JP3285470B2 - Lightweight non-combustible heat insulating material composition excellent in pumping property and method of applying the same - Google Patents

Lightweight non-combustible heat insulating material composition excellent in pumping property and method of applying the same

Info

Publication number
JP3285470B2
JP3285470B2 JP18616195A JP18616195A JP3285470B2 JP 3285470 B2 JP3285470 B2 JP 3285470B2 JP 18616195 A JP18616195 A JP 18616195A JP 18616195 A JP18616195 A JP 18616195A JP 3285470 B2 JP3285470 B2 JP 3285470B2
Authority
JP
Japan
Prior art keywords
heat insulating
weight
lightweight
insulating material
parts
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP18616195A
Other languages
Japanese (ja)
Other versions
JPH0912379A (en
Inventor
英二 高橋
重博 流谷
英男 元木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Kaken Co Ltd
Original Assignee
SK Kaken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by SK Kaken Co Ltd filed Critical SK Kaken Co Ltd
Priority to JP18616195A priority Critical patent/JP3285470B2/en
Publication of JPH0912379A publication Critical patent/JPH0912379A/en
Application granted granted Critical
Publication of JP3285470B2 publication Critical patent/JP3285470B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/14Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing calcium sulfate cements
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/00034Physico-chemical characteristics of the mixtures
    • C04B2111/00146Sprayable or pumpable mixtures
    • C04B2111/00155Sprayable, i.e. concrete-like, materials able to be shaped by spraying instead of by casting, e.g. gunite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/20Resistance against chemical, physical or biological attack
    • C04B2111/28Fire resistance, i.e. materials resistant to accidental fires or high temperatures
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は土木、建築分野におい
て、断熱性を付与すべき部位に用いて断熱層を形成す
る、軽量不燃断熱材組成物およびその施工方法に係るも
のである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lightweight noncombustible heat insulating material composition for forming a heat insulating layer on a site to be provided with heat insulating properties in the field of civil engineering and construction, and a method for constructing the same.

【0002】[0002]

【従来技術】従来より一般の断熱材はその断熱効果を発
揮させるため、断熱材内部にできるだけ多くの気泡構造
を形成することが要求される。特に現場で吹付け施工を
行う断熱材料の場合、このような内部気泡構造の形成
は、ウレタンフォームや一部の発泡モルタルのように、
断熱材の形成時における発泡反応による方法、または、
パーライトやバーミキュライト等の無機軽量粉粒体を混
入した軽量モルタルのように、気泡構造を有する軽量粉
粒体をセメント等の水硬性母体形成物質に混合、施工す
る方法で形成されていた。しかしながら、発泡反応を利
用する場合は、その反応の安定性が施工環境の影響で大
きく左右されるという難点があり、一方、軽量粉粒体を
大量に母体形成物質と混合する方法の場合は、一般にこ
れら軽量粉粒体はそれ自身強度が小さいため、混合中の
力によって破砕してしまう場合があったり、或いはポン
プ圧送して吹付け施工する時にはその時かかるポンプ圧
力やホース移送中でのずり応力、吹付け圧力等によって
軽量粉粒体がつぶれて、結果として最終製品のかさ比重
が上昇し、断熱性の低下と比重の上昇を招いてしまう原
因になっていた。このような傾向は、断熱材の軽量化を
より高めようとして軽量粉粒体を増量するほどに顕著に
表れる。これに対して、比較的弾力性に富み破損しにく
い発泡ポリスチレン等の有機系発泡軽量粉粒体や、有機
系超微粒中空発泡体、或いは無機系では強度上から比較
的かさ比重の大きい中空体を使用したり、更には母体形
成物質に合成樹脂やその分散体を加え断熱材全体の強度
を高めたりする方法が行われてきた。一方、断熱材には
こうした軽量性の要求の他に、防火防災上から不燃性能
の付与も大きく望まれている。断熱材の施工を行う建
築、土木現場においては、断熱材の施工時に他の工事を
同時並行的に行うのが常であり、断熱材施工途中や施工
後に、金属の溶接等の原因により火花が生じる場合もあ
り得る。このような場合に断熱材が可燃性であると火災
事故につながることになる。また、自己消火性の断熱材
のように、火災の発生には至らなくとも、一次的に着火
したり、温度上昇により有害ガスを発生するものも使用
されているのが現状である。このような可燃性、もしく
は自己消火性の断熱材は、その組成中に有機可燃性成分
を比較的多量含有している場合が多く、このような有機
可燃性成分を削減することが火災や有害ガスの発生を防
止することにつながる。
2. Description of the Related Art Conventionally, a general heat insulating material is required to form as many bubble structures as possible within the heat insulating material in order to exhibit its heat insulating effect. In particular, in the case of thermal insulation materials that are sprayed on site, the formation of such an internal cell structure, such as urethane foam and some foam mortar,
A method based on a foaming reaction during the formation of a heat insulating material, or
It has been formed by a method in which a light-weight powder having a cellular structure, such as a light-weight mortar mixed with an inorganic light-weight powder such as perlite or vermiculite, is mixed with a hydraulic base-forming substance such as cement and applied. However, when using the foaming reaction, there is a disadvantage that the stability of the reaction is greatly affected by the construction environment, while, in the case of a method of mixing a large amount of lightweight powder with the parent substance, Generally, these lightweight powders have low strength by themselves, and may be crushed by the force during mixing, or when pumping and spraying, the pump pressure and shear stress during hose transfer at that time As a result, the lightweight powder and the like are crushed by the spraying pressure and the like, and as a result, the bulk specific gravity of the final product is increased, which causes a decrease in heat insulation and an increase in specific gravity. Such a tendency becomes conspicuous as the weight of the light-granular material is increased in order to further reduce the weight of the heat insulating material. In contrast, organic foamed lightweight particles such as expanded polystyrene, which are relatively elastic and hard to break, ultrafine hollow organic foams, or hollow bodies having relatively large bulk specific gravity due to their strength in inorganic systems In addition, there has been a method of increasing the strength of the heat insulating material by adding a synthetic resin or a dispersion thereof to a matrix-forming substance. On the other hand, in addition to such a requirement for light weight, it is greatly desired to provide non-combustible performance for fire prevention and disaster prevention. In construction and civil engineering sites where insulation materials are installed, it is usual to perform other operations simultaneously and in parallel with the installation of the heat insulation materials. It can happen. In such a case, if the heat insulating material is flammable, it will lead to a fire accident. Further, at present, such materials as a self-extinguishing heat insulating material that temporarily ignites or generates a harmful gas due to a rise in temperature are used even if a fire does not occur. Such flammable or self-extinguishing insulation materials often contain a relatively large amount of organic flammable components in the composition, and reducing such organic flammable components may cause fire or harm. This leads to prevention of gas generation.

【0003】[0003]

【発明が解決しようとする課題】しかしながら、軽量断
熱性の保持の目的として導入される前述のような発泡ポ
リスチレン破砕粒等の有機系発泡軽量粉粒体や、断熱材
全体の強度を向上させるために使用する合成樹脂やその
分散体は可燃材料であり、防火防災上からは極力削減す
べきものであるが、これらを削減することは施工時にお
ける軽量断熱性の確保の問題を解決できないことにな
る。したがって、本発明が解決しようとする課題の第一
は、このような有機可燃性成分を極力削減することで、
不燃性を保持する無機質系の軽量断熱材形成材料を得る
ことである。さらに、建築、土木現場においては、断熱
材形成材料を現場においてポンプ圧送することが常であ
るが、軽量粉粒体を多量に含有する断熱材形成材料の場
合には、圧送時の圧力によって前述同様に軽量粉粒体が
破砕する現象が生じると、圧送ホース先端のノズルから
被塗布面に吹付けられた材料は、非常に粘度の低い状態
となり垂れを生じてしまう為、一回で確保できる施工塗
布厚みが限定されてしまうという問題がある。したがっ
て、本発明が解決しようとする課題の第二は、水硬性母
体形成物質にかさ比重の小さい無機質軽量粉粒体を多量
に混合するタイプの断熱材形成材料でありながら、ポン
プ圧送、吹付けしても含有している軽量粉粒体が破砕し
難く、吹付け時の材料の粘度変化が少なく、垂れにくい
厚吹き可能な軽量断熱材形成材料を得ることである。
However, in order to improve the strength of organic foamed light-weight powders such as the above-mentioned crushed expanded polystyrene and the like, which are introduced for the purpose of maintaining lightweight heat-insulating properties, and the strength of the whole heat-insulating material. Synthetic resins and their dispersions are flammable materials and should be reduced as much as possible for fire and disaster prevention, but reducing them will not solve the problem of securing lightweight insulation during construction. . Therefore, the first problem to be solved by the present invention is to reduce such organic combustible components as much as possible,
An object of the present invention is to obtain an inorganic light-weight heat insulating material forming material which retains nonflammability. Further, in construction and civil engineering sites, it is usual to pump the heat-insulating material at the site, but in the case of a heat-insulating material containing a large amount of lightweight granules, the pressure at the time of the pumping is used. Similarly, when a phenomenon occurs in which the light-weight powder particles are crushed, the material sprayed from the nozzle at the tip of the pressure-feeding hose to the surface to be coated has a very low viscosity and droops, so that it can be secured at one time. There is a problem that the thickness of the applied coating is limited. Therefore, the second problem to be solved by the present invention is that a heat insulating material forming material of a type in which a small amount of inorganic lightweight powder having a low bulk specific gravity is mixed in a large amount with a hydraulic mother material, while pumping and spraying. It is an object of the present invention to obtain a light-weight heat insulating material forming material which is hard to crush, contains a small amount of viscosity change of the material at the time of spraying, and is hard to hang down.

【0004】[0004]

【課題を解決するための手段】このような問題点を解決
するために、本発明者らは鋭意検討の結果、有機可燃性
成分を削減するために、軽量粉粒体に無機発泡軽量体を
使用し、さらに特定の成分を組み合わせることによっ
て、混合時もポンプ圧送時にも該無機軽量発泡体が破砕
されることなく、また水の分離による粘度低下の問題を
解決できることを見出した。すなわち本発明は、 1.水硬性セメントおよび/または石膏100重量部、
かさ比重0.05〜0.15、平均粒径50〜1000
μmの無機軽量骨材20〜200重量部、メチルセルロ
ースとエチルヒドロキシエチルセルロースが、20:8
0〜80:20の比率で配合された粘性調整剤0.5〜
7重量部、パルプ 2〜20重量部、合成樹脂エマルシ
ョンを固形分換算で2〜20重量部、を含有することを
特徴とするポンプ圧送性に優れる軽量不燃断熱材組成
物。 2.1.に記載の組成物に、さらに水を加えて混練、続
いてポンプ圧送し、断熱性を付与する部位に吹付け、乾
燥して、かさ比重0.15〜0.35の断熱層を形成す
ることを特徴とするポンプ圧送性に優れる軽量不燃断熱
材組成物の施工方法。 3.1.に記載の組成物に、さらに水を加えて、先端角
度30°、重量150gの円錐形粘度計が、40〜70
mm沈下する粘度の混練物に調整したことを特徴とする
ポンプ圧送性に優れる軽量不燃断熱材組成物。 4.3.に記載の組成物をポンプ圧送し、断熱性を付与
する部位に吹付け、乾燥して、かさ比重0.15〜0.
35の断熱層を形成することを特徴とするポンプ圧送性
に優れる軽量不燃断熱材組成物の施工方法。5.無機軽量骨材が、シラスバルーンであることを特徴
とする1.または3.に記載のポンプ圧送性に優れる軽
量不燃断熱材組成物。 6.無機軽量骨材が、シラスバルーンであることを特徴
とする2.または4.に記載のポンプ圧送性に優れる軽
量不燃断熱材組成物の施工方法。 を含むものである。本
発明に用いられる水硬性セメントおよび/または石膏と
は、ポルトランドセメント、アルミナセメント、石灰混
合セメント、高炉セメント、シリカセメント、フライア
ッシュセメント、メーソンリーセメント、高硫酸塩スラ
グセメント、石膏等水和反応によって硬化する材料が挙
げられる。無機軽量骨材としては、かさ比重は0.05
〜0.15の発泡パーライト、シラスバルーン、アルミ
ノシリケート発泡体等であり、高軽量化、高断熱化とい
う本発明の目的からは、0.05〜0.10がより好ま
しい。これら軽量骨材の平均粒径は50〜1000μm
である。かさ比重が0.05より小さいと吹付けた材料
が垂れやすく厚付けが困難である。また、形成された断
熱材層にクラックが生じやすくなる。0.15より大き
いと取り扱い時の潰れに対しては強いが、混軽量化を図
ることが困難となり、高断熱材料の形成という本発明か
らは外れることになる。この無機軽量骨材は、セメント
100重量部に対して、20〜200重量部、好ましく
は軽量化、強度等の目的から50〜150重量部であ
る。20重量部より少ないと断熱効果、軽量効果ともに
不充分なものになってしまう。また、200重量部より
多いと形成される断熱材の強度が極端に弱いものとなっ
てしまう。次に粘性調てのメチルセルロースとエチルヒ
ドロキシエチルセルロースは、一般に使用されているも
のであれば特に限定はされないが、両者の重量比率は2
0:80〜80:20でなければならない。この範囲を
超えてメチルセルロースが多くなると、前記無機軽量骨
材が破砕し、この範囲を超えてエチルヒドロキシエチル
セルロースが多くなると、ポンプ圧送時に粘度の低下を
生じたり、形成された断熱材全体の強度が低下すること
になる。これら両者からなる粘性調整剤は、セメント1
00重量部に対して、0.5〜7重量部、好ましくは1
〜5重量部である。このとき0.5重量部より少ない
と、混練時に無機軽量粉粒体が潰れやすくなり、また、
ポンプ圧送時に水分離が生じ易く、適切なポンプ圧送が
不可能になるし、7重量部より多いと、混練材料の粘稠
性が強くなり、圧送性が阻害される傾向がでてくる。ま
た、これらが有機可燃性成分ゆえ、形成された断熱材の
不燃性を損なうことになる。次にパルプは、植物原料を
機械的または化学的に処理してそのセルロース繊維を取
り出したものであり、通常その原料として木材が最も多
く使われているが、特に出発原料の種類にこだわるもの
ではない。また再生パルプや、古紙を再生したものや混
入したものでも採用できる。また水に分散された状態の
ものや乾燥されたもの何れの使い分けることができる
が、例えば粉体状としてドライミックスして使う場合に
は、予め乾燥されたもので且つその繊維長は3mm程度以
下が均一に他の粉粒体とドライ分散させる意味で好まし
く、特に目開き1mmのメッシュをパスしたものが好ま
しい。また水分散されたパルプや湿ったパルプを使用す
る場合は、それを混練水と一緒に分散することで使うこ
とができる。その点では先程の繊維長に限定されるもの
ではない。パルプは、セメント100重量部に対して、
2〜20重量部、好ましくは2〜10重量部である。2
重量部より少ないとポンプ圧送時に材料が潰れてかさ比
重が高くなり、また吹付けた場合に粘度の低下が大きく
垂れ易くなり、一定の厚みを吹付けるのが困難となる。
また20重量部より多いとそれらの問題が解消される反
面、形成された断熱材の不燃性を確保することができな
い。次に合成樹脂エマルションは、アクリル酸エステル
系、バーサチック酸エステル系、スチレン系、塩化ビニ
ル系、酢酸ビニル系、SBR系等の水分散タイプや粉末
タイプが使用可能である。特に粉体一材にして、現場で
水と混合する形態の方が現場での作業効率が良いことか
ら、再乳化型粉末タイプが好ましい。合成樹脂エマルシ
ョンは、セメント100重量部に対して、固形分換算で
2〜20重量部、好ましくは4〜15重量部である。2
重量部より少ないと形成される断熱材の基材への密着性
が不充分となり、20重量部より多いと形成された断熱
材の不燃性を阻害することになる。実際の断熱材の施工
の際には、以上の各成分にさらに水を配合して一旦混練
した後、その混練物をポンプで圧送して隙間に充填した
り、先端に吹付けノズルをセットして圧縮空気と共に塗
布対象部位に吹付けるものである。水の配合比率は、上
記各成分の比率によって変動するが、望ましくは混練さ
れた物が、先端角度30°、重量150gの円錐形粘度
計を用いて、水平に均した混練物表面に先端を合わせそ
のまま自然落下させた時にその沈降距離が40〜70m
mになるような粘度になっていれば良い。このような混
練物をポンプ圧送し、断熱性を付与する部位に吹付け乾
燥養生させると、かさ比重で0.15〜0.35、熱伝
導率が0.10kcal/mhr ℃以下の軽量で且つ優れた断
熱材層を形成することができる。さらに、こうして形成
された軽量断熱材層は、例えば吹付け材の防火性能を評
価する基準として基材同等不燃に規定された試験方法に
準じて、表面加熱試験を行った場合に、5mm厚みで試験
体排気温度、及び発煙係数が不燃性を満たしており、防
火性能を損なうことのないことが確認できた。
Means for Solving the Problems In order to solve such problems, the present inventors have made intensive studies and as a result, in order to reduce organic flammable components, an inorganic foamed lightweight body was used as a lightweight powder. It has been found that the inorganic lightweight foam is not crushed at the time of mixing and pumping, and that the problem of viscosity reduction due to separation of water can be solved by using and further combining specific components. That is, the present invention provides: 100 parts by weight of hydraulic cement and / or gypsum,
Bulk specific gravity 0.05-0.15, average particle size 50-1000
20 to 200 parts by weight of an inorganic lightweight aggregate having a particle size of 20: 8
Viscosity modifier 0.5-80: 20 blended at a ratio of 0.5-
A lightweight noncombustible heat insulating composition having excellent pumpability, comprising 7 parts by weight, 2 to 20 parts by weight of pulp, and 2 to 20 parts by weight of a synthetic resin emulsion in terms of solid content. 2.1. And kneading by further adding water to the composition according to the above, followed by pumping, spraying on a portion to be provided with heat insulating properties, and drying to form a heat insulating layer having a bulk specific gravity of 0.15 to 0.35. A method for constructing a lightweight non-combustible heat insulating material composition having excellent pumping properties, characterized by: 3. 1. Water was further added to the composition described in 1 above, and a cone viscometer having a tip angle of 30 ° and a weight of 150 g was measured at 40 to 70.
A lightweight non-combustible heat insulating material composition excellent in pumpability, characterized in that it is adjusted to a kneaded material having a viscosity of settling mm. 4.3. Is pump-pumped, sprayed on a portion to be provided with heat insulation, dried, and has a bulk specific gravity of 0.15 to 0.1.
35. A method for applying a lightweight noncombustible heat insulating material composition having excellent pumpability, comprising forming 35 heat insulating layers. 5. The inorganic lightweight aggregate is a Shirasu balloon
1. Or 3. Light with excellent pumpability described in
Incombustible insulation composition. 6. The inorganic lightweight aggregate is a Shirasu balloon
2. Or 4. Light with excellent pumpability described in
How to apply the non-combustible insulation composition. Is included. Hydraulic cement and / or gypsum used in the present invention include portland cement, alumina cement, lime mixed cement, blast furnace cement, silica cement, fly ash cement, masonry cement, high sulfate slag cement, gypsum and other hydration reactions. Materials that are cured by heat. For inorganic lightweight aggregate, bulk specific gravity is 0.05
And 0.15 to 0.15, more preferably 0.05 to 0.10, for the purpose of the present invention of high weight and weight and high heat insulation. The average particle size of these lightweight aggregates is 50-1000 μm
It is. If the bulk specific gravity is less than 0.05, the sprayed material tends to hang and it is difficult to thicken the material. In addition, cracks are likely to occur in the formed heat insulating material layer. If it is larger than 0.15, it is strong against crushing at the time of handling, but it is difficult to reduce the weight and weight, which deviates from the present invention of forming a high heat insulating material. This inorganic lightweight aggregate is used in an amount of 20 to 200 parts by weight, preferably 50 to 150 parts by weight, for the purpose of weight reduction and strength, based on 100 parts by weight of cement. If the amount is less than 20 parts by weight, both the heat insulating effect and the light weight effect will be insufficient. On the other hand, if the amount is more than 200 parts by weight, the strength of the formed heat insulating material becomes extremely weak. Next, there are no particular restrictions on the viscosity of methylcellulose and ethylhydroxyethylcellulose as long as they are commonly used.
0: 80-80: 20. When the amount of methylcellulose is increased beyond this range, the inorganic lightweight aggregate is crushed, and when the amount of ethylhydroxyethylcellulose is increased beyond this range, the viscosity is reduced during pumping or the strength of the formed heat insulating material is reduced. Will decrease. The viscosity modifier consisting of both of them is cement 1
0.5 to 7 parts by weight, preferably 1 to 100 parts by weight
-5 parts by weight. At this time, if the amount is less than 0.5 part by weight, the inorganic lightweight powder particles are easily crushed during kneading, and
Water separation is likely to occur during pumping, making it impossible to pump properly. When the amount is more than 7 parts by weight, the viscosity of the kneaded material becomes strong, and the pumping property tends to be impaired. In addition, since these are organic combustible components, the non-combustibility of the formed heat insulating material is impaired. Next, pulp is obtained by mechanically or chemically treating plant raw materials to extract the cellulose fiber.Wood is most often used as the raw material, but in particular, it is not limited to the type of starting material Absent. In addition, recycled pulp, recycled pulp, or mixed pulp can also be used. It can be used either in a state of being dispersed in water or in a dried form. For example, when used as a dry mix in the form of powder, it is dried in advance and its fiber length is about 3 mm or less. Is preferable in terms of uniformly dispersing and drying with other powders and granules, and in particular, those having passed a mesh having an opening of 1 mm are preferable. When pulp dispersed in water or wet pulp is used, it can be used by dispersing it together with kneading water. In that respect, the fiber length is not limited to the above. Pulp is based on 100 parts by weight of cement.
It is 2 to 20 parts by weight, preferably 2 to 10 parts by weight. 2
When the amount is less than the weight part, the material is crushed at the time of pumping and the bulk specific gravity becomes high, and when sprayed, the viscosity is greatly reduced and it is easy to hang down, so that it is difficult to spray a certain thickness.
If the amount is more than 20 parts by weight, those problems are solved, but the non-combustibility of the formed heat insulating material cannot be ensured. Next, as the synthetic resin emulsion, an aqueous dispersion type such as an acrylic ester type, a versatic acid ester type, a styrene type, a vinyl chloride type, a vinyl acetate type, and an SBR type, or a powder type can be used. In particular, a re-emulsifiable powder type is preferable, in which a single powder material is mixed with water at the site, since work efficiency at the site is better. The synthetic resin emulsion is used in an amount of 2 to 20 parts by weight, preferably 4 to 15 parts by weight in terms of solid content, based on 100 parts by weight of cement. 2
If the amount is less than the weight part, the adhesion of the formed heat insulating material to the substrate becomes insufficient, and if the amount is more than 20 parts by weight, the non-combustibility of the formed heat insulating material is impaired. At the time of actual installation of heat insulating material, after further mixing water with each of the above components and kneading them once, the kneaded material is pumped with a pump to fill gaps, or a spray nozzle is set at the tip. And is sprayed onto the application target site together with the compressed air. Although the mixing ratio of water varies depending on the ratio of each of the above components, it is desirable that the kneaded material has a tip at a tip angle of 30 ° and a horizontally leveled kneaded material surface using a cone viscometer with a weight of 150 g. The sinking distance is 40-70m when it falls naturally
It suffices if the viscosity is such that it becomes m. By pumping such a kneaded product and spray-drying and curing it on a portion to which heat insulation is to be imparted, it is lightweight with a bulk specific gravity of 0.15 to 0.35 and a thermal conductivity of 0.10 kcal / mhr ° C or less. An excellent heat insulating material layer can be formed. Furthermore, the lightweight heat-insulating material layer thus formed has a thickness of 5 mm when subjected to a surface heating test, for example, in accordance with a test method specified as non-combustible equivalent to the base material as a criterion for evaluating the fire prevention performance of the sprayed material. It was confirmed that the exhaust temperature of the specimen and the smoke generation coefficient satisfied nonflammability, and did not impair the fire prevention performance.

【0005】[0005]

【作用】本発明の組成物において、無機の軽量粉粒体を
多量に含みながら、混練、ポンプ圧送が可能で且つ粘性
及び潰れによるかさ比重の変化を最小限に抑えられると
いう効果は、メチルセルロースとエチルヒドロキシエチ
ルセルロースの組み合わせから生じる特定の粘性、およ
び、パルプの持つ保水性とパルプの繊維独特の形状によ
る絡みつき等の作用によるものと思われる。また、その
ような作用の結果、無機軽量粉粒体を従来になく大量に
配合することが可能となり、セメントとあいまって有機
可燃性成分を含みながらも、不燃性という防火性能を保
持しつつ尚かつ吹付け施工後でも軽量性を維持すること
で高断熱性能を付与することができたものと思われる。
In the composition of the present invention, while containing a large amount of inorganic lightweight powder, kneading and pumping can be performed and the change in bulk specific gravity due to viscosity and crushing is minimized. This is probably due to the specific viscosity resulting from the combination of ethylhydroxyethylcellulose, the water retention of the pulp and the tangling due to the unique shape of the pulp fibers. In addition, as a result of such an action, it is possible to mix a large amount of inorganic lightweight powders as never before, and while containing an organic flammable component in combination with cement, while maintaining the fireproof performance of nonflammability, Also, it is considered that high heat insulation performance could be imparted by maintaining lightness even after spraying construction.

【0006】[0006]

【実施例】【Example】

(実施例1)ポルトランドセメント10kgに対して、
かさ比重0.13、平均粒径850μmの発泡パーライ
トを15kg(容積115リットル)、2%溶解粘度1
5000mPa・sのメチルセルロース粉末を0.15
kg、2%溶解粘度13000mPa・sのエチルヒド
ロキシエチルセルロース粉末を0.08kg、繊維長3
mm以下にされた古紙再生パルプ繊維1.5kgをV型
ブレンダーに投入して5分間混合してほぼ均一の混合軽
量粉体を得た。この粉体をパン型モルタルミキサーに入
れ、これにスチレンブタジエン樹脂エマルション(固形
分濃度45%)0.6kg(固形分換算で0.27k
g)と水35.0kgを投入しながら3分間混練したと
ころ、円錐粘度60mmの軽量な混練物が得られた。こ
の材料について、その一部を取り、建築塗装用のカップ
式手吹きガン(チップ口径10mm、エア圧力490k
Pa)で垂直壁面に吹付け、さらに吹付けられた材料を
採取して、その比重を測定したところ0.69であっ
た。一方、上記のミキサー混練物をスネーク式圧送ポン
プのホッパーに投入、内径25mmφ、長さ30mのホ
ースで圧送して、先端でエアを混合して壁面に吹付けた
ところ35mmの厚みの吹付けが可能であった。また、
その圧送吹付けされた材料を採取して、その比重を測定
したところ、0.72の値を示し、ポンプ圧送しない材
料と比較しても殆ど同レベルの比重のものが施工されて
いることを確認した。また、こうして壁面に吹付けられ
た混練材を28日間乾燥養生した後、形成された断熱材
層を切り取り、50℃の乾燥機で48時間放置後の乾燥
比重を測定したところ0.34であった。また、25℃
におけるその熱伝導率を測定したところ、0.079kc
al/m hr ℃であった。また、同混練物から形成された断
熱層の防火性能を確認するために、220×220×1
0mmのパーライト板に、同混練物を乾燥膜厚で5mm
の厚みになるように吹付け、28日間乾燥養生して試験
板を作製した。この試験板を使用し、JIS A 1321「建築
物の内装材料及び工法の難燃性試験方法 3.表面試
験」に従って加熱試験を行った。その結果、10分間の
加熱の間に、排気温度曲線は標準温度曲線を超えること
がなく、単位面積あたりの発煙係数は30以下となり、
加熱終了後30秒以上残炎がなかった。すなわち基材同
等不燃の性能が確認された。 (試験方法) ・混練物の円錐粘度測定 配合例に基づき、合成樹脂エマルション及び水以外を、
V型ブレンダーに投入して5分間混合してほぼ均一の混
合軽量粉体を得、この粉体をパン型モルタルミキサーに
入れ、これに合成樹脂エマルションと水を投入しながら
3分間混練した混練物について、先端角度30°、重量
150gの円錐形粘度計を用いて、水平に均した混練物
表面に先端を合わせそのまま自然落下させた時にその沈
降距離をmm単位にて測定する。 ・吹付け混練物の比重(カップ式手吹きガン吹付け後) カップ式手吹きガンで、壁面に吹付けられた材料を採取
してその比重を測定する。 ・吹付け混練物の比重(ポンプ圧送吹付け後) 混練物をスネーク式圧送ポンプのホッパーに投入、内径
25mmφ、長さ30mのホースで圧送して、先端でエ
アを混合して壁面に吹付けた後、壁面に吹付けられた材
料を採取してその比重を測定する。 ・吹付け可能厚み 混練物を前述のスネーク式ポンプ(チップ口径10m
m、エア圧力490kPa)で圧送して垂直壁面に連続
的に吹付け、混練物にタレが生じない範囲での吹付け厚
みを測定する。 ・乾燥比重 ポンプ圧送吹付け後、壁面に吹付けられた混練材を28
日間乾燥養生した後、形成された断熱材層を切り取り、
50℃の乾燥機で48時間放置後の乾燥比重を測定し
た。 ・熱伝導率 25℃におけるその熱伝導率を測定した。(非定常熱線
法 京都電子工業株式会社製QTM−D3使用) ・防火性能試験 混練物から形成された断熱層の防火性能を確認するため
に、220×220×10mmのパーライト板に、同混
練物を乾燥膜厚で5mmの厚みになるように吹付け、2
8日間乾燥養生して試験板を作製した。この試験板を使
用し、JIS A 1321「建築物の内装材料及び工法の難燃性
試験方法 3.表面試験」に従って加熱試験を行った。
この際、10分間の加熱の間に、排気温度曲線が標準温
度曲線を超えることがなく、単位面積あたりの発煙係数
が30以下となり、加熱終了後30秒以上残炎がないと
いう基材同等不燃の性能を満たす場合に○、それ以外は
×とした。但し、壁面に形成された断熱材層の乾燥比重
が、0.35より大きい場合は防火性能試験は実施しな
かった。 (実施例2〜実施例6)実施例1と同様に、それぞれ表
2に示した配合に基づいて混練物を製造し、上記試験を
行った。結果を表4に示した。結果から明らかなよう
に、これらの実施例で製造された混練物は、吹付け厚み
が20mm以上と厚吹きが可能であり、ポンプ圧送吹付
け後も、ポンプ圧送しない材料と比較して、殆ど同レベ
ルの比重のものが施工されていることを確認した。ま
た、乾燥比重は何れも、0.35以下という無機系軽量
断熱材としては非常に小さい値、すなわち非常に軽量な
断熱層が形成された。またそれら混練物から形成される
断熱材層は何れも、基材同等不燃の性能を有するもので
あった。 (比較例1)実施例1と同様に、それぞれ表3に示した
配合に基づいて混練物を製造し、上記試験を行った。結
果を表5に示した。パルプの配合が無いため、ポンプ圧
送吹付け後の比重が、ポンプ圧送しない材料と比較して
極端に大きくなり、その結果として熱伝導率が大きくな
ってしまった。また、吹付け可能厚みも7mmにとどま
った。 (比較例2)実施例1と同様に、それぞれ表3に示した
配合に基づいて混練物を製造し、上記試験を行った。結
果を表5に示した。エチルヒドロキシエチルセルロース
の配合が無いため、混練物の製造時において、混練物の
比重が大きくなるため、ポンプ圧送しなかった材料およ
びポンプ圧送した材料共に比重が極端に大きくなり、そ
の結果として熱伝導率が大きくなってしまった。また、
吹付け可能厚みも10mmにとどまった。 (比較例3)実施例1と同様に、それぞれ表3に示した
配合に基づいて混練物を製造し、上記試験を行った。結
果を表5に示した。製造された混練物は非常に軽量であ
ったが、気泡を多量に含んだフォーム状を呈し、ポンプ
で圧送することは不可能であった。 (比較例4)実施例1と同様に、それぞれ表3に示した
配合に基づいて混練物を製造し、上記試験を行った。結
果を表5に示した。かさ比重の大きなパーライトを使用
したため、形成された断熱層の乾燥比重が大きくなって
しまい、熱伝導率が大きくなってしまった。また、吹付
け可能厚みも6mmにとどまった。 (比較例5)実施例1と同様に、それぞれ表3に示した
配合に基づいて混練物を製造し、上記試験を行った。結
果を表5に示した。合成樹脂エマルションを本発明の規
定する以上に配合したため、吹付け可能厚みは30mm
となったが、防火性能は基材同等不燃の基準を満たさな
かった。
(Example 1) For 10 kg of Portland cement,
15 kg (volume: 115 liters) of expanded pearlite having a bulk specific gravity of 0.13 and an average particle size of 850 μm, a 2% dissolution viscosity of 1
5000 mPa · s methylcellulose powder was added to 0.15
kg, 0.08 kg of ethyl hydroxyethyl cellulose powder having a 1% dissolution viscosity of 13000 mPa · s, and a fiber length of 3
1.5 kg of recycled pulp fibers having a diameter of not more than 1 mm were put into a V-type blender and mixed for 5 minutes to obtain a substantially uniform mixed lightweight powder. This powder was put into a bread-type mortar mixer, and styrene-butadiene resin emulsion (solid content concentration: 45%) 0.6 kg (solid content: 0.27 k)
g) and 35.0 kg of water were added and kneaded for 3 minutes to obtain a lightweight kneaded product having a cone viscosity of 60 mm. A part of this material is taken and a cup-type hand-blown gun for building painting (tip diameter 10 mm, air pressure 490 k
The sprayed material was sprayed on the vertical wall surface at Pa), and the sprayed material was sampled and its specific gravity was measured to be 0.69. On the other hand, the above-mentioned kneaded mixture was put into a hopper of a snake-type pressure-feeding pump, pressure-fed with a hose having an inner diameter of 25 mm and a length of 30 m, mixed with air at the tip and sprayed on a wall surface. It was possible. Also,
The material sprayed and blown was sampled, and its specific gravity was measured. The result showed a value of 0.72, indicating that the material with almost the same specific gravity as that of the material not pumped was installed. confirmed. Further, after the kneaded material sprayed on the wall surface was dried and cured for 28 days, the formed heat insulating material layer was cut off, and the specific gravity after drying for 48 hours in a dryer at 50 ° C. was 0.34. Was. 25 ° C
Measured its thermal conductivity at 0.079 kc
al / m hr ° C. In order to confirm the fire prevention performance of the heat insulating layer formed from the kneaded material, 220 × 220 × 1
On a pearlite plate of 0 mm, the kneaded material was dried to a thickness of 5 mm.
And dried and cured for 28 days to produce a test plate. Using this test plate, a heating test was performed in accordance with JIS A 1321 "Method of testing flame retardancy of interior materials and construction methods of buildings 3. Surface test". As a result, during the heating for 10 minutes, the exhaust temperature curve does not exceed the standard temperature curve, the smoke emission coefficient per unit area becomes 30 or less,
There was no after-flame for 30 seconds or more after the heating was completed. That is, noncombustible performance equivalent to the base material was confirmed. (Test method) ・ Measurement of cone viscosity of kneaded material Based on the formulation example, except for synthetic resin emulsion and water,
The mixture was put into a V-type blender and mixed for 5 minutes to obtain a substantially uniform mixed lightweight powder. This powder was put into a pan-type mortar mixer, and kneaded for 3 minutes while adding a synthetic resin emulsion and water thereto. Using a conical viscometer with a tip angle of 30 ° and a weight of 150 g, the tip is placed on the surface of the kneaded material that has been leveled horizontally and the sedimentation distance is measured in mm when the tip is allowed to fall naturally. -Specific gravity of the spray-kneaded material (after spraying the cup-type hand-blown gun) Using a cup-type hand-blown gun, collect the material sprayed on the wall and measure the specific gravity. -Specific gravity of the sprayed kneaded material (after pumping and blowing) The kneaded material is put into the hopper of a snake-type pumping pump, is pressure-fed with a hose having an inner diameter of 25 mm and a length of 30 m, mixes air at the tip and sprays it on the wall After that, the material sprayed on the wall is collected and its specific gravity is measured.・ Thickness that can be sprayed
m, air pressure of 490 kPa) and continuously sprayed on the vertical wall surface, and the sprayed thickness in a range where sagging does not occur on the kneaded material is measured.・ Dry specific gravity After kneading with the pump, 28
After drying and curing for days, cut off the formed insulation layer,
The dry specific gravity after leaving to stand in a dryer at 50 ° C. for 48 hours was measured. -Thermal conductivity The thermal conductivity at 25 ° C was measured. (Unsteady heating method using QTM-D3 manufactured by Kyoto Denshi Kogyo Co., Ltd.)-Fire performance test To confirm the fire protection performance of the heat insulating layer formed from the kneaded material, a 220 x 220 x 10 mm pearlite plate was used. Is sprayed to a dry film thickness of 5 mm.
A test plate was prepared by drying and curing for 8 days. Using this test plate, a heating test was performed in accordance with JIS A 1321 "Method of testing flame retardancy of interior materials and construction methods of buildings 3. Surface test".
At this time, during the heating for 10 minutes, the exhaust temperature curve does not exceed the standard temperature curve, the smoke emission coefficient per unit area becomes 30 or less, and there is no residual flame for 30 seconds or more after the heating is completed. Was satisfied when the performance was satisfied, and x otherwise. However, when the dry specific gravity of the heat insulating material layer formed on the wall surface was larger than 0.35, the fire prevention performance test was not performed. (Examples 2 to 6) In the same manner as in Example 1, kneaded materials were manufactured based on the formulations shown in Table 2, and the above-described tests were performed. The results are shown in Table 4. As is clear from the results, the kneaded products manufactured in these examples can be sprayed with a spray thickness of 20 mm or more, and even after spraying by pumping, the kneaded material is almost incomparable with the material without pumping. It was confirmed that a concrete with the same level of specific gravity was installed. In addition, the dry specific gravity was 0.35 or less, which is a very small value as an inorganic lightweight heat insulating material, that is, a very lightweight heat insulating layer was formed. In addition, all of the heat insulating material layers formed from the kneaded materials had the same nonflammable performance as the base material. (Comparative Example 1) In the same manner as in Example 1, kneaded materials were manufactured based on the formulations shown in Table 3, and the above-mentioned tests were performed. Table 5 shows the results. Due to the absence of pulp, the specific gravity after pumping and spraying became extremely large as compared with the material without pumping, resulting in an increase in thermal conductivity. Also, the sprayable thickness was only 7 mm. (Comparative Example 2) In the same manner as in Example 1, kneaded materials were manufactured based on the formulations shown in Table 3, respectively, and the above-mentioned tests were performed. Table 5 shows the results. Since there is no blending of ethyl hydroxyethyl cellulose, the specific gravity of the kneaded material increases during the production of the kneaded material, so that the specific gravity of both the material not pumped and the material pumped becomes extremely large, resulting in a thermal conductivity. Has become larger. Also,
The sprayable thickness remained at 10 mm. (Comparative Example 3) In the same manner as in Example 1, kneaded materials were manufactured based on the formulations shown in Table 3, and the above-mentioned tests were performed. Table 5 shows the results. The produced kneaded material was very light, but had a foam containing a large amount of air bubbles, and could not be pumped by a pump. (Comparative Example 4) In the same manner as in Example 1, kneaded materials were manufactured based on the formulations shown in Table 3, and the above-mentioned tests were performed. Table 5 shows the results. Since pearlite having a large bulk specific gravity was used, the formed heat insulating layer had a large dry specific gravity, and thus had a high thermal conductivity. Also, the sprayable thickness remained at 6 mm. (Comparative Example 5) In the same manner as in Example 1, kneaded materials were produced based on the formulations shown in Table 3, and the above-mentioned tests were performed. Table 5 shows the results. Since the synthetic resin emulsion was blended more than specified in the present invention, the sprayable thickness was 30 mm.
However, the fire prevention performance did not meet the criteria of noncombustibility equivalent to the base material.

【表1】 [Table 1]

【表2】 [Table 2]

【表3】 [Table 3]

【表4】 [Table 4]

【表5】 [Table 5]

【0007】[0007]

【発明の効果】本発明の効果は、本発明組成物中の有機
可燃性成分を極力削減しているので、不燃性を満足する
性能の断熱層を形成することができる点である。さら
に、建築土木現場において、本発明組成物に加水してモ
ルタルミキサーで混練し、ポンプ圧送しても、圧送時の
圧力によって軽量粉粒体が破砕することがなく、圧送ホ
ース先端のノズルから被塗布面に吹付けられた材料は、
数十mmという厚吹きをしても垂れを生じることがな
い。その結果、かさ比重0.15〜0.35の非常に軽
量かつ、非常に断熱性の優れた軽量不燃断熱層を形成す
ることができる点である。
The effect of the present invention is that since the organic flammable components in the composition of the present invention are reduced as much as possible, a heat insulating layer having a performance satisfying the nonflammability can be formed. Further, at the construction site, even when the composition of the present invention is added to the composition of the present invention, the mixture is kneaded with a mortar mixer, and pumped, the pressure at the time of pumping does not crush the light and granular material. The material sprayed on the application surface
Even if a thick blow of several tens of mm is used, no dripping occurs. As a result, a very lightweight non-combustible heat-insulating layer having a bulk specific gravity of 0.15 to 0.35 and a very excellent heat insulating property can be formed.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.7 識別記号 FI C04B 24/38 C04B 24/38 D 28/00 28/00 E04B 1/76 E04B 1/76 E // C04B 103:44 C04B 103:44 111:40 111:40 (58)調査した分野(Int.Cl.7,DB名) C04B 2/00 - 32/02 E04B 1/76 ──────────────────────────────────────────────────続 き Continued on the front page (51) Int.Cl. 7 Identification symbol FI C04B 24/38 C04B 24/38 D 28/00 28/00 E04B 1/76 E04B 1/76 E // C04B 103: 44 C04B 103 : 44 111: 40 111: 40 (58) Fields investigated (Int. Cl. 7 , DB name) C04B 2/00-32/02 E04B 1/76

Claims (6)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】1.水硬性セメントおよび/または石膏1
00重量部、 2.かさ比重0.05〜0.15、平均粒径50〜10
00μmの無機軽量骨材20〜200重量部、 3.メチルセルロースとエチルヒドロキシエチルセルロ
ースが、20:80〜80:20の比率で配合された粘
性調整剤0.5〜7重量部、 4.パルプ 2〜20重量部、 5.合成樹脂エマルションを固形分換算で2〜20重量
部、を含有することを特徴とするポンプ圧送性に優れる
軽量不燃断熱材組成物。
1. Hydraulic cement and / or gypsum 1
1. 00 parts by weight, Bulk specific gravity 0.05 to 0.15, average particle size 50 to 10
2. 20 to 200 parts by weight of a 00 μm inorganic lightweight aggregate; 3. 0.5 to 7 parts by weight of a viscosity modifier in which methylcellulose and ethylhydroxyethylcellulose are blended in a ratio of 20:80 to 80:20. 4. 2 to 20 parts by weight of pulp; A lightweight non-combustible heat insulating composition having excellent pumpability, comprising 2 to 20 parts by weight of a synthetic resin emulsion in terms of solid content.
【請求項2】請求項1に記載の組成物に、さらに水を加
えて混練、続いてポンプ圧送し、断熱性を付与する部位
に吹付け、乾燥して、かさ比重0.15〜0.35の断
熱層を形成することを特徴とするポンプ圧送性に優れる
軽量不燃断熱材組成物の施工方法。
2. The composition according to claim 1, wherein water is further added and kneaded, followed by pumping, spraying on a portion to be provided with heat insulation, drying, and bulk specific gravity of 0.15 to 0.1. 35. A method for applying a lightweight noncombustible heat insulating material composition having excellent pumpability, comprising forming 35 heat insulating layers.
【請求項3】請求項1に記載の組成物に、さらに水を加
えて、先端角度30°、重量150gの円錐形粘度計
が、40〜70mm沈下する粘度の混練物に調整したこ
とを特徴とするポンプ圧送性に優れる軽量不燃断熱材組
成物。
3. The composition according to claim 1, wherein water is further added to adjust a kneaded product having a cone angle viscometer with a tip angle of 30 ° and a weight of 150 g to sink 40 to 70 mm. A lightweight non-combustible heat insulating material composition having excellent pumpability.
【請求項4】請求項3に記載の組成物をポンプ圧送し、
断熱性を付与する部位に吹付け、乾燥して、かさ比重
0.15〜0.35の断熱層を形成することを特徴とす
るポンプ圧送性に優れる軽量不燃断熱材組成物の施工方
法。
4. Pumping the composition according to claim 3;
A method for applying a lightweight non-combustible heat insulating material composition having excellent pumping properties, wherein a heat insulating layer having a bulk specific gravity of 0.15 to 0.35 is formed by spraying and drying a portion to be provided with heat insulating properties.
【請求項5】無機軽量骨材が、シラスバルーンであるこ5. The inorganic lightweight aggregate is a shirasu balloon.
とを特徴とする請求項1または請求項3に記載のポンプThe pump according to claim 1 or 3, characterized in that:
圧送性に優れる軽量不燃断熱材組成物。Lightweight non-combustible heat insulating composition with excellent pumpability.
【請求項6】無機軽量骨材が、シラスバルーンであるこ6. The inorganic lightweight aggregate is a shirasu balloon.
とを特徴とする請求項2または請求項4に記載のポンプThe pump according to claim 2 or 4, wherein
圧送性に優れる軽量不燃断熱材組成物の施工方法。Construction method of lightweight non-combustible insulation material composition with excellent pumpability.
JP18616195A 1995-06-28 1995-06-28 Lightweight non-combustible heat insulating material composition excellent in pumping property and method of applying the same Expired - Fee Related JP3285470B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP18616195A JP3285470B2 (en) 1995-06-28 1995-06-28 Lightweight non-combustible heat insulating material composition excellent in pumping property and method of applying the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP18616195A JP3285470B2 (en) 1995-06-28 1995-06-28 Lightweight non-combustible heat insulating material composition excellent in pumping property and method of applying the same

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2001386938A Division JP3738987B2 (en) 2001-12-20 2001-12-20 Light incombustible insulation layer

Publications (2)

Publication Number Publication Date
JPH0912379A JPH0912379A (en) 1997-01-14
JP3285470B2 true JP3285470B2 (en) 2002-05-27

Family

ID=16183461

Family Applications (1)

Application Number Title Priority Date Filing Date
JP18616195A Expired - Fee Related JP3285470B2 (en) 1995-06-28 1995-06-28 Lightweight non-combustible heat insulating material composition excellent in pumping property and method of applying the same

Country Status (1)

Country Link
JP (1) JP3285470B2 (en)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2926031B2 (en) * 1998-01-09 1999-07-28 飛島建設株式会社 Sound absorbing material spraying method
AU3231101A (en) * 2000-02-16 2001-08-27 Denki Kagaku Kogyo Kabushiki Kaisha Cement mortar and shooting material
JP3628942B2 (en) * 2000-07-06 2005-03-16 大豊建設株式会社 Segment of fireproof lining body for tunnel, fireproof lining body for tunnel, and method for forming segment of fireproof lining body for tunnel
JP2002234767A (en) * 2001-02-07 2002-08-23 Nakamichi Kogyosho:Kk Mortar for spraying
SE520651C2 (en) * 2001-12-03 2003-08-05 Akzo Nobel Nv Aqueous cement composition
JP4947869B2 (en) * 2002-05-14 2012-06-06 株式会社大林組 Insulation composition
JP3759597B2 (en) * 2003-07-25 2006-03-29 日本フネン株式会社 Manufacturing method for three-dimensional GRC panel
JP4579036B2 (en) * 2005-04-08 2010-11-10 電気化学工業株式会社 Spray cement composition, spray cement mortar, and spray method using the same
JP2007290946A (en) * 2006-03-28 2007-11-08 Oita Univ Heat insulating composition, method of manufacturing the same and method of constructing heat insulating structure
ES2676912B1 (en) 2015-11-03 2019-08-21 Parexgroup Sa DRY CONSTRUCTION COMPOSITION PROJECTABLE IN VIA HUMEDA WITH THE HELP OF A SCREW PUMP AND THAT INCLUDES A BINDING AND A LOAD OF BIOLOGICAL ORIGIN - PREPARATION AND APPLICATION OF SUCH COMPOSITION
CN108863270B (en) * 2018-07-31 2020-11-03 苏州大乘环保新材有限公司 High-strength gypsum-based sound-insulation heat-preservation machine sand blasting slurry and composite heat-preservation layer
CN109401169B (en) * 2018-09-28 2021-04-16 重庆澳彩新材料股份有限公司 PERT-II type pearly gold ship water supply and drainage pipeline chromosome and preparation method thereof
KR102001039B1 (en) * 2018-11-20 2019-07-17 가부시키가이샤 와코 heat-resistance insulation composition for preventing phenomenon of heat island

Also Published As

Publication number Publication date
JPH0912379A (en) 1997-01-14

Similar Documents

Publication Publication Date Title
US4077809A (en) Cellular cementitious compositions and method of producing same
EP0461821B1 (en) Sprayable fireproofing composition
EP0241205B1 (en) Sprayable fireproofing composition
CN100522858C (en) Foamed fireproofing composition and method
JP3285470B2 (en) Lightweight non-combustible heat insulating material composition excellent in pumping property and method of applying the same
EP3483131B1 (en) Method of production of a mineral foam obtained from a foaming slurry of high yield stress
JP4947716B2 (en) Cement mortar for construction
US4981521A (en) Sprayable fireproofing composition
JP2009096657A (en) Cement mortar for plaster work
JPH0656497A (en) Alumina cement composite material
EP2561160A1 (en) Polymer modified mortar for roofing system
JPH01160882A (en) Inorganic heat-insulation material
JP3738987B2 (en) Light incombustible insulation layer
EP0480070A1 (en) Heat insulating material and structure made therefrom
CN100374267C (en) Foamed fireproofing composition and method
JP3417764B2 (en) Fire resistant insulation composition
KR101118136B1 (en) Fire-retardant composition comprising inorganic hollow-shell particles
JPH04139080A (en) Composition for lightweight body
RU2788951C2 (en) Method for production of mineral foam obtained from foaming thick suspension with high yield strength
CN115557762B (en) Flame-retardant, air-leakage-resistant, static, non-reactive and environment-friendly sealing and reinforcing composite thin spray material
JP2550445B2 (en) Inorganic thermal insulation / refractory material for spraying and method for producing the same
JPH0525912A (en) Fire-proof, heat insulating and sound insulating building material
JP2640558B2 (en) Lightweight body composition
US5308891A (en) Cement based heat insulator, method of making same and structure having same
JP2882926B2 (en) Advanced blended inorganic lightweight foam

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090308

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100308

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110308

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130308

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140308

Year of fee payment: 12

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees