾式による利用方法について説明する。Next, we will explain how to use the dry method.

先ず、型枠に入れ、又はプレス成形等により、又は必要
に応じて薄気養生、オートクレーブ養生を行い、比重2
強度、断熱性、耐火性能など目的に応じた板材等が製造
される。
First, put it in a mold, press mold, etc., or if necessary, perform thin air curing or autoclave curing until the specific gravity is 2.
Boards and other materials are manufactured according to purposes such as strength, heat insulation, and fire resistance.

■クツション性の高いモルタル板となる。これは、変形
を許し、クツション材、緩衝材となる。
■Produces mortar board with high cushioning properties. This allows deformation and becomes a cushioning material and a cushioning material.

■衝撃音などの吸収ができる。遮音性能を有する材料と
することができる。■軽量間仕切り板となる。
■Can absorb impact sounds, etc. It can be made of a material that has sound insulation performance. ■Can be used as a lightweight partition board.

〔発明の実施例〕[Embodiments of the invention]

以下、本発明を実施例により詳述する。 Hereinafter, the present invention will be explained in detail with reference to Examples.

実施例1 エチレン酢酸ビニルエマルション(固形分濃度15%L
96.5%(固形分換算100重量部)と、微量のメチ
ルセルローズと、粒径5〜100μmの有機マイクロバ
ルーン2.3%(15,3重量部)と、繊維長さ約6胴
の炭素繊維1.2%(8重量部)とを用意し、エチレン
酢酸ビニルエマルションと微量のポリビニルアルコール
とを混合した後、この混合物中に有機マイクロバルーン
と炭素繊維とを2回に分けて混合して混練した。
Example 1 Ethylene vinyl acetate emulsion (solid content concentration 15% L)
96.5% (100 parts by weight in terms of solid content), a trace amount of methyl cellulose, 2.3% (15.3 parts by weight) of organic microballoons with a particle size of 5 to 100 μm, and carbon with a fiber length of about 6 cylinders. Prepare 1.2% fiber (8 parts by weight), mix ethylene vinyl acetate emulsion and a trace amount of polyvinyl alcohol, and then mix organic microballoons and carbon fiber into this mixture in two parts. Kneaded.

得られた半液体状の軽量モルタル用混和材を用いて早強
ポルトランドセメントをマトリックスとした無機質系断
熱材と、石膏をマトリックスとした無機質系断熱材とを
製造した。
Using the obtained semi-liquid lightweight mortar admixture, an inorganic insulation material with early-strength Portland cement as a matrix and an inorganic insulation material with gypsum as a matrix were manufactured.

軽量モルタル用混和材1に対し早強ポルトランドセメン
ト0.3の場合には、曲げ強度(4週間)8.5Kgf
/ crll、圧縮強度(4週間) 9.OKgf/ 
c+fl、引っ張り強さ(4週間) 3.7Kgf/ 
cry、表乾比重0.16、熱伝導率(λ) 0.04
0であった。
In the case of 1 part of lightweight mortar admixture and 0.3 of early strength Portland cement, the bending strength (4 weeks) is 8.5 Kgf.
/ crll, compressive strength (4 weeks) 9. OKgf/
c+fl, tensile strength (4 weeks) 3.7Kgf/
cry, surface dry specific gravity 0.16, thermal conductivity (λ) 0.04
It was 0.

軽量モルタル用混和材1に対し早強ポルトランドセメン
l−0,52の場合には、曲げ強度(4週間) 14K
gf/cnff、圧縮強度(4週間) 17Kgf/c
++f、引っ張り強さ(4週間) 6.4Kgf/ c
J、表乾比重0.32、熱伝導率(λ) 0.088で
あった。
In the case of early strength Portland cement l-0,52 for lightweight mortar admixture 1, the bending strength (4 weeks) is 14K
gf/cnff, compressive strength (4 weeks) 17Kgf/c
++f, tensile strength (4 weeks) 6.4Kgf/c
J, surface dry specific gravity 0.32, and thermal conductivity (λ) 0.088.

軽量モルタル用混和材1に対し石膏0.52の場合には
、曲げ強度(4週間) 13.3Kgf/crd、圧縮
強度(4週間)永久歪みのため測定不能、表乾比重0.
29、熱伝導率(λ) 0.080であった。
When the admixture for lightweight mortar is 0.52 gypsum, the bending strength (4 weeks) is 13.3 Kgf/crd, the compressive strength (4 weeks) cannot be measured due to permanent deformation, and the surface dry specific gravity is 0.
29, thermal conductivity (λ) was 0.080.

軽量モルタル用混和材1に対し石膏0.72の場合には
、曲げ強度(4週間) 13.9Kgf/cffl、圧
縮強度(4週間)永久歪みのため測定不能、表乾比重0
.41、熱伝導率(λ) 0.088であった。
In the case of 0.72 gypsum for 1 admixture for lightweight mortar, bending strength (4 weeks) is 13.9 Kgf/cffl, compressive strength (4 weeks) cannot be measured due to permanent deformation, and surface dry specific gravity is 0.
.. 41, and the thermal conductivity (λ) was 0.088.

実施例2 エチレン酢酸ビニルエマルション(固形分濃度15%)
94.3%(固形分換算100.7重量部)と、微量の
メチルセルローズと、粒径5〜100μmの有機マイク
ロバルーン3.8%(25,3重量部)と、繊維長さ約
6 mmの炭素繊維169%(12,7重量部)とを用
意し、エチレン酢酸ビニルエマルションと微量のメチル
セルローズとを混合した後、この混合物中に有機マイク
ロバルーンと炭素繊維とを2回に分けて混合して混練し
た。
Example 2 Ethylene vinyl acetate emulsion (solid content concentration 15%)
94.3% (100.7 parts by weight in terms of solid content), a trace amount of methylcellulose, 3.8% (25.3 parts by weight) of organic microballoons with a particle size of 5 to 100 μm, and a fiber length of about 6 mm. After preparing 169% carbon fiber (12.7 parts by weight) and mixing it with ethylene vinyl acetate emulsion and a trace amount of methyl cellulose, organic microballoons and carbon fiber were mixed into this mixture in two parts. and kneaded.

得られた半液体状の軽量モルタル用混和材1に対し、0
.5の特殊セメントをマトリックスとした無機質系断熱
材を製造した。
0 for the obtained semi-liquid lightweight mortar admixture 1
.. An inorganic heat insulating material using the special cement No. 5 as a matrix was manufactured.

その結果は、曲げ強度(2週間) 13.6hf/cf
fl、絶乾比重0.36、熱伝導率(λ) 0.060
であった。
The results were: bending strength (2 weeks) 13.6hf/cf
fl, absolute dry specific gravity 0.36, thermal conductivity (λ) 0.060
Met.

実施例3 エチレン酢酸ビニルエマルション(固形分濃度15%)
49.6%(固形分換算100重量部)と、lのポリビ
ニルアルコールと、粒径5〜100μmの有機マイクロ
バルーン2.3%(15゜3重量部)と、繊維長さ約6
mmの炭素繊維1.2%(8重量部)と、粒径5〜20
0μmの無機マイクロバルーン46.8%(312重量
部)とを用意し、エチレン酢酸ビニルエマルションと微
量のメチルセルローズとを混合した後、この混合物中に
有機マイクロバルーンと炭素繊維とを2回に分けて混合
して混練した。
Example 3 Ethylene vinyl acetate emulsion (solid content concentration 15%)
49.6% (100 parts by weight in terms of solid content), l of polyvinyl alcohol, 2.3% (15°3 parts by weight) of organic microballoons with a particle size of 5 to 100 μm, and a fiber length of about 6
mm carbon fiber 1.2% (8 parts by weight) and particle size 5-20
After preparing 46.8% (312 parts by weight) of 0 μm inorganic microballoons and mixing them with an ethylene vinyl acetate emulsion and a trace amount of methyl cellulose, the organic microballoons and carbon fibers were divided into two parts into this mixture. The mixture was mixed and kneaded.

得られた半液体状の軽量モルタル用混和材1に対し、0
.25の特殊セメントをマトリックスとした無機質系断
熱材軽量モルタルを製造した。
0 for the obtained semi-liquid lightweight mortar admixture 1
.. A lightweight inorganic heat insulating mortar using 25 special cements as a matrix was manufactured.

その結果は、曲げ強度(2週間) 13.6Kgf/c
+n、圧縮強度(2週間) 16.3Kgf/c+fl
、絶乾比重0.41、熱伝導率(λ) 0.077であ
った。
The result is bending strength (2 weeks) 13.6Kgf/c
+n, compressive strength (2 weeks) 16.3Kgf/c+fl
, absolute dry specific gravity was 0.41, and thermal conductivity (λ) was 0.077.

〔発明の効果〕〔Effect of the invention〕

以上のように、本発明は、超微粒中空発泡体と、微細な
繊維と、合成樹脂エマルションと、増粘剤とから成る軽
量モルタル用混和材と、硬化材料とで構成したので、湿
式材としても、乾式材としても使用することが出来る。
As described above, the present invention is composed of a lightweight mortar admixture consisting of an ultrafine hollow foam, fine fibers, a synthetic resin emulsion, and a thickener, and a hardening material, so it can be used as a wet material. It can also be used as a dry lumber.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明に係る軽量モルタル用混和材の混合手順
を示す説明図である。 特許出願人 株式会社竹中工務店 第1図
FIG. 1 is an explanatory diagram showing a procedure for mixing an admixture for lightweight mortar according to the present invention. Patent applicant: Takenaka Corporation Figure 1

Claims (12)

【特許請求の範囲】[Claims] (1)超微粒中空発泡体と、微細な繊維と、合成樹脂エ
マルションと、増粘剤とから成る軽量モルタル用混和材
と、硬化材料とで構成したことを特徴とする無機質系断
熱材。
(1) An inorganic heat insulating material comprising a lightweight mortar admixture consisting of an ultrafine hollow foam, fine fibers, a synthetic resin emulsion, and a thickener, and a hardening material.
(2)硬化材料が、水硬性又は気硬性材料である特許請
求の範囲第1項記載の無機質系断熱材。
(2) The inorganic heat insulating material according to claim 1, wherein the hardening material is a hydraulic or air hardening material.
(3)水硬性又は気硬性材料が、セメント、石膏、ドロ
マイトプラスター、漆喰、ケイ酸カルシウム、炭酸マグ
ネシウム等である特許請求の範囲第1項又は第2項記載
の無機質系断熱材。
(3) The inorganic heat insulating material according to claim 1 or 2, wherein the hydraulic or air hard material is cement, gypsum, dolomite plaster, plaster, calcium silicate, magnesium carbonate, etc.
(4)超微粒中空発泡体が、粒径10〜100μmの有
機マイクロバルーン、粒径5〜200μmの無機マイク
ロバルーン等である特許請求の範囲第1項、第2項又は
第3項記載の無機質系断熱材。
(4) The inorganic material according to claim 1, 2, or 3, wherein the ultrafine hollow foam is an organic microballoon with a particle size of 10 to 100 μm, an inorganic microballoon with a particle size of 5 to 200 μm, etc. system insulation material.
(5)有機マイクロバルーンの比重が、0.04以下で
ある特許請求の範囲第1項、第2項、第3項又は第4項
記載の無機質系断熱材。
(5) The inorganic heat insulating material according to claim 1, 2, 3, or 4, wherein the organic microballoon has a specific gravity of 0.04 or less.
(6)無機マイクロバルーンの比重が、0.3〜0.7
である特許請求の範囲第1項、第2項、第3項、第4項
又は第5項記載の無機質系断熱材。
(6) The specific gravity of the inorganic microballoon is 0.3 to 0.7
An inorganic heat insulating material according to claim 1, 2, 3, 4 or 5.
(7)微細な繊維が、炭素繊維、ガラス繊維、ポリプロ
ピレン、ビニロン、アクリロニトリル、セルロース等の
天然又は合成の無機又は有機繊維、石綿、アルミナ繊維
、ロックウール等の各種天然又は合成の無機又は有機繊
維である特許請求の範囲第1項、第2項、第3項、第4
項、第5項又は第6項記載の無機質系断熱材。
(7) Fine fibers include natural or synthetic inorganic or organic fibers such as carbon fiber, glass fiber, polypropylene, vinylon, acrylonitrile, cellulose, etc., various natural or synthetic inorganic or organic fibers such as asbestos, alumina fiber, rock wool, etc. Claims 1, 2, 3, and 4 are
The inorganic heat insulating material according to item 1, 5 or 6.
(8)合成樹脂エマルションは、アクリル系、酢酸ビニ
ール系、合成ゴム系、塩化ビニリデン系、塩化ビニル系
又はこれらの混合系である特許請求の範囲第1項、第2
項、第3項、第4項、第5項、第6項又は第7項記載の
無機質系断熱材。
(8) The synthetic resin emulsion is acrylic, vinyl acetate, synthetic rubber, vinylidene chloride, vinyl chloride, or a mixture thereof.
The inorganic heat insulating material according to item 1, 3, 4, 5, 6 or 7.
(9)増粘剤が、水溶性高分子化合物である特許請求の
範囲第1項、第2項、第3項、第4項、第5項、第6項
、第7項又は第8項記載の無機質系断熱材。
(9) Claims 1, 2, 3, 4, 5, 6, 7, or 8, wherein the thickener is a water-soluble polymer compound. Inorganic insulation materials listed.
(10)水溶性高分子化合物が、メチルセルローズ、ポ
リビニルアルコール、ヒドロキシエチルセルローズ等で
ある特許請求の範囲第9項記載の無機質系断熱材。
(10) The inorganic heat insulating material according to claim 9, wherein the water-soluble polymer compound is methylcellulose, polyvinyl alcohol, hydroxyethylcellulose, or the like.
(11)軽量モルタル用混和材が、合成樹脂エマルショ
ンの固形分換算100重量部に対し、有機マイクルバル
ーン10〜40%と、微細な繊維5〜25%と、微量の
増粘剤とを混合して混練した半液体状を為している特許
請求の範囲第1項、第2項、第3項、第4項、第5項、
第6項、第7項、第8項、第9項又は第10項記載の無
機質系断熱材。
(11) The admixture for lightweight mortar is a mixture of 10 to 40% organic micro balloons, 5 to 25% of fine fibers, and a trace amount of thickener to 100 parts by weight of the solid content of the synthetic resin emulsion. Claims 1, 2, 3, 4, and 5, which are in a semi-liquid state after being kneaded by
The inorganic heat insulating material according to item 6, 7, 8, 9 or 10.
(12)軽量モルタル用混和材が、合成樹脂エマルショ
ンの固形分換算100重量部に対し、無機マイクルバル
ーン100〜500%と、微細な繊維5〜25%と、微
量の増粘剤とを混合して混練した半液体状を為している
特許請求の範囲第1項、第2項、第3項、第4項、第5
項、第6項、第7項、第8項、第9項、第10項又は第
11項記載の無機質系断熱材。
(12) The admixture for lightweight mortar is a mixture of 100 to 500% inorganic micro balloons, 5 to 25% of fine fibers, and a trace amount of thickener to 100 parts by weight of the solid content of the synthetic resin emulsion. Claims 1, 2, 3, 4, and 5, which are in a semi-liquid state after being kneaded by
The inorganic heat insulating material according to item 1, 6, 7, 8, 9, 10 or 11.
JP32086287A 1987-12-16 1987-12-16 Inorganic heat insulating material Expired - Lifetime JPH085733B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32086287A JPH085733B2 (en) 1987-12-16 1987-12-16 Inorganic heat insulating material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32086287A JPH085733B2 (en) 1987-12-16 1987-12-16 Inorganic heat insulating material

Publications (2)

Publication Number Publication Date
JPH01160882A true JPH01160882A (en) 1989-06-23
JPH085733B2 JPH085733B2 (en) 1996-01-24

Family

ID=18126088

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32086287A Expired - Lifetime JPH085733B2 (en) 1987-12-16 1987-12-16 Inorganic heat insulating material

Country Status (1)

Country Link
JP (1) JPH085733B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016278A1 (en) * 1990-04-25 1991-10-31 Takenaka Corporation Heat insulating material and structure made therefrom
WO1991018154A1 (en) * 1990-05-24 1991-11-28 Takenaka Corporation Condensation preventing structure
EP0480072A1 (en) * 1990-04-25 1992-04-15 Takenaka Corporation Refractory coating material
BE1012036A3 (en) * 1998-06-10 2000-04-04 Hugo Remi Michiels Compound insulating material
JP2005053220A (en) * 2003-08-07 2005-03-03 Sk Chemicals Co Ltd Flame resistant polyester core material for built-up panel reinforced by foaming of flame retardant, and its manufacturing process
US6994586B2 (en) 2004-05-12 2006-02-07 Funai Electric Co., Ltd. Printed circuit board supporting structure
JP2007285051A (en) * 2006-04-19 2007-11-01 Shimizu Corp Joint material for segment, and tunnel structure having the same
CN111635183A (en) * 2020-06-17 2020-09-08 天津天工佳品科技发展有限公司 Heat insulation material with vacuum-like structure and preparation method thereof
CN115180904A (en) * 2022-06-20 2022-10-14 苏州禧之龙新材料科技有限公司 Preparation method of fireproof heat-insulating material

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101909086B1 (en) * 2016-10-28 2018-10-18 (주)에스와이씨 Fiber mixed type calcium silicate inorganic insulations and fabrication method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1991016278A1 (en) * 1990-04-25 1991-10-31 Takenaka Corporation Heat insulating material and structure made therefrom
EP0480072A1 (en) * 1990-04-25 1992-04-15 Takenaka Corporation Refractory coating material
EP0480072A4 (en) * 1990-04-25 1993-01-27 Takenaka Corporation Refractory coating material
WO1991018154A1 (en) * 1990-05-24 1991-11-28 Takenaka Corporation Condensation preventing structure
BE1012036A3 (en) * 1998-06-10 2000-04-04 Hugo Remi Michiels Compound insulating material
JP2005053220A (en) * 2003-08-07 2005-03-03 Sk Chemicals Co Ltd Flame resistant polyester core material for built-up panel reinforced by foaming of flame retardant, and its manufacturing process
US6994586B2 (en) 2004-05-12 2006-02-07 Funai Electric Co., Ltd. Printed circuit board supporting structure
JP2007285051A (en) * 2006-04-19 2007-11-01 Shimizu Corp Joint material for segment, and tunnel structure having the same
CN111635183A (en) * 2020-06-17 2020-09-08 天津天工佳品科技发展有限公司 Heat insulation material with vacuum-like structure and preparation method thereof
CN115180904A (en) * 2022-06-20 2022-10-14 苏州禧之龙新材料科技有限公司 Preparation method of fireproof heat-insulating material

Also Published As

Publication number Publication date
JPH085733B2 (en) 1996-01-24

Similar Documents

Publication Publication Date Title
US4664707A (en) Fire resistant gypsum composition
US20150240163A1 (en) Fire core compositions and methods
CA2999580A1 (en) Light-weight, fire-resistant composition and assembly
JPH01160882A (en) Inorganic heat-insulation material
JP3285470B2 (en) Lightweight non-combustible heat insulating material composition excellent in pumping property and method of applying the same
WO2008020561A1 (en) Process for producing cured magnesia cement foam, cured foam obtained by the process, and molded object comprising the cured object
KR100730658B1 (en) The light weight concrete panel using the industrial waste with the thereof
JPH07300913A (en) Light weight heat insulating fire proofing panel
JPH01160881A (en) Admixture for light-weight mortar
KR101077211B1 (en) Construction panel
JPH0525912A (en) Fire-proof, heat insulating and sound insulating building material
AU2014101579A4 (en) Lightweight Building Member
JP2550445B2 (en) Inorganic thermal insulation / refractory material for spraying and method for producing the same
CN110540396A (en) Building disassembly-free heat preservation template and manufacturing method thereof
JP2640558B2 (en) Lightweight body composition
JP3048465B2 (en) Formwork and concrete panel
JP4123370B2 (en) Thermal insulation structure and construction method
JPH08208347A (en) Building fire resistive material and fireproof construction
JPH06321599A (en) Refractory coating material
JPH03257083A (en) Cement mortar composition for extrusion molding
JP2540190B2 (en) Method for manufacturing lightweight cement compact
JP2001316164A (en) Inorganic hydraulic composition and method for manufacturing lightweight molded body using it
JP2022543385A (en) Insulation material and manufacturing method thereof
JPS62187185A (en) Manufacture of fiber reinforced lightweight cement product
KR100401540B1 (en) Hard Gypsum Plate and its Flow Forming Method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term