JP2882926B2 - Advanced blended inorganic lightweight foam - Google Patents

Advanced blended inorganic lightweight foam

Info

Publication number
JP2882926B2
JP2882926B2 JP3351456A JP35145691A JP2882926B2 JP 2882926 B2 JP2882926 B2 JP 2882926B2 JP 3351456 A JP3351456 A JP 3351456A JP 35145691 A JP35145691 A JP 35145691A JP 2882926 B2 JP2882926 B2 JP 2882926B2
Authority
JP
Japan
Prior art keywords
agent
mixing
weight
parts
foam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3351456A
Other languages
Japanese (ja)
Other versions
JPH05163080A (en
Inventor
重博 流谷
一男 水野
英男 元木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ESU KEE KAKEN KK
Original Assignee
ESU KEE KAKEN KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ESU KEE KAKEN KK filed Critical ESU KEE KAKEN KK
Priority to JP3351456A priority Critical patent/JP2882926B2/en
Publication of JPH05163080A publication Critical patent/JPH05163080A/en
Application granted granted Critical
Publication of JP2882926B2 publication Critical patent/JP2882926B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/34Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing cold phosphate binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2111/00Mortars, concrete or artificial stone or mixtures to prepare them, characterised by specific function, property or use
    • C04B2111/52Sound-insulating materials

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は住宅、倉庫などの建物や
熱を使用する装置の有効利用化をはかる断熱材やあるい
は吸音材、防結露材に用いられる発泡軽量体に関連する
もので、先端混合で吹付けや流し込みなどが容易にでき
る2剤タイプの組成物で不燃性もしくは難燃性の無機質
系断熱材を提供することにある。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a light-weight foam used as a heat insulating material or a sound absorbing material or a dew-condensing material for effective utilization of a building such as a house or a warehouse or a device using heat. It is an object of the present invention to provide a non-combustible or flame-retardant inorganic heat insulating material which is a two-part composition which can be easily sprayed or poured by mixing at the tip.

【0002】[0002]

【従来の技術】従来より熱に関連する分野においては、
その熱の省エネルギー化を図るべく、数多くの種類の断
熱材が開発され、また多量に使用されてきた。特に、住
宅や倉庫、工場などの建築物についても暖房や冷房の省
エネルギー対策として、壁や天井、床、屋根などに対
し、年々その断熱材の使用頻度は増える傾向にある。ま
たそれらは、防結露材として、あるいはその多孔質性を
生かして吸音材としても使われることもある。その軽量
体の種類としては、形態的に分類すると、ポリスチレン
フォームやポリエチレンフォーム、グラスウールマット
などのような板状やシート状、マット状に成形されてい
るものを接着材で貼ったりあるいはピンで取りつけた
り、他の板を複合化させて取りつけたりという、所謂成
形物の形で供給されるものと、現場発泡ポリウレタンフ
ォームや吹付けロックウールのように、施工部位に吹付
けや注入などの手法で断熱工事ができる、所謂現場吹付
けあるいは現場注入のできるものに分けられる。また防
火性能から見ると、特に建築物に適用する場合には、建
築基準法により火災時における安全性が材料に要求され
ており、不燃、準不燃、難燃などの防火性能基準が設け
られている。例えば、ポリウレタンフォームやポリスチ
レンフォームなどの有機系の断熱材は可燃性であり、防
火上から見れば好ましくない材料である。それに対し、
グラスウールやロックウールのような無機質の素材は本
来不燃性であり、使用原料により可燃性から不燃性に至
るまでの間にそれぞれの断熱材が分類される。
2. Description of the Related Art In the field related to heat,
Numerous types of heat insulating materials have been developed and used in large quantities in order to save heat. In particular, as for buildings, such as houses, warehouses, factories, and the like, the frequency of use of insulating materials for walls, ceilings, floors, roofs, and the like tends to increase year by year as energy saving measures for heating and cooling. They may also be used as a dew-condensing material or as a sound-absorbing material by taking advantage of its porosity. When the type of the lightweight body is classified morphologically, a plate, sheet, or mat shaped article such as polystyrene foam, polyethylene foam, or glass wool mat is attached with an adhesive or attached with a pin. Or, it is supplied in the form of a so-called molded product, such as compounding and attaching other boards, and it is sprayed or poured into the construction site, such as in-situ foamed polyurethane foam or sprayed rock wool Insulation can be performed, so-called on-site spraying or on-site injection can be performed. From the standpoint of fire prevention performance, especially when applied to buildings, building standards require safety in the event of a fire in accordance with the Building Standards Law, and fire prevention performance standards such as non-combustible, semi-non-combustible, and flame retardant have been established. I have. For example, organic heat insulating materials such as polyurethane foam and polystyrene foam are flammable and are not preferable from the viewpoint of fire prevention. For it,
Inorganic materials such as glass wool and rock wool are inherently nonflammable, and each heat insulating material is classified from flammable to nonflammable depending on the raw material used.

【0003】[0003]

【発明が解決しようとする課題】以上のような断熱材の
中にあって成形物の形で供給される断熱材では、曲面の
下地や複雑な形状の部位に対しては切断、貼り合わせな
ど手間がかかり、適用できないことが多く、また成形板
では必ず付き合わせ部に目地ができるため、その箇所が
熱の通り道(熱橋)となる欠点を有している。一方、そ
れらの欠点を避けようということで、ポリウレタンフォ
ームのように2液を先端で混合して即吹付け発泡あるい
は注入発泡させることで目地なし工法として且つ複雑な
部位への断熱施工が数多く採用されている。しかしこの
工法自体は極めて有効であるが、現状その工法ができる
材料はポリウレタンフォームなど限られている。しかも
その場合は素材自体が有機性の可燃材料であり、施工工
事中の火災や有害ガスへの対応が要求され、更に防火性
を要求される建築物に対してはその難燃化、不燃化が望
まれているが、今もってまだ適切な材料は開発されてい
なかった。また最近の地球環境の保全の観点から、ポリ
ウレタンフォームの場合その発泡ガスにオゾン層を破壊
すると言われているフロンガスを使用しているため、そ
れへの早急な対応も迫られている。
In the heat insulating material provided in the form of a molded product in the heat insulating material as described above, cutting, bonding, etc. are performed on a curved base or a complex-shaped portion. It is troublesome and cannot be applied in many cases, and joints are always formed at the abutting portions in a formed plate, so that the portions have a drawback that they become heat paths (thermal bridges). On the other hand, in order to avoid these drawbacks, a mixture of two liquids, such as polyurethane foam, at the tip and immediately spraying or injection foaming is used. Have been. However, this method itself is extremely effective, but at present, the materials that can be used for the method are limited to polyurethane foam. Moreover, in that case, the material itself is an organic flammable material, and it is necessary to respond to fire and harmful gas during construction work, and to make buildings that require fire protection more flame-retardant and non-flammable However, suitable materials have not yet been developed. In addition, from the viewpoint of recent global environmental conservation, since polyurethane foam uses fluorocarbon gas, which is said to destroy the ozone layer, as its foaming gas, urgent measures must be taken.

【0004】[0004]

【課題を解決するための手段】これに対して、本発明者
らは上記のポリウレタンフォームのように先端で混合し
て即発泡させる形態の作業性が得られ、且つ防火性能上
不燃性もしくは難燃性を有する先端混合形式無機質発泡
体を発明した。すなわち主成分として酸性リン酸塩水溶
液に対して酸性に安定なエマルションをそれぞれの固形
分比率で100:5〜300重量部で混合したものをA
剤とし、一方主成分として酸化マグネシウムに対して金
属炭酸塩を100:5〜300重量部配合したB剤から
なることを特徴とする先端混合用無機系発泡軽量体であ
る。本発明では、このような組成を適用することによ
り、A剤、B剤をそれぞれ安定に貯蔵し、使用にあたっ
てはA剤及びB剤をそれぞれ別系列のポンプで定量圧送
し、ホース先端の混合部で短時間に混合できるようにな
ったもので、その混合液を注入、あるいは吹付けにより
施工すると発泡硬化して、軽量断熱層もしくは軽量吸音
層を形成するものである。酸性リン酸塩としては例えば
第一リン酸アルミニウム、第一リン酸マグネシウム、第
一リン酸カルシウムなどが水溶液あるいは粉末の形で入
手できる。実際の適用にあたってはそれらを単独で、あ
るいは混合して水溶液の形で使うことができるが、一般
にはその中でも、第一リン酸アルミニウム水溶液が特に
入手し易く使い易い。この酸性リン酸塩はA剤中では通
常、固形分濃度を5〜40重量%程度に調整して使用す
る。固形分濃度が高いと発泡硬化後の断熱材の強度が強
化されるが、反面、A剤としては粘度が高くなり過ぎて
ポンプ圧送性に支障をきたす。更にA剤としての貯蔵安
定性に欠けて固形分が析出してくることもあるので最高
濃度は自ずと限定される。一方逆に燐酸塩の固形分濃度
を薄くした場合には、反応硬化後の発泡体の強度が弱く
なり、更にはエマルションとの混合比率によっては難燃
性の付与に不十分となることにもなり、本発明の目的を
達することができないことなる。本発明では酸性に安定
なエマルションを配合することも一つの特徴である。エ
マルションを配合することで特に無機質特有の脆さをカ
バーするものである。これはあらかじめ酸性リン酸塩水
溶液と混合しておいても良いし、あるいは使用直前に混
合しても良い。しかし使用面から言えば、荷姿が単純に
なるのであらかじめ混合されている方が使いやすい。組
成的にはアクリルあるいはスチレンあるいはその共重合
体などが挙げられるが酸性リン酸塩水溶液中ですぐにゲ
ル化を生じないエマルション組成であれば特に組成を限
定するものではない。その配合量は酸性リン酸塩水溶液
に対して酸性に安定なエマルションをそれぞれの固形分
比率で100:5〜300重量部の範囲が望ましい。ま
た発泡硬化後の軽量体として考えるとすれば、エマルシ
ョンの樹脂分がA剤、B剤を混合した後の発泡硬化体全
固形分に対し、1〜30重量%の範囲に入ることが望ま
しい。配合量が少ないと、樹脂の持つ柔軟性が発揮され
ず、発泡後の軽量体の脆さが改善できない。一方逆に樹
脂量を多くすると、本発明の目的のひとつでもある難燃
性に劣り、可燃性を帯びてくるので望ましくない。以上
A剤は上記2成分を基本とし、100センチポイズ以上
の粘度に調整するが、あまり粘度が高いとB剤との安定
した配合比率のものが得られないことになる。その他に
この系に強度補強のために繊維状物質を入れて置いても
良いし、あるいは粘性調整剤、粘度付与剤などを加えて
も良い。一方、B剤として配合される酸化マグネシウム
の中には、炭酸マグネシウムや水酸化マグネシウムなど
のマグネシア原料を原料として、比較的低温で焼成して
作られて軽焼マグネシアや、1500℃以上で焼成した
マグネシアクリンカー(硬焼、あるいは死焼、重焼マグ
ネシアとも呼ばれる)が含まれる。また酸化マグネシウ
ムを主成分とする鉱物、例えばマグネサイトや蛇紋岩な
ども酸性リン酸塩水溶液と硬化反応して不溶性の硬化物
となる点で適用できる。これらの中でマグネシアクリン
カーは特に硬化反応速度が本発泡硬化体としては適当で
あり、優先的に選ばれる。いずれにしても、これら酸化
マグネシウムは使用にあたっては、一旦粉砕して粉末状
にしたものが用いられる。その粒度はあまり粗いとB剤
スラリーとした場合に沈降し易くなり、また発泡硬化体
となった時に強度発現が劣る傾向になるので、望ましく
は1mm以下とする方が良い。金属炭酸塩としては炭酸
マグネシウム、炭酸カルシウム、炭酸バリウムなど水に
対して難溶性、もしくは不溶性の炭酸塩が選定される。
それらはA剤と混合された時にA剤の酸性リン酸塩に接
触して分解し、炭酸ガスを発生させることで、発泡ガス
源として作用する。なお反応後は不溶性のカルシウム塩
を生成する。粉末の粒度は粗過ぎると反応が遅くなり、
また硬化後の強度発現に劣る。一方細か過ぎると反応が
早くなり、先端混合部での混合時間の確保ができず即発
泡することになり、作業に支障をきたすことになる。そ
のため自ずと使用最適粒度が規定される。その範囲は
0.001mm〜1mmが望ましい。但しこの範囲以外
の粒径のものが少量混入することを妨げるものではな
い。繊維状物質としては岩綿、ウォラストナイト、石
綿、カーボン繊維、セラミック繊維、ガラス繊維など無
機質系の天然鉱物繊維や人造繊維の他、パルプ繊維やポ
リプロピレン繊維、ビニロン繊維、テトロン繊維などの
有機質繊維が挙げられる。その他にチタン酸カリウムの
ようなウイスカーもまた本発明の目的に供せられる。こ
れら繊維状物質はこれを添加することで発泡体の強度を
補強するものである。その使用に供される繊維の長さは
数十mmのものも使用可能であるが、混合性や圧送性、
あるいは先端混合性などを考慮すると約5mm以下程度
の長さが望ましいと言える。1mm以下のものも使用さ
れる。あるいはそれら長さの異なった繊維や材質の異な
った繊維同士を混合して使用しても別に差し支えはな
い。特にウイスカーなどの短繊維状物質はそうした形で
使用することも多い。添加量については少ない場合は目
的とする補強効果が得られず、また一方多すぎた場合
は、添加時に粘度が高く過ぎてポンプ圧送に支障をきた
したり、あるいは先端混合部で繊維の絡みによる詰まり
が生じたりするので自ずと限定される。使用する繊維の
種類にもよるが、通常は最終発泡硬化体100重量部に
対し、0.5〜40重量部の範囲が望ましい。なおこの
繊維状物質はA剤、あるいはB剤何れの方に配合しても
良い。ただ何れに配合するかは、それぞれの中に入れた
場合にどちらが安定して貯蔵できるか、反応を起こさな
いかで決められる。また実際の作業性から見て、A剤、
B剤のそれぞれの粘度、粘性の差が大きく異ならないよ
うに調整することが重要である。これら組成物について
は、その混合時の粘度や発泡速度、硬化時間などを調整
することで、発泡軽量体を形成させることができるが、
更には気泡安定剤を添加して、より一層の発泡安定化、
気泡の均一化をはかることが望ましい。その例として、
無機粉末系では、シリカゲル、活性炭、ゼオライト、カ
ーボンブラックのような多孔性無機質粉末やマイカ、タ
ルク、セピオライト、パリゴルスカイトのような層状結
晶を有する鉱物粉末、更には有機質系では界面活性剤な
どの所謂発泡安定剤を適時配合することができる。その
配合量は発泡硬化後の軽量体固形分に対して気泡安定剤
を100:0.1〜60重量部の範囲が好ましい。添加
量の多い方は一部増量材としても働くので、かなり多く
添加しても良いが、これ以上の量を入れると、混合前の
液の粘度が高くなり過ぎたり、あるいは硬化後の軽量体
強度が低下して実用に耐えない。当然添加量が少な過ぎ
ても、添加する目的の気泡の均一安定化が得られない。
なおこれも繊維状物質と同様、系の安定性を損なわない
限り、A剤、あるいはB剤何れの方に配合しても良い。
その他、A剤の場合と同様、B剤にさらに沈降防止剤や
流動化剤などを添加することができる。以上、B剤の主
要成分を水で混合して、少なくとも100センチポイズ
以上の粘度になるように調整する。あまり水を多くして
粘度を低く設定し過ぎると、B剤中の粉末が分離沈降す
ることになり、A剤との安定した配合比率のものが得ら
れないことになる。当然混合する水の量が少ないとB剤
全体の粘度が高くなり、ポンプ圧送性が悪くなったり、
一定比率での混合ができなくなったりすることが出てく
るので、少なくとも800ポイズ以下に押さえておく必
要がある。その他、本発明の目的を損じない範囲内にお
いては、他の粉末、例えばタルクやベントナイト、粘土
鉱物、あるいは発泡パーライト、膨張ひる石、マイクロ
バルーン、シラスバルーンなどの軽量骨材なども添加で
きる。以上本発明組成物をA剤とB剤のふたつに調合に
たものを基本として、それぞれの液またはスラリーの状
態でそれぞれをポンプなどを使用して別々にホース中を
圧送し、ホース先端部に混合部を設置し、そこに誘導さ
れてきたA剤、B剤を混合した後、注入、流し込み、あ
るいは吹付けなどの手段で所定の箇所に施工するもので
ある。このときA剤とB剤の混合比率は、A剤中の酸性
リン酸塩固形分に対して、B剤中の酸化マグネシウムが
100:10〜1000重量部となるようにすることが
望ましい。酸化マグネシウムが10重量部より少ないと
きは、発泡硬化物の酸性度が高く、また耐水性が劣る。
一方、1000重量部より大きいときは、発泡硬化物の
重量が重くなり、本発明の目的の一つである軽量体が得
られない。これら組成物は混合されると短時間で反応を
開始し、発泡そして硬化し、その後の水分の蒸発乾燥に
伴い、更にその強度を増していく。使用されるポンプ
は、プランジャー式やスネーク式、スクイズ式、ダイヤ
フラム式など特に粉末を含む当配合物を支障なく圧送で
きる形式のポンプが選定される。またA剤については液
自体が酸性であるため、その接液部は耐酸性の素材、例
えばステンレスや耐酸ゴムなどの配慮が必要である。ホ
ース先端の混合部は、エアモーターなどを使用して機械
的に混合する方法やA、B別々のノズルから吹き出させ
て気中、または被塗物面で混合させる方法などが適用で
きるが、本組成の場合にはある程度粘度が高いため、よ
り均一に混合しようとすれば、メンテナンスの点からも
スタティックミキサーがより適当である。またその混合
時間は、本発明の発泡硬化時間から数秒ないし長くても
数十秒以内に収めるのが望ましい。さもないと混合部内
で硬化して詰まらせることになる。このようにして混合
された組成物はそのまま注入あるいは流し込みしたり、
または混合部出口に吹付けノズルを取りつけて、混合直
後の組成物を所定の部位にエアでもって吹付けることも
できる。このようにして混合後発泡硬化した後はその乾
燥後の嵩密度が0.6〜0.05g/cm3の軽量な難
燃性の発泡体として形成された。
On the other hand, the present inventors have obtained the workability of mixing the foam at the tip and immediately foaming it, as in the above-mentioned polyurethane foam, and have a nonflammable or difficult flame retarding performance. We have invented a flammable tip-mixed inorganic foam. That is, a mixture obtained by mixing an acidic stable emulsion with an aqueous solution of acidic phosphate as a main component at a solid content ratio of 100: 5 to 300 parts by weight is used as A.
An inorganic foamed lightweight body for mixing at the tip, characterized in that it comprises an agent B, and as a main component, an agent B containing 100: 5-300 parts by weight of a metal carbonate with respect to magnesium oxide. In the present invention, by applying such a composition, the A agent and the B agent are stably stored, respectively, and in use, the A agent and the B agent are respectively pumped by a constant pressure using separate pumps, and the mixing part at the tip of the hose is used. When the mixture is injected or sprayed, the mixture is foamed and hardened to form a lightweight heat insulating layer or a lightweight sound absorbing layer. As the acidic phosphate, for example, aluminum phosphate monobasic, magnesium phosphate monobasic, calcium phosphate monobasic, etc. can be obtained in the form of an aqueous solution or powder. In actual application, they can be used alone or as a mixture in the form of an aqueous solution. In general, among them, an aqueous solution of aluminum monophosphate is particularly easily available and easy to use. In the case of the agent A, the acidic phosphate is usually used after adjusting the solid concentration to about 5 to 40% by weight. If the solid content concentration is high, the strength of the heat insulating material after foaming and curing is enhanced, but on the other hand, the viscosity of the agent A becomes too high, which impairs the pumping property. Further, since the solid content may precipitate due to lack of storage stability as the agent A, the maximum concentration is naturally limited. On the other hand, when the solid content of the phosphate is reduced, the strength of the foam after reaction curing becomes weaker, and furthermore, depending on the mixing ratio with the emulsion, it may become insufficient to impart flame retardancy. That is, the object of the present invention cannot be achieved. In the present invention, one of the features is that an emulsion stable to acidity is blended. Incorporation of an emulsion particularly covers brittleness peculiar to inorganic substances. This may be mixed in advance with an aqueous acidic phosphate solution or may be mixed immediately before use. However, in terms of use, it is easier to use if they are mixed in advance because the packaging is simpler. The composition may be acryl, styrene or a copolymer thereof, but the composition is not particularly limited as long as it is an emulsion composition that does not immediately cause gelation in an acidic phosphate aqueous solution. The compounding amount thereof is desirably in the range of 100: 5 to 300 parts by weight of the emulsion which is stable to the acid with respect to the aqueous solution of the acidic phosphate in terms of the solid content ratio. When considered as a lightweight body after foaming and curing, it is desirable that the resin content of the emulsion falls within the range of 1 to 30% by weight based on the total solid content of the foamed cured body after mixing the agent A and the agent B. If the amount is too small, the flexibility of the resin is not exhibited, and the brittleness of the lightweight body after foaming cannot be improved. On the other hand, when the amount of the resin is increased, the flame retardancy, which is one of the objects of the present invention, is inferior, and the resin becomes flammable. As mentioned above, the agent A is adjusted to have a viscosity of 100 centipoise or more based on the above two components. However, if the viscosity is too high, a compound having a stable blending ratio with the agent B cannot be obtained. In addition, a fibrous substance may be put in this system for reinforcing the strength, or a viscosity modifier, a viscosity imparting agent, or the like may be added. On the other hand, in magnesium oxide to be blended as the B agent, magnesia raw materials such as magnesium carbonate and magnesium hydroxide are used as raw materials, and are calcined at relatively low temperatures, and are calcined magnesia or calcined at 1500 ° C. or more. Magnesia clinker (also called hard-burned, dead-burned, or over-burned magnesia) is included. In addition, minerals containing magnesium oxide as a main component, such as magnesite and serpentine, can be applied because they harden and react with an aqueous solution of acidic phosphate to form an insoluble hardened product. Among these, magnesia clinker is particularly preferred because the curing reaction rate is suitable for the present foamed cured product. In any case, these magnesium oxides are used in the form of powder once crushed. If the particle size is too coarse, sedimentation tends to occur in the case of the B agent slurry, and the strength of the foamed cured product tends to be inferior. Therefore, the particle size is desirably 1 mm or less. As the metal carbonate, a poorly soluble or insoluble carbonate such as magnesium carbonate, calcium carbonate and barium carbonate is selected.
When they are mixed with the agent A, they decompose on contact with the acidic phosphate of the agent A to generate carbon dioxide gas, thereby acting as a foaming gas source. After the reaction, an insoluble calcium salt is formed. If the particle size of the powder is too coarse, the reaction will slow down,
In addition, the strength after curing is poor. On the other hand, if it is too fine, the reaction is accelerated, the mixing time cannot be secured in the tip mixing section, and foaming occurs immediately, which hinders the operation. Therefore, the optimum use particle size is naturally defined. The range is desirably 0.001 mm to 1 mm. However, this does not prevent a small amount of particles having a particle size outside this range from being mixed. Examples of fibrous substances include mineral natural mineral fibers such as rock wool, wollastonite, asbestos, carbon fibers, ceramic fibers, and glass fibers and artificial fibers, and organic fibers such as pulp fibers, polypropylene fibers, vinylon fibers, and tetron fibers. Is mentioned. In addition, whiskers such as potassium titanate are also provided for the purpose of the present invention. The addition of these fibrous substances reinforces the strength of the foam. The length of the fiber used for the use can be several tens of mm.
Alternatively, it can be said that a length of about 5 mm or less is desirable in consideration of the mixing property at the tip. Those having a size of 1 mm or less are also used. Alternatively, fibers having different lengths or fibers of different materials may be mixed and used. In particular, short fibrous substances such as whiskers are often used in such a form. If the added amount is small, the desired reinforcing effect cannot be obtained, while if it is too large, the viscosity is too high at the time of addition, which hinders pumping or clogging due to fiber entanglement at the tip mixing section. Is naturally limited. Although it depends on the type of the fiber to be used, usually, the range is preferably 0.5 to 40 parts by weight based on 100 parts by weight of the final foamed cured product. The fibrous substance may be added to either the A agent or the B agent. However, which one to mix is determined by which one can be stored stably when put in each, and does not cause a reaction. From the viewpoint of actual workability, agent A,
It is important to adjust the viscosity and difference in viscosity of the B agent so that they do not greatly differ. For these compositions, by adjusting the viscosity and foaming speed at the time of mixing, curing time and the like, it is possible to form a foamed lightweight body,
Furthermore, by adding a foam stabilizer, further foam stabilization,
It is desirable to make the air bubbles uniform. As an example,
In the case of inorganic powders, so-called foaming of porous inorganic powders such as silica gel, activated carbon, zeolite and carbon black and mineral powders having layered crystals such as mica, talc, sepiolite and palygorskite, and in the case of organic materials, surfactants and the like Stabilizers can be incorporated at appropriate times. The compounding amount is preferably in the range of 100: 0.1 to 60 parts by weight of the cell stabilizer with respect to the solid content of the lightweight body after foaming and curing. One with a large amount of addition also acts as a bulking agent, so it may be added in a considerably large amount.However, if it is added more than this, the viscosity of the liquid before mixing becomes too high, or the lightweight body after curing The strength is low and it is not practical. Naturally, even if the addition amount is too small, uniform stabilization of bubbles to be added cannot be obtained.
Like the fibrous substance, this may be added to either the A agent or the B agent as long as the stability of the system is not impaired.
In addition, as in the case of the agent A, an anti-settling agent, a fluidizing agent, and the like can be further added to the agent B. As described above, the main component of the agent B is mixed with water and adjusted to have a viscosity of at least 100 centipoise or more. If the viscosity is set too low with too much water, the powder in the agent B separates and precipitates, and a stable blending ratio with the agent A cannot be obtained. Naturally, if the amount of water to be mixed is small, the viscosity of the entirety of the B agent becomes high, and the pumpability becomes poor,
It may become impossible to mix at a fixed ratio, so it is necessary to keep it at least 800 poise or less. In addition, other powders such as talc, bentonite, clay minerals, or lightweight aggregates such as expanded pearlite, expanded vermiculite, microballoons, and shirasu balloons can be added within a range that does not impair the object of the present invention. As described above, based on the composition of the present invention prepared into two parts of agent A and agent B, each liquid or slurry is separately pumped through a hose using a pump or the like, and is applied to the tip of the hose. A mixing section is provided, and after mixing the agent A and the agent B guided therein, the mixture is applied to a predetermined location by means such as pouring, pouring, or spraying. At this time, it is desirable that the mixing ratio of the A agent and the B agent is such that the magnesium oxide in the B agent is 100: 10 to 1000 parts by weight based on the acidic phosphate solid content in the A agent. When the amount of magnesium oxide is less than 10 parts by weight, the acidity of the foamed cured product is high and the water resistance is poor.
On the other hand, when the amount is more than 1000 parts by weight, the weight of the foamed cured product increases, and a lightweight body which is one of the objects of the present invention cannot be obtained. When these compositions are mixed, they begin to react in a short time, foam and harden, and further increase their strength as the water evaporates and dries. As the pump to be used, a pump of a type capable of pressure-feeding the compound containing powder in particular, such as a plunger type, a snake type, a squeeze type, and a diaphragm type, is selected. In addition, since the liquid itself is acidic with respect to the agent A, it is necessary to consider an acid-resistant material such as stainless steel and acid-resistant rubber at the liquid contact portion. For the mixing part at the end of the hose, a method of mechanical mixing using an air motor or the like, or a method of blowing out from separate nozzles A and B to mix in the air or on the surface of the object to be coated can be applied. In the case of the composition, the viscosity is high to some extent, so that if a more uniform mixing is to be performed, a static mixer is more appropriate from the viewpoint of maintenance. The mixing time is desirably within a few seconds to at most a few tens of seconds from the foam hardening time of the present invention. Otherwise, it will harden and clog in the mixing section. The composition thus mixed is poured or poured as it is,
Alternatively, a spray nozzle can be attached to the outlet of the mixing section, and the composition immediately after mixing can be sprayed to a predetermined site with air. After foaming and curing after mixing in this manner, a lightweight, flame-retardant foam having a dry bulk density of 0.6 to 0.05 g / cm3 was formed.

【0005】[0005]

【実施例】【Example】

(実施例1)固形分濃度40%の第一リン酸アルミニウ
ム水溶液10kgに対し固形分濃度50%のアクリルス
チレン共重合体のエマルションを8kg、長さ2mmのビ
ニロン繊維を0.6kg混合してA剤とした。混合しても
ゲルなどを生じることなく安定していた。その粘度をB
型粘度計で測定したところ、53ポイズであった。一方
平均粒径100ミクロンのマグネシアクリンカー粉末5
kgと平均粒径300ミクロンの炭酸カルシウム粉末6
kg、タルク粉末4kgをそれぞれ計量しておき、容器
に準備した6kgの水に、撹拌しながら順次上記粉体を
投入、混合していき、最終的にB剤を得た。その粘度は
26ポイズであった。これらのA剤、B剤をポンプのホ
ッパーに移した。計量圧送ポンプとしてはステンレス製
プランジャーポンプ2台を準備し、その配合比率に見合
うようにそれぞれ調整した。長さ10mの2本のホース
の先にスタティックミキサーを取りつけ、更にその先端
に吹付けノズルも取りつけた。同時にポンプのスイッチ
を入れると、ミキサー端部から出てきた混合物は均一に
混ざっており、出た時点から発泡までの時間を測定した
ところ5秒後に発泡を開始し、間もなく硬化して軽量体
となった。更にそのミキサー端部に吹付けノズルを取り
つけ、エアと共に壁面に吹付けた。塗布物はその面で発
泡開始して、一回の塗布で約30mmの厚みまで発泡して
硬化した。こうした軽量体を50℃の乾燥器に入れ2日
間乾燥した後にその嵩密度を測定したところ0.19g
/cm3であった。表面のもろさを吹付けロックウール
面と比較すると良好であった。またその軽量体を100
×100×30mmの寸法に2個切り出し、京都電子工業
株式会社製の熱線式熱伝導率測定装置にかけ、0.04
5kcal/m.hr.℃の値を得た。またJIS A 1321
に規定されている防火性能試験の中の表面加熱試験を行
い、排気温度、発煙係数などの数値より難燃2級の性能
を得た。 (実施例2)固形分濃度40%の第一リン酸アルミニウ
ム水溶液10kgに対し固形分濃度50%にアクリルス
チレン共重合体のエマルションを1kg、長さ0.3mm
のガラス繊維を3kg、更に水を3kgを加えて混合しA剤
とした。その粘度をB型粘度計で測定したところ、10
ポイズであった。一方実施例1と同じマグネシアクリン
カー粉末6kgと炭酸マグネシウム粉末3kg、タルク
粉末10kg、両性イオン界面活性剤(ビスコールN:
第一工業製薬)0.2kg、ヒドロキシエチルセルロース
(HEC)0.1kgをそれぞれ計量しておき、容器に準
備した10kgの水に、撹拌しながら順次上記粉体など
を投入、混合していき、最終的にB剤を得た。その粘度
は8ポイズであった。これらのA剤、B剤を実施例1と
同様の操作で混合、吹付け作業を行ったところ2秒後に
発泡を開始し、間もなく硬化して軽量体となった。こう
して得られた軽量体の嵩密度は0.10g/cm3と更
に軽量であった。表面のもろさは実施例1と比較すると
劣っていた。また熱伝導率は0.037kcal/m.hr.℃の
値を得た。また表面加熱試験を行ったところ難燃1級の
性能を得た。 (比較例1)ポリウレタンフォームのA液、B液がセッ
トになっているボンベを、吹付け用の専用ノズルを取り
つけて壁面に吹付けて軽量体を得た。それらを実施例1
と同様の項目について測定したところ、表1の比較例1
の値を得た。特に防火性能試験では試験開始後すぐに燃
え出し、危険なため試験を中止した。 (比較例2)岩綿とセメントミルク(セメント粉末と大
量の水の混合液)をそれぞれ準備して専用の機械で別々
に圧送、先端部で混合しながら壁面に吹付けて、30mm
の断熱層を得た。作業中、かなりの粉塵の飛散が見られ
た。それらを実施例1と同様の項目について測定したと
ころ、表1の比較例2の値を得た。特に吹付け表面のも
ろさが目立ち、手でこするとボロボロと表面から繊維が
剥がれてきた。
Example 1 8 kg of an emulsion of an acrylic styrene copolymer having a solid content of 50% and 0.6 kg of vinylon fiber having a length of 2 mm were mixed with 10 kg of an aqueous solution of monobasic aluminum phosphate having a solid content of 40%. Agent. Even when mixed, it was stable without producing any gel. The viscosity is B
It was 53 poise when measured by a mold viscometer. On the other hand, magnesia clinker powder 5 having an average particle size of 100 microns 5
kg and calcium carbonate powder with an average particle size of 300 microns 6
kg and 4 kg of talc powder were each weighed, and the powders were sequentially charged and mixed into 6 kg of water prepared in a container with stirring to finally obtain a B agent. Its viscosity was 26 poise. These Agent A and Agent B were transferred to the hopper of the pump. Two stainless steel plunger pumps were prepared as metering pressure pumps, and each was adjusted to match the mixing ratio. A static mixer was attached to the end of two hoses 10 m in length, and a spray nozzle was also attached to the tip. At the same time, when the pump was switched on, the mixture coming out of the mixer end was uniformly mixed, and the time from when it came out until the foaming was measured. became. Further, a spray nozzle was attached to the end of the mixer and sprayed on the wall surface together with air. The coating material started foaming on the surface, and foamed and cured to a thickness of about 30 mm in one application. The bulk density was measured after placing such a lightweight body in a dryer at 50 ° C. and drying for 2 days.
/ Cm3. The fragility of the surface was good as compared with the sprayed rock wool surface. In addition, 100
Two pieces were cut out to a size of × 100 × 30 mm and subjected to a hot wire thermal conductivity measuring device manufactured by Kyoto Electronics Industry Co., Ltd.
A value of 5 kcal / m.hr. ° C. was obtained. Also, JIS A 1321
A surface heating test was performed in the fire prevention performance test specified in the above, and the second class performance of flame retardancy was obtained from numerical values such as exhaust temperature and smoke generation coefficient. (Example 2) 1 kg of an emulsion of an acrylic styrene copolymer having a solid content of 50% and a length of 0.3 mm was added to 10 kg of an aqueous solution of monobasic aluminum phosphate having a solid content of 40%.
3 kg of glass fiber and 3 kg of water were added and mixed to obtain an agent A. When the viscosity was measured with a B-type viscometer, 10
Poise. On the other hand, 6 kg of magnesia clinker powder, 3 kg of magnesium carbonate powder, 10 kg of talc powder, amphoteric ionic surfactant (Viscol N:
Daiichi Kogyo Pharmaceutical Co., Ltd.) 0.2 kg and hydroxyethyl cellulose (HEC) 0.1 kg were weighed, and the above-mentioned powders and the like were successively charged and mixed into 10 kg of water prepared in a container while stirring. Agent B was obtained. Its viscosity was 8 poise. When these agents A and B were mixed and sprayed in the same manner as in Example 1, foaming started 2 seconds later, and soon hardened to obtain a lightweight body. The bulk density of the thus obtained light body was even lighter at 0.10 g / cm3. The fragility of the surface was inferior to Example 1. The thermal conductivity was 0.037 kcal / m.hr. ° C. In addition, when a surface heating test was performed, first-class flame retardant performance was obtained. (Comparative Example 1) A cylinder in which a liquid A and a liquid B of a polyurethane foam were set was attached to a dedicated nozzle for spraying and sprayed on a wall surface to obtain a lightweight body. Example 1
The measurement was performed on the same items as in Example 1.
Was obtained. In particular, in the fire prevention performance test, the test started burning immediately after the start of the test, and the test was stopped due to danger. (Comparative Example 2) Rock wool and cement milk (mixed liquid of cement powder and a large amount of water) were separately prepared, separately pumped by a special machine, and sprayed on the wall while mixing at the tip, and 30 mm
Was obtained. During the operation, considerable scattering of dust was observed. When they were measured for the same items as in Example 1, the values of Comparative Example 2 in Table 1 were obtained. In particular, the fragility of the sprayed surface was conspicuous, and the fibers were peeled from the tatters and the surface when rubbed by hand.

【表1】 [Table 1]

【0006】[0006]

【発明の効果】以上の本発明成分及び工法を適用するこ
とによりこれまでにない以下の効果が得られた。 1.これまで先端混合、短時間発泡タイプの断熱材とし
てはポリウレタンフォームに代表される可燃性有機発泡
体が主体であった。それに対し、同じような形態で効率
的に作業ができる難燃性の先端混合発泡体を得ることが
できるようになった。 2.しかもポリウレタンフォームの場合はその発泡ガス
に地球を取り巻くオゾン層を破壊すると言われるフロン
ガスを使用しているのに対し、本発明は炭酸ガスを発泡
ガスとしており、地球環境保護の点で極めて有効であ
る。 3.当然、ポリスチレンフォームなどのような成形断熱
材と異なり、断熱性能の弱点となるつなぎ目を生じない
工法が取れ、断熱上有効である。 4.ロックウールやグラスウールのような繊維質系の断
熱材とは異なり、表面からの繊維の飛散などがなく、室
内環境を汚さない。
By applying the above-mentioned components and the method of the present invention, the following effects which have not been obtained before can be obtained. 1. Until now, combustible organic foams typified by polyurethane foams have been the main heat-insulating materials of the tip-mixed, short-time foaming type. On the other hand, it has become possible to obtain a flame-retardant tip-mixed foam that can be efficiently worked in the same manner. 2. In addition, in the case of polyurethane foam, the foaming gas uses Freon gas, which is said to destroy the ozone layer surrounding the earth, whereas the present invention uses carbon dioxide gas as the foaming gas, which is extremely effective in protecting the global environment. is there. 3. Naturally, unlike a molded heat insulating material such as polystyrene foam, a construction method that does not cause a seam, which is a weak point of heat insulation performance, can be taken, which is effective in heat insulation. 4. Unlike fibrous heat insulating materials such as rock wool and glass wool, there is no scattering of fibers from the surface, and the indoor environment is not polluted.

フロントページの続き (58)調査した分野(Int.Cl.6,DB名) C04B 38/02 Continuation of front page (58) Field surveyed (Int.Cl. 6 , DB name) C04B 38/02

Claims (5)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】主成分として酸性リン酸塩水溶液に対し
て、酸性に安定なエマルションをそれぞれの固形分比率
で100:5〜300重量部で混合したものをA剤と
し、一方主成分として酸化マグネシウムに対して、金属
炭酸塩を100:5〜300重量部配合したB剤を、A
剤中の酸性リン酸塩固形分に対して、B剤中の酸化マグ
ネシウムが100:10〜1000重量部となるように
先端混合することにより製造されることを特徴とする先
端混合方式無機系発泡軽量体。
An agent A is prepared by mixing an acidic stable aqueous emulsion with an aqueous solution of an acidic phosphate as a main component at a solid content ratio of 100: 5 to 300 parts by weight as an A agent. Agent B containing 100: 5-300 parts by weight of a metal carbonate with respect to magnesium was added to A
A tip-mixing type inorganic foam produced by mixing the acidic phosphate solids in the agent with the magnesium oxide in the agent B in an amount of 100: 10 to 1000 parts by weight. Light body.
【請求項2】発泡硬化後の軽量体固形分に対し、繊維状
物質が100:0.5〜40重量部または(及び)気泡
安定剤が100:0.1〜60重量部含有されるよう
に、あらかじめA剤または(及び)B剤にそれぞれを配
合することを特徴とする請求項第1項に記載の先端混合
方式無機系発泡軽量体。
2. The fibrous substance is contained in an amount of 100: 0.5 to 40 parts by weight or a foam stabilizer in an amount of 100: 0.1 to 60 parts by weight based on the solid content of the lightweight body after foaming and curing. 2. The tip-mixing inorganic foamed lightweight body according to claim 1, wherein each of the ingredients is blended in advance with the agent A or the agent (and) the agent B. 3.
【請求項3】酸性リン酸塩水溶液が第一リン酸アルミニ
ウム水溶液であることを特徴とする請求項第1項に記載
の先端混合方式無機系発泡軽量体。
3. An inorganic foam lightweight body with a mixed tip according to claim 1, wherein the acidic phosphate aqueous solution is an aqueous aluminum phosphate solution.
【請求項4】酸化マグネシウムがマグネシアクリンカー
であることを特徴とする請求項第1項に記載の先端混合
方式無機系発泡軽量体。
4. The lightweight inorganic foam according to claim 1, wherein the magnesium oxide is a magnesia clinker.
【請求項5】主成分として酸性リン酸塩水溶液に対して
酸性に安定なエマルションをそれぞれの固形分比率で1
00:5〜300重量部で混合したものをA剤とし、一
方主成分として酸化マグネシウムに対して金属炭酸塩を
100:5〜300重量部配合したB剤を、A剤中の酸
性リン酸塩固形分に対して、B剤中の酸化マグネシウム
が100:10〜1000重量部となるように先端混合
することを特徴とする発泡軽量体の施工方法。
5. An emulsion which is acid-stable as an active ingredient with respect to an aqueous solution of acidic phosphate at a solid content of 1%.
The agent A is a mixture prepared by mixing 00: 5 to 300 parts by weight, and the acid phosphate in the agent A is obtained by mixing the agent B as a main component with 100: 5 to 300 parts by weight of a metal carbonate to magnesium oxide. A method for constructing a lightweight foam body, characterized in that magnesium oxide in the B agent is mixed at a tip of 100: 10 to 1000 parts by weight with respect to a solid content.
JP3351456A 1991-12-11 1991-12-11 Advanced blended inorganic lightweight foam Expired - Fee Related JP2882926B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3351456A JP2882926B2 (en) 1991-12-11 1991-12-11 Advanced blended inorganic lightweight foam

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3351456A JP2882926B2 (en) 1991-12-11 1991-12-11 Advanced blended inorganic lightweight foam

Publications (2)

Publication Number Publication Date
JPH05163080A JPH05163080A (en) 1993-06-29
JP2882926B2 true JP2882926B2 (en) 1999-04-19

Family

ID=18417410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3351456A Expired - Fee Related JP2882926B2 (en) 1991-12-11 1991-12-11 Advanced blended inorganic lightweight foam

Country Status (1)

Country Link
JP (1) JP2882926B2 (en)

Also Published As

Publication number Publication date
JPH05163080A (en) 1993-06-29

Similar Documents

Publication Publication Date Title
JP2603311B2 (en) Flame resistance method
US4077809A (en) Cellular cementitious compositions and method of producing same
CN100522858C (en) Foamed fireproofing composition and method
JP2558986B2 (en) Fire resistant composition for sprays
JP3285470B2 (en) Lightweight non-combustible heat insulating material composition excellent in pumping property and method of applying the same
JP2002535239A (en) Improved spray refractory composition
US4303450A (en) Sprayable insulation composition
EP1499569B1 (en) Foamed fireproofing composition and method
JP2882926B2 (en) Advanced blended inorganic lightweight foam
JP4947869B2 (en) Insulation composition
JP2002201057A (en) Adiabatic mortar
CN100374267C (en) Foamed fireproofing composition and method
JP3417764B2 (en) Fire resistant insulation composition
JPH0454634B2 (en)
CA3060992A1 (en) An insulation material and method of making same
JP3837630B2 (en) Insulation composition
JPS59501710A (en) Foam insulation material, its manufacturing method and its manufacturing equipment
JPH04139080A (en) Composition for lightweight body
RU2162455C1 (en) Raw mix for manufacturing foam concrete based on magnesia binder
JP3738987B2 (en) Light incombustible insulation layer
JP3357992B2 (en) Refractory coating material for spraying and its construction method
JP2550445B2 (en) Inorganic thermal insulation / refractory material for spraying and method for producing the same
KR900007079B1 (en) Method of producing gypsum-foambody
KR100846414B1 (en) Foamed fireproofing composition and method
KR100822005B1 (en) Foamed fireproofing composition and method

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090205

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100205

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110205

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees