JPH01160853A - Production of extremely highly fluidized concrete - Google Patents

Production of extremely highly fluidized concrete

Info

Publication number
JPH01160853A
JPH01160853A JP32099187A JP32099187A JPH01160853A JP H01160853 A JPH01160853 A JP H01160853A JP 32099187 A JP32099187 A JP 32099187A JP 32099187 A JP32099187 A JP 32099187A JP H01160853 A JPH01160853 A JP H01160853A
Authority
JP
Japan
Prior art keywords
reducing agent
concrete
compound
mixer
agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP32099187A
Other languages
Japanese (ja)
Other versions
JP2602438B2 (en
Inventor
Satoru Nishioka
哲 西岡
Junichi Ohashi
潤一 大橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyu Construction Co Ltd
Original Assignee
Tokyu Construction Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyu Construction Co Ltd filed Critical Tokyu Construction Co Ltd
Priority to JP62320991A priority Critical patent/JP2602438B2/en
Publication of JPH01160853A publication Critical patent/JPH01160853A/en
Application granted granted Critical
Publication of JP2602438B2 publication Critical patent/JP2602438B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B28/00Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements
    • C04B28/02Compositions of mortars, concrete or artificial stone, containing inorganic binders or the reaction product of an inorganic and an organic binder, e.g. polycarboxylate cements containing hydraulic cements other than calcium sulfates

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Curing Cements, Concrete, And Artificial Stone (AREA)

Abstract

PURPOSE:To obtain the subject concrete having excellent fluidity and packing properties, capable of carrying out concrete execution having excellent strength, durability and reliability, by adding cement, aggregate, a specific separation reducing agent and an anti-foaming agent to a mixer, blending, feeding water and a water reducing agent and kneading. CONSTITUTION:Cement is blended with aggregates such as sand, gravel or ground stone, a separation reducing agent consisting of 0.01-2.0wt.% (based on cement) of ethylhydroxyethyl cellulose, nonionic water-soluble cellulose and 0.1-5.0wt.% sepiolite-based mineral or 0.01-3.0wt.% polyethylene oxide, 0.01-1.0wt.% anti-foaming agent comprising nonionic SN deformer 14HP in a mixer of ready-mixed concrete plant. Then, the mixture is kneaded with a water reducing agent such as polyol composite material, lignin sulfonic acid compound, oxycarboxylate, highly condensed triazine-based compound or melamine sulfonate compound or a fluidizing agent to give the subject concrete having 20-27cm slump, 45-80cm slum flow and 3.5-0cm packing properties in kneading and causing no material separation.

Description

【発明の詳細な説明】 イ00発明目的 産業上の利用分野 本発明は、超高流動化コンクリートの製造方法に関する
ものである。
DETAILED DESCRIPTION OF THE INVENTION Field of the Invention Field of the Invention The present invention relates to a method for producing ultra-highly fluidized concrete.

従来の技術 従来の流動化コンクリートは、単位水量を増加したり、
減水剤あるいは流動化剤を使用して単位水量を増さずに
、その流動性を保つようにしていた。
Conventional technology Conventional fluidized concrete increases the unit water volume,
Water reducers or superplasticizers were used to maintain fluidity without increasing the unit water volume.

、発明が解決しようとする問題点 しかしなから、上記従来の流動化コンクリートは、単位
水量やセメント量の増大により乾燥収縮やブリージング
が多くて、ひび割れが発生し易いだけでなく、減水剤ま
たは流動化剤を使用した高スランプの流動化コンクリー
トでは、スランプロスが大きく品質管理が困難であった
However, the above-mentioned conventional fluidized concrete suffers from a lot of drying shrinkage and breathing due to the increase in the unit amount of water and cement, and is not only prone to cracking, but also has problems with water reducing agents or fluidized concrete. Fluidized concrete with high slump using a curing agent has a large slump loss, making quality control difficult.

また、スランプを22〜24c−に大きく、複雑な型枠
内や密度の高い配筋内へ打設した時、材料分離を生じて
ジャンカや砂肌が発生し易い等の相反する性質があって
、品質管理や施工管理が難しい等の問題点があった。
In addition, when the slump is large (22 to 24 cm) and is cast into a complex formwork or dense reinforcement, material separation may occur, resulting in the formation of junks or sandy surfaces. However, there were problems such as difficulty in quality control and construction management.

本発明は上記従来の問題1点を解決するためになされた
もので、その目的とするところは、複雑な形状のコンク
リート部材、配筋密度の高い部材、或いは入隅部等のバ
イブレータ等による締め固め作業の困難な個所でも、締
め固め作業なしでも均一な品質で非常に良い流動性・充
填性を有し、材料分離の生じることのない超高流動化コ
ンクリートの製造方法を提供することにある。
The present invention was made in order to solve one of the above-mentioned conventional problems, and its purpose is to tighten concrete members with complex shapes, members with high reinforcement density, or corner parts using vibrators, etc. The purpose of the present invention is to provide a method for producing ultra-highly fluidized concrete that has uniform quality, excellent fluidity and filling properties even without compaction work, even in places where compaction work is difficult, and does not cause material separation. .

口0発明の構成 問題点を解決するための手段 本発明方法により製造される超高流動化コンクリートは
、セメンと、骨材および水等から成るベースコンクリー
トに、分離低減剤と、消泡剤と、減水剤または流動化剤
と、を添加することにより構成されるが、この他、用途
に応じてフライアッシュ、シリカ7ユームや鉱物粘土な
どの混和材も使用することができる。
Means for Solving the Constituent Problems of the Invention The ultra-high fluidity concrete produced by the method of the present invention includes a base concrete consisting of cement, aggregate, water, etc., and a separation reducing agent and an antifoaming agent. , a water reducing agent or a fluidizing agent. In addition, admixtures such as fly ash, silica, mineral clay, etc. can also be used depending on the purpose.

セメントの種類としては、ポルトランドセメンと、高炉
セメンと、シリカセメンと、プライアッシュセメント等
いずれを使用してもよい。
As for the type of cement, any of Portland cement, blast furnace cement, silica cement, ply ash cement, etc. may be used.

骨材についても、砂、砂利、砕石など限定されず、JI
Sの基準に合格したものであればいずれを使用してもよ
い。
Aggregates are not limited to sand, gravel, crushed stone, etc.
Any material may be used as long as it passes the S criteria.

分離低減剤としては、非イオン性の水溶性セルロースで
あるエチルヒドロキシエチルセルロース、セビオライト
系鉱物およびポリエチレンオキサイドを単独または混合
して使用し、その配合度はセメントに対してエチルヒド
ロキシエチルセルロースが0.01〜2.0重量%、セ
ビオライト系鉱物がセメントに対して0.1〜5.0重
量%、またポリエチレンオキサイドがセメントに対して
0.01〜3.0重量%である。
As the separation reducing agent, ethyl hydroxyethyl cellulose, which is a nonionic water-soluble cellulose, Seviolite minerals, and polyethylene oxide are used alone or in combination, and the mixing ratio is 0.01 to 0.01 to 0.01 to 0.01 to 0.01 to 0.01 to 0.01 to 0.01 to 1,000,000 ethyl hydroxyethyl cellulose to the cement. 2.0% by weight of the seviolite mineral, 0.1 to 5.0% by weight of the cement, and 0.01 to 3.0% of the polyethylene oxide based on the cement.

消泡剤としては、非イオン性のSNデフォ−マー14H
Pを使用し、その配合度はセメントに対して0.01〜
1.0重量%であり、コンクリートの空気連行量が0.
1〜10%の間で調整可能である。
As an antifoaming agent, nonionic SN Deformer 14H is used.
P is used, and its blending ratio is 0.01 to 0.01 to cement.
1.0% by weight, and the amount of air entrained in the concrete is 0.
It can be adjusted between 1 and 10%.

減水剤または流動化剤は、一般に使用されているポリオ
ール複合体、リグニンスルホン酸化合物、オキシカルボ
ン酸塩、高縮合トリアジン系化合物、メラミンスルホン
酸塩系化合物等である。ただし、ナフタリンスルホン酸
塩高縮合物はエチルヒドロキシエチルセルロ−ス Pと混合した時の流動性や充填性が充分確保できない。
The water reducing agent or fluidizing agent is a commonly used polyol complex, lignin sulfonic acid compound, oxycarboxylate, highly condensed triazine compound, melamine sulfonate compound, or the like. However, the naphthalene sulfonate high condensate cannot ensure sufficient fluidity and filling properties when mixed with ethylhydroxyethylcellulose P.

上記配合度によるコンクリートの混練時の性状は、スラ
ンプが20〜27cm,スランプ70−が45〜80c
mおよび充填性が35〜0で材料分離を生じない。
The properties of concrete when mixed with the above mixing ratio are slump of 20 to 27 cm and slump of 70 to 45 to 80 cm.
When m and filling property are 35 to 0, material separation does not occur.

また、超高流動性能が混練後90分程度でも保持でき、
ポンプ圧送前後の性状も変わらない。
In addition, ultra-high fluidity can be maintained for about 90 minutes after kneading,
The properties before and after pumping are also unchanged.

さらに、上記添加剤を加える前のべ一スコンクリートと
比較しても、強度性能は変わらない。
Furthermore, even when compared with the base concrete before adding the above additives, the strength performance remains unchanged.

次に、上記超高流動化コンクリートの各種製造方法につ
いて説明する。
Next, various methods of manufacturing the above-mentioned ultra-high fluidization concrete will be explained.

(1)生コンプラントのミキサー(傾胴型、強制練り型
、その他)にセメンと、骨材、分離低減′″M(エチル
ヒドロキシエチルセルロース、セビオライと、ポリエチ
レンオキサイド)と、消泡剤(SNデフォ−マー148
P)とを投入し、ミキサーの性能に応じて充分混合し、
その後、水と減水剤または流動化剤を添加して混練する
(1) Add cement, aggregate, separation reduction'''M (ethyl hydroxyethyl cellulose, Sevioly, polyethylene oxide), and antifoaming agent (SN defo- Mar 148
P) and mix thoroughly according to the performance of the mixer.
Thereafter, water and a water reducing agent or a fluidizing agent are added and kneaded.

(2)練り上がった標準配合のコンクリートに分離低減
剤と、消泡剤と、減水剤または流動化剤と、をプラント
ミキサーに添加して再度混練する。
(2) A separation reducing agent, an antifoaming agent, and a water reducing agent or fluidizing agent are added to the kneaded standard mix concrete in a plant mixer and kneaded again.

(3)ミキサー車に荷降しされた標準配合のコンクリー
トに現場到着後、分離低減剤と、消泡剤と、減水剤また
は流動化剤と、を添加してミキサー車で混練する。
(3) After arriving at the site, the standard mixture concrete unloaded into a mixer truck is mixed with a separation reducing agent, an antifoaming agent, a water reducing agent or a fluidizing agent, and mixed in a mixer truck.

(4)全減水剤量の一部を予め添加して、スランプを2
0〜25cmの間にプラントミキサーで調整したコンク
リートに現場到着後、分離低減剤と、消泡剤と、残りの
減水剤または流動化剤と、を添加してミキサー車で混練
する。
(4) Add a portion of the total amount of water reducing agent in advance to reduce the slump by 2
After arriving at the site, the concrete adjusted to a thickness of 0 to 25 cm with a plant mixer is mixed with a separation reducing agent, an antifoaming agent, and the remaining water reducing agent or fluidizing agent with a mixer truck.

実施例 ベースコンクリートとしては!@1表に示す配合とした
As an example base concrete! The formulation shown in Table @1 was used.

上記配合のベースコンクリートに、エチルヒドロキシエ
チルセルロ−ズ 3重量%、非イオン性のSNデフォ−マー14HPを同
じくセメントに対して0.1重量%、減水剤としてNL
−4000をセメントに対して3。
Add 3% by weight of ethyl hydroxyethyl cellulose to the above-mentioned base concrete, 0.1% by weight of non-ionic SN Deformer 14HP based on cement, and NL as a water reducing agent.
-4000 to 3 for cement.

0重量%それぞれ添加して超高流動化コンクリートを得
た。
Ultra-highly fluidized concrete was obtained by adding 0% by weight of each.

上記超高流動化コンクリートの性状は、第2表に示す通
りである。
The properties of the ultra-highly fluidized concrete are shown in Table 2.

第1 上記第2表の性状の内、スランプの値はJISAllo
lのスランプ試験方法に基づいて得られた。
1 Among the properties in Table 2 above, the slump value is JISAllo
It was obtained based on the slump test method of 1.

また、スランプ70−の値は、第1図に示すように、ま
ず、鉄板1の上にスランプ試験用のスランプコーン2を
置いて、この中に上記超高流動化コンクリート3を上端
まで充填した後、上記スランプコーン2を静かに鉛直に
引き上げ、その時に超高流動化コンクリート3が鉄板1
上に広がった広がり直径の最大値と見られる所および、
その直角方向の2笛所を測り、平均値をスランプ70−
値とする。
In addition, the value of slump 70- is calculated by first placing a slump cone 2 for the slump test on the iron plate 1 and filling it with the ultra-highly fluidized concrete 3 up to the upper end, as shown in Fig. 1. After that, the slump cone 2 is gently pulled up vertically, and at that time, the ultra-highly fluidized concrete 3 is attached to the steel plate 1.
The point that appears to be the maximum value of the spreading diameter that spreads upward, and
Measure the two whistle stations in the perpendicular direction, and calculate the average value with a slump of 70-
value.

さらに、上記充填性の値については、第2図(A)に示
すように、仕切板4で仕切ったボックス5の片側の第1
室6に超高流動化コンクリート7を底板8から40c驕
の高さまで充填し、その後、仕切板4を上方へ引き上げ
て、第2図(B)に示すように、底板8から12cmの
高さ位置に停止させ、超高流動化コンクリート7が第1
室6から第2室9へ流動し、第2室9に充填された時の
第1室と第2室の超高流動化コンクリート7の高さの差
Hをもって、充填性の値とする。
Furthermore, regarding the above-mentioned filling property value, as shown in FIG. 2(A), the first
The chamber 6 is filled with ultra-highly fluidized concrete 7 to a height of 40 cm from the bottom plate 8, and then the partition plate 4 is pulled upward to a height of 12 cm from the bottom plate 8, as shown in Fig. 2 (B). The ultra-highly fluidized concrete 7 is stopped at the first position.
When the concrete flows from the chamber 6 to the second chamber 9 and the second chamber 9 is filled, the difference H between the heights of the ultra-highly fluidized concrete 7 in the first chamber and the second chamber is taken as the filling property value.

さらにまた、超高流動化コンクリートの強度特性につい
ては、tItJ3図(A)に示すような、柱状の実大構
造物10内に比較のためのベースコンクリート11を打
設すると共に、第3図(B)に示すような、同様の柱状
実大構造物12内に本発明の超高流動化コンクリート1
3を打設する。
Furthermore, regarding the strength characteristics of ultra-highly fluidized concrete, base concrete 11 for comparison was placed inside a full-sized columnar structure 10 as shown in Figure 3 (A), and The ultra-highly fluidized concrete 1 of the present invention is placed in a similar full-sized columnar structure 12 as shown in B).
3.

打設方法としでは、第3図(A)のベースコンクリート
11の場合には、INを50cuずつ打ちなから高周波
枠パイブレークー3台により締め固め、1層毎に20秒
間実施した。
As for the pouring method, in the case of the base concrete 11 shown in FIG. 3(A), IN was poured at a rate of 50 cu and compacted using three high-frequency frame pie breakers for 20 seconds for each layer.

第3図(B)に示す超高流動化コンクリート13の場合
には、コンクリートを締め固め作業なしで、連続的に打
設した。
In the case of the ultra-highly fluidized concrete 13 shown in FIG. 3(B), the concrete was poured continuously without any compaction work.

その結果は、第4図に示すように、いずれの高さにおい
ても強度はほぼ同じであり、本発明の超高流動化コンク
リートは、ベースコンクリートに比べで、強度が低下す
ることはないことが判った6尚、本発明の超高流動化コ
ンクリートの用途としては、RC中高層住宅、20桁、
中空スラブ等の部材厚が薄くて配筋密度の高い経済設計
の構造物や、中空部のある壁、打込高さの高い杭、連続
壁、水中構造物、RTライニング等の締め固め困難な構
造物や、鉄筋の代わりに錆の発生の心配がなくてかぶり
厚さを少なくすることのできる繊維間隔の狭い長繊維を
使った構造物等がある。
As shown in Fig. 4, the strength is almost the same at all heights, indicating that the strength of the ultra-highly fluidized concrete of the present invention does not decrease compared to the base concrete. 6 In addition, the applications of the ultra-highly fluidized concrete of the present invention include RC mid-to-high-rise housing, 20-digit,
Economically designed structures with thin members such as hollow slabs and high reinforcement density, walls with hollow parts, piles with high driving height, continuous walls, underwater structures, RT linings, etc. that are difficult to compact. There are structures and structures that use long fibers with narrow fiber spacing, which can reduce the cover thickness without worrying about rust formation, instead of reinforcing bars.

ハ0発明の効果 (1)バイブレータ−等による締め固め作業が不要にな
るので、施工が合理化・省力化されて、工費が安価にな
る。
Effects of the Invention (1) Since compaction work using a vibrator or the like is not required, construction is streamlined and labor-saving, resulting in lower construction costs.

(2)材料分離がないので、ジャンカや砂肌等が発生す
ることがなく、高強度を保つことができる。
(2) Since there is no material separation, there is no occurrence of jitters or sandy surfaces, and high strength can be maintained.

(3)流動性・充填性が良いので、複雑な形状の型枠内
や密な配筋内への充填が容易である。
(3) Good fluidity and filling properties make it easy to fill molds with complex shapes or dense reinforcement.

(4)スランプの経時変化が少なく、品質管理が容易で
ある。
(4) There is little change in slump over time, and quality control is easy.

(5)現場での人為的ミスによる欠陥、交通事情による
品質の低下やバラツキ等が少なくなり、耐久性・信頼性
の高いコンクリートが施工できる。
(5) Defects caused by human error on site, deterioration in quality and variations due to traffic conditions are reduced, and highly durable and reliable concrete can be constructed.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はスランプ70−試験の説明図、P142図(A
)CB)は充填性試験の説明図、第3図(A)(B)は
強度試験の説明図、第4図は柱状構造物の高さによる強
度変化の比較を示すグラフである。 1・・・鉄板、2・・・スランプコーン、3・・・超高
流動化コンクリーと、4・・・仕切板、5・・・ボック
ス、6・・・第1室、−7・・・超高流動化コンクリー
と、8・・・底板、9・・・第2室、10−・・柱状実
大構造物、11・・・ベースコンクリーと、12・・・
柱状実大構造物、13・・・超高流動化コンクリート。
Figure 1 is an explanatory diagram of the slump 70 test, Figure P142 (A
) CB) is an explanatory diagram of the filling test, FIGS. 3(A) and 3(B) are explanatory diagrams of the strength test, and FIG. 4 is a graph showing a comparison of strength changes depending on the height of the columnar structure. DESCRIPTION OF SYMBOLS 1... Iron plate, 2... Slump cone, 3... Ultra-high fluidization concrete, 4... Partition plate, 5... Box, 6... First chamber, -7... Ultra-high fluidization concrete, 8--bottom plate, 9--second chamber, 10--column full-size structure, 11--base concrete, 12--
Columnar full-size structure, 13...Ultra-high fluidization concrete.

Claims (4)

【特許請求の範囲】[Claims] (1)生コンプラントのミキサーにセメントと、骨材と
、エチルヒドロキシエチルセルロースやセビオライトま
たはポリエチレンオキサイドから成る分離低減剤と、S
Nデフォーマー14HPから成る消泡剤とを投入し、ミ
キサーの性能に応じて充分混合し、その後、水と、ポリ
オール複合体、リグニンスルホン酸化合物、オキシカル
ボン酸塩、高縮合トリアジン系化合物、メラミンスルホ
ン酸塩系化合物等から成る減水剤または流動化剤を添加
して混練することを特徴とする超高流動化コンクリート
の製造方法。
(1) Add cement, aggregate, and a separation reducing agent consisting of ethyl hydroxyethyl cellulose, Seviolite, or polyethylene oxide to a mixer for fresh compost;
A defoaming agent consisting of N Deformer 14HP is added and mixed thoroughly according to the performance of the mixer, and then water, a polyol complex, a lignin sulfonic acid compound, an oxycarboxylic acid salt, a highly condensed triazine compound, and a melamine sulfone are added. A method for producing ultra-highly fluidized concrete, which comprises adding and kneading a water reducing agent or a fluidizing agent consisting of an acid-based compound or the like.
(2)練り上がった標準配合のコンクリートに、エチル
ヒドロキシエチルセルロースやセビオライトまたはポリ
エチレンオキサイドから成る分離低減剤と、SNデフォ
ーマー14HPから成る消泡剤と、ポリオール複合体、
リグニンスルホン酸化合物、オキシカルボン酸塩、高縮
合トリアジン系化合物、メラミンスルホン酸塩系化合物
等から成る減水剤または流動化剤と、をプラントミキサ
ーに添加して再度混練することを特徴とする超高流動化
コンクリートの製造方法。
(2) A separation reducing agent made of ethyl hydroxyethyl cellulose, Seviolite or polyethylene oxide, an antifoaming agent made of SN Deformer 14HP, and a polyol composite are added to the kneaded standard mix concrete,
A water reducing agent or a fluidizing agent consisting of a lignin sulfonic acid compound, an oxycarboxylic acid salt, a highly condensed triazine compound, a melamine sulfonate compound, etc. is added to a plant mixer and kneaded again. Method for producing fluidized concrete.
(3)ミキサー車に荷降しされた標準配合のコンクリー
トに現場到着後、エチルヒドロキシエチルセルロースや
セビオライトまたはポリエチレンオキサイドから成る分
離低減剤と、SNデフォーマー14HPから成る消泡剤
と、ポリオール複合体、リグニンスルホン酸化合物、オ
キシカルボン酸塩、高縮合トリアジン系化合物、メラミ
ンスルホン酸塩系化合物等の減水剤または流動化剤と、
を添加してミキサー車で混練することを特徴とする超高
流動化コンクリートの製造方法。
(3) After arriving at the site, the standard mixture concrete unloaded into a mixer truck is treated with a separation reducing agent consisting of ethyl hydroxyethyl cellulose, Seviolite, or polyethylene oxide, an antifoaming agent consisting of SN Deformer 14HP, a polyol complex, and lignin. A water reducing agent or fluidizing agent such as a sulfonic acid compound, an oxycarboxylate, a highly condensed triazine compound, a melamine sulfonate compound,
A method for producing ultra-highly fluidized concrete, which is characterized by adding and kneading it in a mixer truck.
(4)ポリオール複合体、リグニンスルホン酸化合物、
オキシカルボン酸塩、高縮合トリアジン系化合物、メラ
ミンスルホン酸塩系化合物等の全減水剤量の一部を予め
添加して、スランプを20〜25cmの間にプラントミ
キサーで調整したコンクリートに現場到着後、エチルヒ
ドロキシエチルセルロースやセビオライトやポリエチレ
ンオキサイドの分離低減剤と、SNデフォーマー14H
Pから成る消泡剤と、残りの減水剤または流動化剤と、
を添加してミキサー車で混練することを特徴とする超高
流動化コンクリートの製造方法。
(4) polyol complex, lignin sulfonic acid compound,
After arriving at the site, a portion of the total amount of water reducing agent such as oxycarboxylate, highly condensed triazine compound, melamine sulfonate compound, etc. is added in advance, and the slump is adjusted to 20 to 25 cm using a plant mixer. , ethyl hydroxyethyl cellulose, Seviolite, polyethylene oxide separation reducing agent, and SN Deformer 14H
An antifoaming agent consisting of P, the remaining water reducing agent or fluidizing agent,
A method for producing ultra-highly fluidized concrete, which is characterized by adding and kneading it in a mixer truck.
JP62320991A 1987-12-18 1987-12-18 Manufacturing method of ultra-high fluidity concrete Expired - Lifetime JP2602438B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62320991A JP2602438B2 (en) 1987-12-18 1987-12-18 Manufacturing method of ultra-high fluidity concrete

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62320991A JP2602438B2 (en) 1987-12-18 1987-12-18 Manufacturing method of ultra-high fluidity concrete

Publications (2)

Publication Number Publication Date
JPH01160853A true JPH01160853A (en) 1989-06-23
JP2602438B2 JP2602438B2 (en) 1997-04-23

Family

ID=18127563

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62320991A Expired - Lifetime JP2602438B2 (en) 1987-12-18 1987-12-18 Manufacturing method of ultra-high fluidity concrete

Country Status (1)

Country Link
JP (1) JP2602438B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106630742A (en) * 2016-12-21 2017-05-10 柳州市昌泉贸易有限公司 Foaming agent for mining filling and preparation method of foaming agent

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141448A (en) * 1983-01-28 1984-08-14 信越化学工業株式会社 Aid for spray working
JPS59227754A (en) * 1983-06-06 1984-12-21 三井化学株式会社 Low shrinkage self leveling material

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59141448A (en) * 1983-01-28 1984-08-14 信越化学工業株式会社 Aid for spray working
JPS59227754A (en) * 1983-06-06 1984-12-21 三井化学株式会社 Low shrinkage self leveling material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106630742A (en) * 2016-12-21 2017-05-10 柳州市昌泉贸易有限公司 Foaming agent for mining filling and preparation method of foaming agent

Also Published As

Publication number Publication date
JP2602438B2 (en) 1997-04-23

Similar Documents

Publication Publication Date Title
CN104402337A (en) Preparation and application of dry-mixed mortar for plate-type ballastless track self-compacting concrete
CN110183127A (en) Super high strength lightweight aggregate of a kind of self-control low defect and its preparation method and application
CN102643057B (en) Construction method of EPS (expanded polystyrene) light aggregate concrete thermal insulation building mould
CN107500648A (en) A kind of high intensity RPC and preparation method thereof
JP2007119257A (en) Method for producing high-strength concrete material and high-strength hardened body
CN102674759A (en) EPS (Expandable Polystyrene) light aggregate concrete thermal insulation hollow block and construction method thereof
JPH0345544A (en) Concrete blend composition
CN108774044A (en) PC member reinforcing steel bar slurry anchor connection grouting materials based on phosphorus magnesium material and construction method
CN110937867A (en) Lightweight ceramsite concrete and preparation method thereof
JPH01160853A (en) Production of extremely highly fluidized concrete
JPH01160852A (en) Extremely highly fluidized concrete
CN108726942A (en) A kind of air-mixed concrete pieces and preparation method thereof
JPH06219809A (en) Production of self-packing concrete
Chen et al. Concurrent paste replacement and aggregate replacement strategy for producing eco-efficient and low-carbon concrete
CN109180099A (en) It is a kind of for pouring the concrete material, additive and application method of pier stud
JP3215733B2 (en) Method for producing concrete or mortar molding
JP2824986B2 (en) Super workable concrete
CN114804742B (en) Recycled aggregate concrete and preparation method and use method thereof
CN109626916A (en) The dedicated self-compacting concrete of subway unballasted track bed course and its preparation and application
JPH0760742A (en) Method of mixing and designing compaction-free concrete to be air placed
JP3103195B2 (en) Concrete composition
JPH02267145A (en) Carbon fiber-reinforced cement mortar
JP6602228B2 (en) Method for producing concrete for slip foam method and slip foam method
JPH06219803A (en) Production of concrete product
JP3228803B2 (en) Admixture for concrete

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

EXPY Cancellation because of completion of term