JP2540190B2 - Method for manufacturing lightweight cement compact - Google Patents

Method for manufacturing lightweight cement compact

Info

Publication number
JP2540190B2
JP2540190B2 JP63174809A JP17480988A JP2540190B2 JP 2540190 B2 JP2540190 B2 JP 2540190B2 JP 63174809 A JP63174809 A JP 63174809A JP 17480988 A JP17480988 A JP 17480988A JP 2540190 B2 JP2540190 B2 JP 2540190B2
Authority
JP
Japan
Prior art keywords
weight
cement
parts
aggregate
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP63174809A
Other languages
Japanese (ja)
Other versions
JPH0226881A (en
Inventor
博美 迫田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sekisui Chemical Co Ltd
Original Assignee
Sekisui Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sekisui Chemical Co Ltd filed Critical Sekisui Chemical Co Ltd
Priority to JP63174809A priority Critical patent/JP2540190B2/en
Publication of JPH0226881A publication Critical patent/JPH0226881A/en
Application granted granted Critical
Publication of JP2540190B2 publication Critical patent/JP2540190B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はセメント成形体の製造方法,特に内装あるい
は外装建材などに用いられる軽量セメント成形体の製造
方法に関する。
Description: TECHNICAL FIELD The present invention relates to a method for manufacturing a cement molded product, particularly a method for manufacturing a lightweight cement molded product used for interior or exterior building materials.

(従来の技術) 壁材や天井材などの内・外装用建築材料として,軽量
のセメント成形体が使用されている。軽量セメント成形
体を製造する方法としては,セメント組成物の各成分に
水を加えて混合するときに気泡を発生させる方法,およ
び軽量骨材を含有するセメント組成物を使用して成形体
を調製する方法がある。これらのうち,気泡を発生させ
る方法としては,空気連行(AE)剤,界面活性剤などの
発泡剤を混合して攪拌により発泡させる方法;分解によ
り過酸化水素などのガスを発生する物質を混合してお
き,該物質の分解により発生するガスを利用して発泡さ
せる方法などがある。しかし、このようにして発生させ
た微細気泡を含む泥状のセメント組成物を真空押出成形
すると,押出機の減圧ゾーンで脱気されて気泡の大部分
は消滅する。そのため低密度のセメント成形体が得られ
ない。
(Prior Art) Light-weight cement compacts are used as building materials for interior and exterior such as wall materials and ceiling materials. As a method for manufacturing a lightweight cement compact, a method of generating bubbles when water is added to each component of the cement composition and mixing, and a compact using a cement composition containing a lightweight aggregate are prepared. There is a way to do it. Among these, as a method of generating bubbles, a method of mixing a foaming agent such as an air entrainment (AE) agent and a surfactant and foaming by stirring; mixing a substance that generates a gas such as hydrogen peroxide by decomposition is mixed. In addition, there is a method of foaming by using gas generated by decomposition of the substance. However, when a mud-like cement composition containing fine bubbles generated in this way is vacuum extrusion-molded, most of the bubbles disappear due to deaeration in the decompression zone of the extruder. Therefore, a low-density cement compact cannot be obtained.

上記軽量骨材を使用する方法において,軽量骨材とし
ては,パーライト,シラスバルーン,火山礫などの比較
的細粒でかつ低比重の骨材が使用されている。しかし,
これらを含むセメント組成物材料を押出機内で加圧・混
練すると,該骨材は破砕されやすく,そのため,軽量セ
メント成形体が得られない。特開昭56−17965号および
特開昭56−17967号公報には,上記パーライト,シラス
バルーン,火山礫などに加えて,耐アルカリ性ガラス繊
維(ARG)と,木炭やパルプとを含有するセメント組成
物が開示されている。上記ガラス繊維は補強繊維として
加えられており,木炭やパルプは,該組成物の各材料を
混練したときに軽量骨材の破砕およびガラス繊維の損傷
を防ぐ目的で加えられている[上記混練時の破砕や損傷
は,低水分の条件下において(未硬化成形体の形状維持
のために必要である)の強力な混練により生じやす
い]。しかし,木炭やパルプにはリグニンや樹脂が含有
され,これらがセメントの硬化反応に悪影響を与える。
つまり,成形体の硬化を室温下で行った場合,または蒸
気雰囲気下で行った場合には,得られる成形体の強度が
不充分であるため,オートクレーブを用いた高温高圧下
での処理が必要となる。
In the method of using the above lightweight aggregate, as the lightweight aggregate, relatively fine-grained and low specific gravity aggregates such as pearlite, shirasu balloon, and lapilli are used. However,
When a cement composition material containing these is pressed and kneaded in an extruder, the aggregate is easily crushed, so that a lightweight cement compact cannot be obtained. JP-A-56-17965 and JP-A-56-17967 disclose a cement composition containing alkali-resistant glass fiber (ARG), charcoal and pulp in addition to the above-mentioned pearlite, shirasu balloon, and gravel. The thing is disclosed. The above-mentioned glass fiber is added as a reinforcing fiber, and charcoal and pulp are added for the purpose of preventing the crushing of the lightweight aggregate and the damage of the glass fiber when the respective materials of the composition are kneaded. Crushing and damage are likely to occur due to strong kneading under conditions of low water content (necessary for maintaining the shape of the uncured compact). However, charcoal and pulp contain lignin and resin, which adversely affect the hardening reaction of cement.
In other words, when the molded body is cured at room temperature or in a steam atmosphere, the strength of the molded body obtained is insufficient, so treatment at high temperature and high pressure using an autoclave is necessary. Becomes

上記軽量のセメント成形体を製造する場合,特に押出
成形により成形を行う場合には,成形性および得られる
未硬化の成形体の形状維持性が良好であることも要求さ
れる。従来,セメント成形体を押出し成形により製造す
る場合には,石綿繊維を添加することにより,成形性お
よび形状維持性が確保されていた。石綿繊維の添加によ
り得られる成形体の強度が向上し,防火性も得られる。
しかし石綿は特定化学物質に指定されており,その発癌
性が問題となっている。石綿セメント成形体を製造する
ときには使用基準が設けられてはいるが,製造時および
使用時における発塵の問題から,現在では石綿を含有し
ないセメント組成物を用いた成形体が望まれている。
In the case of manufacturing the above-mentioned lightweight cement molded product, particularly in the case of molding by extrusion molding, it is also required that the moldability and the shape retention of the obtained uncured molded product are good. Conventionally, in the case of manufacturing a cement molded product by extrusion molding, by adding asbestos fiber, the moldability and the shape maintainability have been secured. The addition of asbestos fibers improves the strength of the molded product and also provides fire protection.
However, asbestos is designated as a specific chemical substance, and its carcinogenicity is a problem. Although a standard for use is set when manufacturing an asbestos-cement compact, a compact using a cement composition that does not contain asbestos is now desired due to the problem of dust generation during production and use.

(発明が解決しようとする課題) 本発明は上記従来の欠点を解決するものでありその目
的とするところは,外装または内装用建築材料として利
用され得る高強度で防火性を有する軽量のセメント成形
体であって,かつ有毒な石綿を含有しない成形体を製造
する方法を提供することにある。
(Problems to be Solved by the Invention) The present invention is to solve the above-mentioned conventional drawbacks, and an object of the present invention is to provide a high-strength, fireproof lightweight cement molding which can be used as a building material for exterior or interior. It is an object of the present invention to provide a method for producing a molded body which is a body and does not contain toxic asbestos.

(課題を解決するための手段) 本発明の軽量セメント成形体の製造方法は,セメン
ト,粒径が2mm以下で発泡倍率が10〜60倍でありセメン
ト100重量部に対して0.5〜20重量部の発泡スチレンビー
ズ,界面活性剤,球形粒子で主としてなる無機骨材,補
強繊維およびセルロース系混和剤を含有するセメント組
成物を得る工程;該セメント組成物を混練して得られる
可塑性混練物を加圧下で押し出す工程;および得られた
成形体を,該成形体中のスチレンビーズが熱変形しない
温度で予備硬化させた後,40℃以上で湿空養生を行なっ
て硬化させる工程を包含し,そのことにより上記目的が
達成される。好適な実施態様においては,上記セメント
組成物中にはさらにセピオライトが含有される。
(Means for Solving the Problem) The method for producing a lightweight cement compact according to the present invention comprises: cement, a particle size of 2 mm or less, an expansion ratio of 10 to 60 times, and 0.5 to 20 parts by weight with respect to 100 parts by weight of cement. A step of obtaining a cement composition containing expanded styrene beads, a surfactant, an inorganic aggregate mainly composed of spherical particles, a reinforcing fiber and a cellulosic admixture; and adding a plastic kneaded product obtained by kneading the cement composition. A step of extruding under pressure; and a step of pre-curing the obtained molded body at a temperature at which the styrene beads in the molded body are not thermally deformed, and then curing by wet air curing at 40 ° C. or higher. By doing so, the above object is achieved. In a preferred embodiment, the cement composition further contains sepiolite.

本発明に用いられるセメント組成物に含有されるセメ
ントとしては,ポルトランドセメント,高炉セメント,
アルミナセメントなど公知のセメントがいずれも使用さ
れ得る。
The cement contained in the cement composition used in the present invention includes Portland cement, blast furnace cement,
Any known cement such as alumina cement can be used.

セメント組成物に含有される発泡スチレンビーズと
は,スチレン系ポリマーの発泡体でなるビーズである。
このようなビーズは,例えば,スチレンモノマーの重合
時にプロパン,ブタンなどの炭化水素系ガスを導入し,
得られるポリマー粒子中に該ガスを包含させた後,この
ポリマー粒子を加熱し発泡させて得られる。発泡スチレ
ンビーズの粒径は2mm以下,好ましくは0.5〜1.5mmであ
る。粒径が大きすぎると得られる成形体の強度が低下す
る。上記ビーズの発泡倍率は10〜60倍,好ましくは,20
〜40倍である。発泡倍率が60倍を越えると,セメント組
成物を押出しにより成形する時に,該ビーズが圧縮され
て変形し,押出後においてその形状が回復するため,成
形体にクラックが発生する。発泡倍率が10倍を下まわる
と得られる成形体の比重が大きくなる。上記発泡スチレ
ンビーズはセメント100重量部に対し0.5〜20重量部の割
合で含有される。過少であると得られる成形体の比重が
大きくなり,過剰であると成形体の強度が低下する。
The expanded styrene beads contained in the cement composition are beads made of a styrene polymer foam.
Such beads, for example, introduce a hydrocarbon-based gas such as propane or butane during the polymerization of styrene monomer,
After the gas is included in the obtained polymer particles, the polymer particles are heated and foamed. The particle size of the expanded styrene beads is 2 mm or less, preferably 0.5 to 1.5 mm. If the particle size is too large, the strength of the obtained molded article will be reduced. The expansion ratio of the beads is 10 to 60 times, preferably 20
~ 40 times. When the expansion ratio exceeds 60 times, when the cement composition is molded by extrusion, the beads are compressed and deformed, and their shape is recovered after extrusion, so that cracks occur in the molded body. When the expansion ratio is less than 10 times, the specific gravity of the obtained molded product increases. The expanded styrene beads are contained in an amount of 0.5 to 20 parts by weight based on 100 parts by weight of cement. If the amount is too small, the specific gravity of the obtained molded product increases, and if it is excessive, the strength of the molded product decreases.

界面活性剤は,混練・押出時にセメント組成物各成分
の分散性を高め,かつ混練物の流動性を高めるために用
いられる。このような界面活性剤としては一般にセメン
ト用減水剤として使用されている界面活性剤が用いられ
る。それには例えば,ナフタレンスルホン酸−ホルマリ
ン縮合物ナトリウム塩,メラミン−ホルムアルデヒド縮
合物スルホン酸塩,芳香族多環縮合物スルホン酸塩系界
面活性剤,高級多価アルコール系界面活性剤,グルコン
酸塩系界面活性剤,リグニンスルホン酸塩系界面活性剤
がある。上記界面活性剤は,セメント100重量部に対し
て0.1〜5重量部の割合で含有される。過少であると組
成物の各成分を混合したときの流動性に劣るため多量の
水を必要とし,その結果,得られる成形体の強度が劣
る。過剰であるとセメントの凝結に悪影響を与え,強度
が低下する。界面活性剤は発泡スチレンビーズ表面に付
与,例えば,ビーズ表面にコーティングされてもよい。
このようにすることにより上記発泡スチレンビーズの分
散性がより向上する。
The surfactant is used to enhance the dispersibility of each component of the cement composition during kneading / extrusion and to enhance the fluidity of the kneaded product. As such a surfactant, a surfactant generally used as a water reducing agent for cement is used. For example, naphthalenesulfonic acid-formalin condensate sodium salt, melamine-formaldehyde condensate sulfonate, aromatic polycyclic condensate sulfonate-based surfactant, higher polyhydric alcohol-based surfactant, gluconate-based surfactant There are surfactants and lignin sulfonate-based surfactants. The above surfactant is contained in an amount of 0.1 to 5 parts by weight with respect to 100 parts by weight of cement. If the amount is too small, the fluidity when the respective components of the composition are mixed is poor, so a large amount of water is required, and as a result, the strength of the resulting molded article is poor. If it is excessive, it will adversely affect the setting of cement and reduce the strength. The surfactant may be applied to the surface of the expanded styrene beads, for example, the surface of the beads may be coated.
By doing so, the dispersibility of the expanded styrene beads is further improved.

組成物中に含有される無機骨材は,球形粒子で主とし
てなる。本発明のひとつの好適な実施態様においては,
この無機骨材の粒径は0.1〜500μmである。粒径が大き
すぎると成形時の成形性に劣る。上記粒径を有する無機
骨材としては,フライアッシュ(石炭火力発電所の集塵
器で採取される微粉炭燃焼灰);マイクロシリカ,シリ
カヒューム,球形ケイ酸カルシウム(いずれもシリコン
メタル,フェロシリコンなどの製造時に副生する)など
が好適である。
The inorganic aggregate contained in the composition is mainly composed of spherical particles. In one preferred embodiment of the invention,
The particle size of this inorganic aggregate is 0.1 to 500 μm. If the particle size is too large, the moldability during molding deteriorates. As the inorganic aggregate having the above particle size, fly ash (a pulverized coal combustion ash collected by a dust collector of a coal-fired power plant); microsilica, silica fume, spherical calcium silicate (all of which are silicon metal and ferrosilicon) Are produced as by-products at the time of production) and the like are preferable.

他の好適な実施態様においては,上記無機骨材は,粒
径1〜100μmの球形骨材を主成分としかつ粒径が1μ
m以下の超微粒子骨材を少量成分として含有する。無機
骨材のうち球形骨材としては,フライアッシュ,球形ケ
イ酸カルシウム(シリコンメタル,フェロシリコンなど
の製造時に副生する)などが好適である。超微粒子骨材
としては,上記粒径を有する無機質粒子であって,後述
の成形工程において細密充填構造を形成し得,かつ硬化
工程においてポゾラン反応を起こすような粒子が用いら
れる。そのような超微粒子骨材としては,マイクロシリ
カ(フェロシリコンの製造時に副生する),天然ポゾラ
ン,珪藻土,シリカフラワー,エアロジルなどが好適で
ある。
In another preferred embodiment, the inorganic aggregate is mainly composed of spherical aggregate having a particle size of 1 to 100 μm and having a particle size of 1 μm.
It contains ultrafine aggregate of m or less as a minor component. As the spherical aggregate among the inorganic aggregates, fly ash, spherical calcium silicate (produced as a by-product during the production of silicon metal, ferrosilicon, etc.) and the like are preferable. As the ultrafine particle aggregate, there is used an inorganic particle having the above-mentioned particle size, which can form a finely packed structure in the molding step described later and causes a pozzolanic reaction in the curing step. As such an ultrafine particle aggregate, microsilica (produced as a by-product during the production of ferrosilicon), natural pozzolan, diatomaceous earth, silica flour, aerosil, etc. are suitable.

無機骨材は,上記いずれの場合においてもセメント10
0重量部あたり10〜100重量部の割合で含有される。無機
骨材の組成物全体に占める割合が低いと成形性に劣り,
過剰であると得られる成形体の強度が低下する。上記球
形骨材と超微粒子骨材とを使用する場合においては,該
球形骨材は無機骨材全体の80〜99重量%の割合で,そし
て超微粒子骨材は1〜20%重量%の割合で含有される。
球形骨材と超微粒子骨材とを併用するときには,特に,
後述のセピオライトが組成物中に含有されていることが
好ましい。
In either case, the inorganic aggregate is used as cement.
It is contained in an amount of 10 to 100 parts by weight per 0 parts by weight. If the proportion of the inorganic aggregate in the entire composition is low, the moldability is poor,
If the amount is excessive, the strength of the obtained molded product will decrease. When the spherical aggregate and the ultrafine particle aggregate are used, the spherical aggregate is 80 to 99% by weight of the whole inorganic aggregate, and the ultrafine particle aggregate is 1 to 20% by weight. Contained in.
When using spherical aggregates and ultrafine particle aggregates in combination,
It is preferable that the below-described sepiolite is contained in the composition.

補強繊維は,得られる成形体の曲げ強度および衝撃強
度を向上させるのに用いられる。それには例えば,有機
繊維,パルプなどが利用され得る。有機繊維の素材とし
ては,ビニロン,ポリプロピレン,ポリエチレン,アク
リル系樹脂,アラミド,ポリエステル,カーボンなど耐
アルカリ性の素材が好適である。補強繊維の直径は1〜
100μm,繊維長は3〜20mmが適当である。この補強繊維
はセメント100重量部に対し0.1〜10重量部の割合で組成
物中に含有される。補強繊維は過少であると得られる成
形体の強度が低下する。過剰であると組成物の各材料を
混合したときの分散性が悪く,その結果,得られる成形
体の強度が低下する。
Reinforcing fibers are used to improve the bending strength and impact strength of the resulting molded product. For example, organic fibers, pulp, etc. can be used. As a material for the organic fiber, an alkali resistant material such as vinylon, polypropylene, polyethylene, acrylic resin, aramid, polyester, or carbon is suitable. The diameter of the reinforcing fiber is 1
A suitable length is 100 μm and a fiber length of 3 to 20 mm. The reinforcing fiber is contained in the composition at a ratio of 0.1 to 10 parts by weight with respect to 100 parts by weight of cement. If the reinforcing fibers are too small, the strength of the obtained molded article will be reduced. If it is excessive, the dispersibility when the materials of the composition are mixed is poor, and as a result, the strength of the resulting molded article is reduced.

セルロース系混和剤は,組成物を押出成形するときに
ある程度の粘度を付与し,流動性を改善する目的で用い
られる。セルロース系混和剤としては,メチルセルロー
ス,ヒドロキシエチルセルロースなどが好適に用いられ
る。このセルロース系混和剤は,セメント100重量部に
対し,0.1〜10重量部,好ましくは0.5〜5重量部の割合
で組成物中に含有される。過少であると組成物を混和し
たときの粘度が低いため,逆に過剰であると粘度が高い
ため,いずれも成形性に劣る。
The cellulosic admixture is used for the purpose of imparting a certain degree of viscosity when the composition is extruded and improving the fluidity. As the cellulose-based admixture, methyl cellulose, hydroxyethyl cellulose and the like are preferably used. This cellulosic admixture is contained in the composition at a ratio of 0.1 to 10 parts by weight, preferably 0.5 to 5 parts by weight, based on 100 parts by weight of cement. If the amount is too small, the viscosity when the composition is mixed is low, and if the amount is too large, the viscosity is high.

セメント組成物中には,必要に応じてセピオライトが
含有される。このセピオライトは,例えば(OH24(OH)
4Mg8Si12O30・6〜8H2Oで示されるケイ酸マグネシウム
化合物である。セピオライトは複鎖構造型の粘土鉱物で
あり,繊維状,粉末状,粒状,板状などの形で存在す
る。セピオライトはα型およびβ型の結晶構造のいずれ
かで存在するが,繊維状の形態で天然に存在しているα
型のセピオライト(α−セピオライト)が好適に用いら
れる。この繊維状のセピオライトの繊維径は0.01〜0.30
μm,好ましくは0.15μm程度;そして繊維長は,1μm以
上,好ましくは100μm以上である。セピオライトはセ
メント組成物中に,セメント100重量部に対し50重量部
以下,好ましくは3〜50重量部,さらに好ましくは5〜
30重量部の割合で含有される。過剰であると,成形体の
強度が低下する。
Sepiolite is optionally contained in the cement composition. This sepiolite is, for example, (OH 2 ) 4 (OH)
4 Mg 8 Si 12 O 30 · 6-8H 2 O is a magnesium silicate compound. Sepiolite is a clay mineral of a double-chain structure type, and exists in the form of fibrous, powdery, granular, plate-like, etc. Sepiolite exists in either α-type or β-type crystal structure, but it exists in the form of fibrous α
Type sepiolite (α-sepiolite) is preferably used. The fiber diameter of this fibrous sepiolite is 0.01 to 0.30
μm, preferably about 0.15 μm; and the fiber length is 1 μm or more, preferably 100 μm or more. Sepiolite is contained in the cement composition in an amount of 50 parts by weight or less, preferably 3 to 50 parts by weight, and more preferably 5 to 100 parts by weight of cement.
It is contained in a proportion of 30 parts by weight. If it is excessive, the strength of the molded product will decrease.

本発明方法によりセメント成形体を製造するには,従
来のセメント押出成形と同様の工程が採用され得る。例
えばまず,上記セメント,発泡スチレンビーズ,界面活
性剤,無機骨材,補強繊維,セルロース系混和剤および
必要に応じてセピオライトをドライブレンドする。これ
に適量の水を加えて湿式ブレンドを行い,次いで混練機
を用いて充分に混練を行う。得られる可塑性の混練物を
所望の金型を有する押出成形機に導き,加圧下で押出し
成形を行う。押出された所望の形状を有する成形体は,
成形体内の発泡スチレンビーズや補強繊維が変形あるい
は移動しない温度,通常40℃以下,で養生することによ
り予備硬化させる。この成形体を次に40℃以上,好まし
くは40〜80℃にて湿空養生(蒸気養生)することにより
完全に硬化させる。上記蒸気養生の時間は通常,5時間以
上である。上記,ブレンド工程,混練工程および押出成
形工程には,いずれも汎用の設備が用いられ得る。
In order to produce a cement molded product by the method of the present invention, the same steps as conventional cement extrusion molding can be adopted. For example, first, the above cement, expanded styrene beads, a surfactant, an inorganic aggregate, a reinforcing fiber, a cellulosic admixture, and optionally sepiolite are dry blended. An appropriate amount of water is added to this to perform wet blending, and then kneading is sufficiently performed using a kneader. The obtained plastic kneaded product is introduced into an extruder having a desired mold, and extrusion molding is performed under pressure. The extruded compact having the desired shape is
It is pre-cured by curing at a temperature at which the expanded styrene beads and reinforcing fibers in the molded body do not deform or move, usually below 40 ° C. Next, this molded body is completely cured by being subjected to humid air curing (steam curing) at 40 ° C. or higher, preferably 40 to 80 ° C. The steam curing time is usually more than 5 hours. General-purpose equipment can be used for the blending step, kneading step, and extrusion molding step.

(作用) 本発明方法により上記セメント組成物を押出成形する
と,押出機内においては混練物の水分が比較的少ない場
合(例えば,複雑な異型断面の成形体を得るために水分
量を減じて未硬化の成形体の保形性を高める場合)にも
該混練物は充分な流動性を有し,流速が均一となる。か
つ押出された未硬化の成形体は硬化が進行するまで充分
な保形性を有する。このような良好な性質は,セメン
ト組成物中の無機骨材は主として球形粒子でなるため,
これが加圧下においてベアリングの効果を示すこと,
セメント組成物中には,上記無機骨材,発泡スチレンビ
ーズおよび補強繊維が含有されているため押出し後にお
ける保形性に優れ,押出された未硬化の成形体が硬化す
るまでに形くずれしないこと,および界面活性剤が含
有されるため組成物の各材料同士のぬれ性(特に発泡ス
チレンビーズとセメントとのぬれ性)が改善され,均一
な混練物が得られ,かつ必要とされる水/セメント比が
低下すること,に主として起因すると考えられる。セピ
オライトが含有される場合には,該セピオライトは混練
物に揺変性(チキソトロピー性)を付与する。そのため
加圧下においては流動性が良好であり,押出後において
は保形性に優れる。組成物中にはさらに,セルロース系
混和剤が含有されるため,適当な粘度が付与される。複
雑な異形断面形状を有する金型により成形が行われる場
合にも,脱水工程を必要とせず,容易に成形が行われ
る。
(Operation) When the above cement composition is extrusion-molded by the method of the present invention, when the water content of the kneaded material is relatively low in the extruder (for example, the water content is reduced to obtain a molded product having a complex irregular cross-section, and uncured). In the case of improving the shape retention of the molded body (1), the kneaded product has sufficient fluidity and the flow velocity becomes uniform. The extruded uncured molded product has sufficient shape retention until curing proceeds. Such good properties are due to the fact that the inorganic aggregate in the cement composition consists mainly of spherical particles.
This shows the effect of the bearing under pressure,
Since the cement composition contains the above-mentioned inorganic aggregate, expanded styrene beads and reinforcing fibers, it has excellent shape-retaining property after extrusion, and the extruded uncured compact does not lose its shape before it hardens. , And a surfactant are contained, the wettability between the respective materials of the composition (particularly the wettability between expanded styrene beads and cement) is improved, a uniform kneaded product is obtained, and the required water / It is thought that this is mainly due to the decrease in the cement ratio. When the sepiolite is contained, the sepiolite imparts thixotropy to the kneaded product. Therefore, it has good fluidity under pressure and excellent shape retention after extrusion. Since the composition further contains a cellulosic admixture, an appropriate viscosity is imparted. Even when molding is performed using a mold having a complicated irregular cross-sectional shape, the dehydration step is not required and the molding is easily performed.

押出された未硬化の成形体は保形性が良好であり,予
備硬化時および完全に硬化するまでに変形することがな
い。成形体の硬化時には40℃以上,好ましくは40〜80℃
の温度条件が採用され,このような温度条件下において
は,成形体に含有される発泡スチレンビーズが熱により
溶融することがない。組成物中の発泡スチレンビーズ
は,押出時の圧力により若干収縮し,補強繊維,セメン
トペーストの凝集力が働くため押出後において成形体は
プレストレス効果が得られ,引張りに強くなる。得られ
た硬化成形体には,発泡スチレンビーズが含まれている
ため,該成形体は低比重である。かつ,補強繊維が含ま
れているため,充分な強度と耐衝撃性とを有する。この
ような成形体は住宅の壁材,天井材などに好適に利用さ
れる。
The uncured extruded compact has good shape retention and does not deform during pre-curing or until it is completely cured. At the time of hardening of the molded body, 40 ℃ or more, preferably 40-80 ℃
The temperature conditions are adopted, and under such temperature conditions, the expanded styrene beads contained in the molded body are not melted by heat. The expanded styrene beads in the composition are slightly shrunk due to the pressure during extrusion, and the cohesive force of the reinforcing fibers and cement paste acts on the molded product to obtain a prestressing effect after extrusion and strengthen tensile strength. Since the obtained cured molded product contains expanded styrene beads, the molded product has a low specific gravity. Moreover, since it contains reinforcing fibers, it has sufficient strength and impact resistance. Such a molded body is suitably used as a wall material or ceiling material of a house.

本発明によれば,このように,従来の石綿繊維を使用
することなく壁材,天井材などの内装および外装建築材
料に適した軽量かつ高強度のセメント成形体が容易に製
造される。石綿繊維を使用しないため,製造工程および
使用時において石綿の発塵による発癌の危険性がない。
According to the present invention, as described above, a lightweight and high-strength cement molded product suitable for interior and exterior building materials such as wall materials and ceiling materials can be easily manufactured without using conventional asbestos fibers. Since no asbestos fibers are used, there is no risk of carcinogenesis due to asbestos dust during the manufacturing process and use.

(実施例) 以下に本発明を実施例につき説明する。(Example) Hereinafter, the present invention will be described with reference to Examples.

実施例1 (A)可塑性混練物の調製: 上記処方のセメント組成物の水以外の各成分をミキサ
ー(アイリッヒミキサーRVO2型:日本アイリッヒ社製)
に入れ1000rpmで2分間混合した。これに水を加え,さ
らに約1分間混合した後,オーガー式混練機(MP−100
型:宮崎鉄工社製)で充分に混練して可塑性混練物を得
た。
Example 1 (A) Preparation of plastic kneaded material: Mixer for each component other than water in the cement composition of the above formulation (Eirich mixer RVO2 type: manufactured by Nippon Eirich)
And mixed at 1000 rpm for 2 minutes. After adding water to this and mixing for about 1 minute, the auger type kneader (MP-100
It was sufficiently kneaded with a mold: manufactured by Miyazaki Tekko Co., Ltd. to obtain a plastic kneaded product.

(B)−1 平板セメント状成形体の調製:(A)項で
得られた混練物を,平板試作用金型(開口部幅250mm×
厚さ15mm)が取り付けられた真空押出成形機(MV−FM−
A−1;宮崎鉄工社製)のホッパーに供給し,押出し成形
により巾250mm,厚さ15mm,長さ100cmの平板サンプルの調
製を行った。このときの押出圧力と単位時間あたりの押
出量とを測定した。押出圧力は,押出機のパレルから金
型へ至る抵抗部の圧力をブルドル管圧力ゲージで測定し
た。単位時間あたりの押出量は,金型先端部から押出さ
れる平板サンプルの60秒間に吐出された長さ(cm/min)
を測定し,次式により算出した。
(B) -1 Preparation of flat plate cement-like compact: The kneaded product obtained in (A) was used as a flat plate trial mold (opening width 250 mm ×
Vacuum extrusion molding machine (MV-FM- with a thickness of 15 mm)
A-1; manufactured by Miyazaki Iron Works Co., Ltd.), and a flat plate sample having a width of 250 mm, a thickness of 15 mm and a length of 100 cm was prepared by extrusion molding. At this time, the extrusion pressure and the extrusion amount per unit time were measured. For the extrusion pressure, the pressure at the resistance part from the extruder's parel to the mold was measured with a brudle pressure gauge. The extrusion rate per unit time is the length (cm / min) of the flat plate sample extruded from the die tip in 60 seconds.
Was measured and calculated by the following formula.

T:単位時間あたりの押出量(l/hr) α:金型出口の断面積(cm2) β:押出された平板サンプルの長さ(cm/分) 上記未硬化の成形体を,30℃,相対温度90%以上の蒸
気養生室に入れて6時間放置(養生)して予備硬化させ
た後,60℃,相対湿度90%以上の雰囲気下で12時間蒸気
養生してセメント成形体を得た。
T: Extrusion rate per unit time (l / hr) α: Cross-sectional area of die outlet (cm 2 ) β: Length of extruded flat plate sample (cm / min) After placing in a steam curing room with a relative temperature of 90% or more for 6 hours (curing) to pre-cure it, steam curing for 12 hours in an atmosphere with a relative humidity of 90% or more at 60 ° C to obtain a cement compact. It was

(B)−2 中空成形体の調製:開口部が第1図に示す
断面図形状を有する中空異形金型を(B)−1項と同様
の真空押出成形機にとりつけ,この押出成形機に(A)
項で得られた混練物を供給し,(B)−1項に準じて押
出成形を行った。
(B) -2 Preparation of Hollow Molded Body: A hollow profile mold having an opening having the cross-sectional shape shown in FIG. 1 was attached to the same vacuum extrusion molding machine as in (B) -1, and the extrusion molding machine was fitted with the hollow molding die. (A)
The kneaded product obtained in Section (1) was supplied and extrusion molding was carried out according to Section (B) -1.

得られたセメント成形体10は,その断面が第1図に示
すように矩形状の平板状をしており,巾方向の一方の側
面には側方に突出する断面矩形状の突条11が押出し方向
の全域にわたって延設されており,他方の側面には,該
突条11が遊嵌され得る凹溝12が押出し方向の全域にわた
って延設されている。また,その内部には,押出し方向
の全域にわたって断面矩形状の3つの空間部13a,13b,13
cが形成されている。空間部13a,13b,13cはそれぞれ等し
い大きさとなっている。
The obtained cement molded body 10 has a rectangular flat plate shape in cross section as shown in FIG. 1, and a ridge 11 having a rectangular cross section protruding laterally on one side surface in the width direction. A groove 12 into which the protrusion 11 can be loosely fitted is provided on the other side surface over the entire area in the extrusion direction. In addition, three space portions 13a, 13b, 13 having a rectangular cross section are formed in the entire area in the extrusion direction.
c is formed. The space portions 13a, 13b, 13c have the same size.

該成形体10は,突条11を除く巾方向寸法が250mm,厚さ
が50mm,押出し方向の長さが約200cmとなっており,その
各角部は半径3mmの円弧状に面取りされている。一方の
側面に突設された突条11は,該側面の中央部に,該側面
からの突出量が20mm,厚さ方向寸法が20mmとなってお
り,その先端部における各角部および基端部における各
角部は半径3mmの円弧状に面取りされている。他方の側
面に形成された凹溝12は,該側面の中央部に,開口部に
おける厚さ方向の寸法が24mm,深さが22.4mmとなってお
り,各角部は半径3mmの円弧状に面取りされている。内
部に形成される各空間部13a,13b,13cは,成形体の厚さ
方向の中央部に,それぞれ配設されており,その厚さ方
向寸法が30mm,幅方向寸法が61.2mmとなっている。各空
間部13a,13b,13cはそれぞれ10mm離隔している。突条11
が配設された側面に隣接する空間部13aは該側面とは,12
mm離隔しており,他方の側面に隣接する空間部は該側面
とは34.4mm,従って該側面に配設された凹溝12の内奥面
とは12mm離隔している。
The molded body 10 has a widthwise dimension of 250 mm, a thickness of 50 mm, and a length in the extrusion direction of about 200 cm excluding the ridges 11, and each corner is chamfered in an arc shape with a radius of 3 mm. . The ridge 11 projecting from one side surface has a protrusion amount of 20 mm from the side surface and a thickness direction dimension of 20 mm at the central portion of the side surface. Each corner of the section is chamfered in an arc shape with a radius of 3 mm. The concave groove 12 formed on the other side surface has a dimension in the thickness direction at the opening of 24 mm and a depth of 22.4 mm at the center of the side surface, and each corner has an arc shape with a radius of 3 mm. It is chamfered. Each of the space portions 13a, 13b, 13c formed inside is arranged in the central portion in the thickness direction of the molded body, and the dimension in the thickness direction is 30 mm and the dimension in the width direction is 61.2 mm. There is. The spaces 13a, 13b, 13c are separated by 10 mm. Ridge 11
The space 13a adjacent to the side surface on which the
The space portion adjacent to the other side surface is 34.4 mm apart from the other side surface, and is therefore separated from the inner rear surface of the concave groove 12 arranged on the side surface by 12 mm.

上記未硬化の成形体を(B)−1項と同様に放置して
養生し,硬化させた。
The above-mentioned uncured molded body was left to cure and cured in the same manner as in (B) -1.

(C)−1 平板成形体の性能評価:(B)−1で得ら
れたサンプルを巾25mm,長さ240mmに切断(押出方向に対
し直角に切断)し,105℃のギヤーオーブンに入れて約48
時間乾燥後,室温まで放冷した。このサンプルを200mm
の間隔で支持し,その中央部にオートグラフ(島津製作
所製)を用い,2.5mm/分の曲げ速度で力を加えて曲げ強
度を測定した。曲げ強度は,次式により示される: 曲げ強度(kgf/cm2)=3PL/2bt2 P:最大荷重(kg/f) L:支持間隔(cm) b:サンプルの幅(cm) c:サンプルの厚さ(cm) 次に,(B)−1項で得られた養生後の成形体を室温
に約1週間放置した後,200mm×200mmのサイズに切断し
た新たなサンプルを得た。このサンプルの寸法を測定
し,次式により成形体の比重を測定した: 比重=板の重量/厚さ×幅×長さ (重量はg単位で少数点第2位まで,寸法はcm単位で少
数点第2位まで測定した。) さらに,(B)−1項で得られた成形体を巾200mm,長
さ200mmに切断(押出方向に対し直角に切断)してサン
プルを得た。このサンプルを平坦な気乾状態の砂(厚さ
10cm)の上に載置し,その中央部に1kgの鋼球を3mの高
さから落下させサンプルに異常が認められるか否かを観
察した(耐衝撃性試験)。
(C) -1 Performance evaluation of flat plate molded body: The sample obtained in (B) -1 was cut into a width of 25 mm and a length of 240 mm (cut at right angles to the extrusion direction) and put in a gear oven at 105 ° C. About 48
After drying for an hour, it was allowed to cool to room temperature. This sample is 200mm
Bending strength was measured by applying force at a bending speed of 2.5 mm / min using an autograph (manufactured by Shimadzu Corp.) at the center of the support. Bending strength is expressed by the following formula: Bending strength (kgf / cm 2 ) = 3PL / 2bt 2 P: Maximum load (kg / f) L: Support distance (cm) b: Width of sample (cm) c: Sample Thickness (cm) Next, after the cured molded body obtained in the item (B) -1 was left at room temperature for about 1 week, a new sample was cut into a size of 200 mm × 200 mm. The size of this sample was measured, and the specific gravity of the molded body was measured by the following formula: Specific gravity = board weight / thickness x width x length (weight is in units of g up to the second decimal point, and in units of cm) The measurement was carried out to the second decimal place.) Further, the molded body obtained in the item (B) -1 was cut into a width of 200 mm and a length of 200 mm (cut at right angles to the extrusion direction) to obtain a sample. This sample was applied to flat air-dried sand (thickness
10 cm), and a 1 kg steel ball was dropped from the height of 3 m in the center to observe whether any abnormalities were found in the sample (impact resistance test).

各試験の結果を表1に示す。表1および後述の表2〜
3の耐衝撃性試験の項において,◎は変化が認められな
いことを,○は亀裂の入ったことを,そして×は亀裂が
貫通しサンプルが割れて分断されたことを示す。
The results of each test are shown in Table 1. Table 1 and Tables 2 to be described later
In the item of impact resistance test of 3, the symbol ⊚ indicates that no change was observed, the symbol ◯ indicates that a crack was formed, and the symbol × indicates that the crack penetrated and the sample was divided into pieces.

(C)−2 中空成形体の性能評価:(B)−2項で得
られた養生後のサンプルを押出し方向に長さ100cmの位
置で切断した。このようにして試験片2個を得,凸部と
凹部の嵌合部が嵌合可能であるか否かを調べた。その結
果を表1に示す。
(C) -2 Performance evaluation of hollow molded body: The cured sample obtained in (B) -2 was cut at a position with a length of 100 cm in the extrusion direction. In this way, two test pieces were obtained, and it was examined whether or not the fitting portion of the convex portion and the concave portion could be fitted. Table 1 shows the results.

実施例2〜4 表1に示す割合の各成分を含有するセメント組成物を
用い,実施例1に準じて成形体の成形およびその評価を
行なった。その結果を表1に示す。表1において,アラ
ミドは,テクノーラT−320×6(繊維径12μm,繊維長6
mm;帝人(株)製);そしてポリプロピレン繊維は,PZL1
2d×10(繊維径42μm.繊維長10mm;大和紡績(株)製)
である。
Examples 2 to 4 Using cement compositions containing the respective components in the proportions shown in Table 1, moldings were molded and evaluated according to Example 1. Table 1 shows the results. In Table 1, aramid is Technora T-320 × 6 (fiber diameter 12 μm, fiber length 6
mm; Teijin Limited); and polypropylene fiber is PZL1
2d × 10 (fiber diameter 42μm, fiber length 10mm; manufactured by Daiwa Spinning Co., Ltd.)
Is.

比較例1〜2 表1に示す割合の各成分を含有するセメント組成物を
用い,実施例1に準じて成形体の成形およびその評価を
行なった。その結果を表1に示す。比較例2の組成物を
用いて成形を行なった場合には成形不良となり,満足し
得る形状の成形体が得られなかった。
Comparative Examples 1 to 2 Using a cement composition containing the components in the proportions shown in Table 1, moldings were molded and evaluated according to Example 1. Table 1 shows the results. When molding was performed using the composition of Comparative Example 2, molding failure occurred and a molded article having a satisfactory shape could not be obtained.

実施例5〜8 実施例1のセメント組成物の各成分に加えて,さらに
セピオライトを含む組成物を用いて実施例1に準じて成
形体を得,その評価を行なった。組成物中の各成分の割
合および試験結果をあわせて表2に示す。表2のセピオ
ライトのうち「セルボラ」は,繊維長100μm以上の中
国産セピオライト(ユニオン化成製)であり,「エード
プラスP」は,繊維長10μm以下のセピオライト(武田
薬品(株)製)である。表3においても同様である。
Examples 5 to 8 In addition to the components of the cement composition of Example 1, a composition further containing sepiolite was used to obtain a molded article in accordance with Example 1 and evaluated. Table 2 shows the ratio of each component in the composition and the test results. Among the sepiolites in Table 2, “Cerbola” is a Chinese sepiolite with a fiber length of 100 μm or more (made by Union Chemicals), and “Adeplus P” is a sepiolite with a fiber length of 10 μm or less (made by Takeda Pharmaceutical Co., Ltd.). . The same applies to Table 3.

比較例3〜4 表2に示す割合の各成分を含有するセメント組成物を
用い,実施例1に準じて成形体の成形およびその評価を
行なった。その結果を表2に示す。比較例4の組成物を
用いて成形を行なった場合には成形不良となり,満足し
得る形状の成形体が得られなかった。
Comparative Examples 3 to 4 Using cement compositions containing the components in the proportions shown in Table 2, moldings were molded and evaluated according to Example 1. The results are shown in Table 2. When molding was performed using the composition of Comparative Example 4, molding failure occurred, and a molded product having a satisfactory shape could not be obtained.

実施例9〜12 実施例1のセメント組成物の各成分に加えて,さらに
セピオライトを含み,かつ無機骨材が平均粒径20μmの
フライアッシュ(関電化工(株)製)および平均粒径0.
15μmのマイクロシリカ(エルケムマイクロシリカ940
−U;SiO成分14%;中国産,ユニオン化成社)でなる組
成物を用い,実施例1に準じて成形体を得,その評価を
行なった。組成物中の各成分の割合および試験結果をあ
わせて表3に示す。
Examples 9 to 12 In addition to the components of the cement composition of Example 1, sepiolite was further included, and the inorganic aggregate had a fly ash having an average particle size of 20 μm (manufactured by Kandenko Kako Co., Ltd.) and an average particle size of 0.
15μm Micro Silica (Elchem Micro Silica 940
-U; SiO component 14%; made in China, Union Chemicals Co., Ltd.) was used to obtain a molded article in accordance with Example 1 and evaluated. The ratio of each component in the composition and the test results are shown in Table 3 together.

比較例5〜6 表3に示す割合の各成分を含有するセメント組成物を
用い,実施例1に準じて成形体の成形およびその評価を
行なった。その結果を表3に示す。比較例5の組成物を
用いて成形を行なった場合には成形不良となり,満足し
得る形状の成形体が得られなかった。
Comparative Examples 5 to 6 Using cement compositions containing the components in the proportions shown in Table 3, moldings were molded and evaluated according to Example 1. The results are shown in Table 3. When molding was carried out using the composition of Comparative Example 5, molding failure occurred and a molded product having a satisfactory shape could not be obtained.

表1〜3から,本発明の組成物を用いると,セメント
成形体が押出成形により成形性よく得られることがわか
る。得られた未硬化の成形体は形状維持性に優れ,硬化
するまでに変形することがない。硬化して得られる成形
体は軽量であり,かつ曲げ強度および耐衝撃性に優れ
る。
From Tables 1 to 3, it can be seen that, when the composition of the present invention is used, a cement molded product can be obtained by extrusion molding with good moldability. The obtained uncured molded body has excellent shape retention and does not deform before being cured. The molded product obtained by curing is lightweight and has excellent bending strength and impact resistance.

(発明の効果) 本発明方法により,このように,軽量でありかつ高強
度で防火性にも優れたセメント成形体が,押出成形によ
り成形性良く高効率で得られる。このようなセメント成
形体は,例えば住宅の壁材や天井材などの内・外装用材
料として好適に用いられる。石綿が含有されていないた
め,製造工程においても使用時においても石綿の発塵に
よる発癌の危険性がない。
(Effects of the Invention) According to the method of the present invention, a cement molded product that is lightweight, has high strength, and is excellent in fireproofness can be obtained by extrusion molding with good moldability and high efficiency. Such a cement molded product is preferably used as an interior / exterior material such as a wall material or ceiling material for a house. Since it does not contain asbestos, there is no risk of carcinogenesis due to dust in asbestos during the manufacturing process and during use.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明方法により得られるセメント成形体の一
例を示す断面図である。 10…中空セメント成形体。
FIG. 1 is a sectional view showing an example of a cement molded product obtained by the method of the present invention. 10… Hollow cement compact.

Claims (7)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】セメント,粒径が2mm以下で発泡倍率が10
〜60倍でありセメント100重量部に対して0.5〜20重量部
の発泡スチレンビーズ,界面活性剤,球形粒子で主とし
てなる無機骨材,補強繊維およびセルロース系混和剤を
含有するセメント組成物を得る工程, 該セメント組成物を混練して得られる可塑性混練物を加
圧下で押し出す工程,および 得られた成形体を,該成形体中のスチレンビーズが熱変
形しない温度で予備硬化させた後,40℃以上で湿空養生
を行なって硬化させる工程, を包含する軽量セメント成形体の製造方法。
1. Cement with a particle size of 2 mm or less and an expansion ratio of 10
~ 60 times, 0.5 ~ 20 parts by weight to 100 parts by weight of cement, obtain a cement composition containing expanded styrene beads, surfactant, inorganic aggregate mainly composed of spherical particles, reinforcing fiber and cellulosic admixture 40, a step of extruding a plastic kneaded product obtained by kneading the cement composition under pressure, and pre-curing the obtained molded body at a temperature at which styrene beads in the molded body are not thermally deformed. A method for producing a lightweight cement compact, which comprises a step of curing by curing in a humid atmosphere at a temperature of ℃ or higher.
【請求項2】前記セメント組成物がさらにセピオライト
が含有する特許請求の範囲第1項に記載の方法。
2. The method according to claim 1, wherein the cement composition further contains sepiolite.
【請求項3】前記無機骨材が粒径0.1〜500μmの球形骨
材で主としてなる特許請求の範囲第1項または第2項に
記載の方法。
3. The method according to claim 1, wherein the inorganic aggregate is mainly spherical aggregate having a particle size of 0.1 to 500 μm.
【請求項4】前記無機骨材が粒径1〜100μmの球形骨
材を主成分としかつ粒径が1μm以下の超微粒子骨材を
少量成分として含有する特許請求の範囲第2項に記載の
方法。
4. The method according to claim 2, wherein the inorganic aggregate contains a spherical aggregate having a particle size of 1 to 100 μm as a main component and an ultrafine particle aggregate having a particle size of 1 μm or less as a minor component. Method.
【請求項5】前記界面活性剤が,前記スチレンビーズ表
面に付与された特許請求の範囲第1項に記載の方法。
5. The method according to claim 1, wherein the surfactant is applied to the surface of the styrene beads.
【請求項6】前記セメント組成物中に,セメント100重
量部に対し,前記界面活性剤が0.1〜5重量部,前記無
機骨材が10〜100重量部,前記補強繊維が0.1〜10重量
部,そして,前記セルロース系混和剤が0.1〜10重量部
の割合で含有される特許請求の範囲第1項に記載の方
法。
6. In the cement composition, the surfactant is 0.1 to 5 parts by weight, the inorganic aggregate is 10 to 100 parts by weight, and the reinforcing fiber is 0.1 to 10 parts by weight with respect to 100 parts by weight of cement. The method according to claim 1, wherein the cellulosic admixture is contained in a proportion of 0.1 to 10 parts by weight.
【請求項7】前記セメント組成物中に,セメント100重
量部に対し,前記界面活性剤が0.1〜5重量部,前記無
機骨材が10〜100重量部,前記セピオライトが3〜50重
量部,前記補強繊維が0.1〜10重量部,そして,前記セ
ルロース系混和剤が0.1〜10重量部の割合で含有される
特許請求の範囲第2項に記載の方法。
7. The cement composition contains 0.1 to 5 parts by weight of the surfactant, 10 to 100 parts by weight of the inorganic aggregate, and 3 to 50 parts by weight of the sepiolite, based on 100 parts by weight of cement. The method according to claim 2, wherein the reinforcing fibers are contained in an amount of 0.1 to 10 parts by weight, and the cellulosic admixture is contained in an amount of 0.1 to 10 parts by weight.
JP63174809A 1988-07-12 1988-07-12 Method for manufacturing lightweight cement compact Expired - Lifetime JP2540190B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP63174809A JP2540190B2 (en) 1988-07-12 1988-07-12 Method for manufacturing lightweight cement compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP63174809A JP2540190B2 (en) 1988-07-12 1988-07-12 Method for manufacturing lightweight cement compact

Publications (2)

Publication Number Publication Date
JPH0226881A JPH0226881A (en) 1990-01-29
JP2540190B2 true JP2540190B2 (en) 1996-10-02

Family

ID=15985045

Family Applications (1)

Application Number Title Priority Date Filing Date
JP63174809A Expired - Lifetime JP2540190B2 (en) 1988-07-12 1988-07-12 Method for manufacturing lightweight cement compact

Country Status (1)

Country Link
JP (1) JP2540190B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114276063A (en) * 2022-01-05 2022-04-05 绍兴文理学院元培学院 Light building material and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60161381A (en) * 1984-01-30 1985-08-23 株式会社クボタ Manufacture of lightweight cement formed product

Also Published As

Publication number Publication date
JPH0226881A (en) 1990-01-29

Similar Documents

Publication Publication Date Title
JPH04114937A (en) Fiber-reinforced lightweight cement composition
JP2888629B2 (en) Fiber reinforced cement composition
JP3174170B2 (en) Inorganic foam and method for producing the same
JPH0832603B2 (en) Lightweight cement composition
JPH02267146A (en) Concrete composition reinforced with high-strength fiber, product using the composition and production of the product
JP2540190B2 (en) Method for manufacturing lightweight cement compact
JPH01160882A (en) Inorganic heat-insulation material
JPH06293546A (en) Production of hydraulic and inorganic material molding
JPH0489340A (en) Cement composition to be extrusion-molded
JPH10330146A (en) Production of hydraulic inorganic molded product
JPH07108798B2 (en) Cement composition and method for producing cement molded product using the same
JP2000063161A (en) Filler inorganic hydraulic composition and board material
JP2002012465A (en) Extrusion compact and its manufacturing method
JPH04209777A (en) Production of lightweight cement molded cured product
JPH03257083A (en) Cement mortar composition for extrusion molding
JP2864862B2 (en) Cement compositions and cement extruded products
JP2660378B2 (en) Manufacturing method of fireproof coating
JPH10182208A (en) Production of hydraulic inorganic composition and production of inorganic hardened body
JPH0832581B2 (en) Cement composition
JPH085701B2 (en) Method for producing lightweight cement composition and lightweight cement molded product
JPH0524011A (en) Manufacture of hydraulic inorganic molded product
JPH05294699A (en) Hydraulic composition for extrusion molding and extrusion-molded product
JPH0489339A (en) Cement composition to be extrusion-molded
JPH01320242A (en) Lightweight cement composition
JPS62187185A (en) Manufacture of fiber reinforced lightweight cement product