JPH02267145A - Carbon fiber-reinforced cement mortar - Google Patents
Carbon fiber-reinforced cement mortarInfo
- Publication number
- JPH02267145A JPH02267145A JP8767989A JP8767989A JPH02267145A JP H02267145 A JPH02267145 A JP H02267145A JP 8767989 A JP8767989 A JP 8767989A JP 8767989 A JP8767989 A JP 8767989A JP H02267145 A JPH02267145 A JP H02267145A
- Authority
- JP
- Japan
- Prior art keywords
- cement
- carbon fiber
- water
- aggregate
- reducing agent
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 239000011083 cement mortar Substances 0.000 title claims abstract description 20
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical compound [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 title claims abstract description 12
- 229910052799 carbon Inorganic materials 0.000 title claims abstract description 12
- 229920000049 Carbon (fiber) Polymers 0.000 claims abstract description 32
- 239000004917 carbon fiber Substances 0.000 claims abstract description 32
- 239000004568 cement Substances 0.000 claims abstract description 31
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 claims abstract description 24
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 23
- 239000003638 chemical reducing agent Substances 0.000 claims abstract description 15
- -1 triazine compound Chemical class 0.000 claims abstract description 7
- 238000002156 mixing Methods 0.000 claims description 5
- 239000012190 activator Substances 0.000 claims 1
- 239000004570 mortar (masonry) Substances 0.000 abstract description 6
- 239000000203 mixture Substances 0.000 abstract description 4
- 239000002736 nonionic surfactant Substances 0.000 abstract description 4
- 239000000835 fiber Substances 0.000 abstract description 2
- 239000000463 material Substances 0.000 abstract description 2
- 238000002844 melting Methods 0.000 abstract description 2
- 238000013329 compounding Methods 0.000 abstract 1
- 238000012360 testing method Methods 0.000 description 11
- 239000004567 concrete Substances 0.000 description 9
- 230000007423 decrease Effects 0.000 description 9
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N Silicium dioxide Chemical compound O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 description 6
- 230000000052 comparative effect Effects 0.000 description 6
- 230000000694 effects Effects 0.000 description 5
- 238000005452 bending Methods 0.000 description 4
- 230000008014 freezing Effects 0.000 description 4
- 238000007710 freezing Methods 0.000 description 4
- 238000010257 thawing Methods 0.000 description 4
- 238000000034 method Methods 0.000 description 3
- 238000011056 performance test Methods 0.000 description 3
- 210000000988 bone and bone Anatomy 0.000 description 2
- 239000003795 chemical substances by application Substances 0.000 description 2
- 238000010276 construction Methods 0.000 description 2
- 238000011156 evaluation Methods 0.000 description 2
- 210000003127 knee Anatomy 0.000 description 2
- 239000002994 raw material Substances 0.000 description 2
- 239000004576 sand Substances 0.000 description 2
- 239000000377 silicon dioxide Substances 0.000 description 2
- 238000010998 test method Methods 0.000 description 2
- JNYAEWCLZODPBN-JGWLITMVSA-N (2r,3r,4s)-2-[(1r)-1,2-dihydroxyethyl]oxolane-3,4-diol Chemical compound OC[C@@H](O)[C@H]1OC[C@H](O)[C@H]1O JNYAEWCLZODPBN-JGWLITMVSA-N 0.000 description 1
- UKUVVAMSXXBMRX-UHFFFAOYSA-N 2,4,5-trithia-1,3-diarsabicyclo[1.1.1]pentane Chemical compound S1[As]2S[As]1S2 UKUVVAMSXXBMRX-UHFFFAOYSA-N 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- DGAQECJNVWCQMB-PUAWFVPOSA-M Ilexoside XXIX Chemical compound C[C@@H]1CC[C@@]2(CC[C@@]3(C(=CC[C@H]4[C@]3(CC[C@@H]5[C@@]4(CC[C@@H](C5(C)C)OS(=O)(=O)[O-])C)C)[C@@H]2[C@]1(C)O)C)C(=O)O[C@H]6[C@@H]([C@H]([C@@H]([C@H](O6)CO)O)O)O.[Na+] DGAQECJNVWCQMB-PUAWFVPOSA-M 0.000 description 1
- 239000004640 Melamine resin Substances 0.000 description 1
- 229920000877 Melamine resin Polymers 0.000 description 1
- 229920003171 Poly (ethylene oxide) Polymers 0.000 description 1
- 239000004372 Polyvinyl alcohol Substances 0.000 description 1
- 239000011398 Portland cement Substances 0.000 description 1
- 241000975357 Salangichthys microdon Species 0.000 description 1
- 239000002253 acid Substances 0.000 description 1
- PNEYBMLMFCGWSK-UHFFFAOYSA-N aluminium oxide Inorganic materials [O-2].[O-2].[O-2].[Al+3].[Al+3] PNEYBMLMFCGWSK-UHFFFAOYSA-N 0.000 description 1
- 239000011400 blast furnace cement Substances 0.000 description 1
- 229920002678 cellulose Polymers 0.000 description 1
- 239000001913 cellulose Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 239000011294 coal tar pitch Substances 0.000 description 1
- 239000004035 construction material Substances 0.000 description 1
- 238000011109 contamination Methods 0.000 description 1
- 230000003111 delayed effect Effects 0.000 description 1
- 230000006866 deterioration Effects 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000001035 drying Methods 0.000 description 1
- 150000002148 esters Chemical class 0.000 description 1
- 239000010881 fly ash Substances 0.000 description 1
- 239000011381 foam concrete Substances 0.000 description 1
- 238000009472 formulation Methods 0.000 description 1
- 238000004898 kneading Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000011159 matrix material Substances 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000008018 melting Effects 0.000 description 1
- 238000000465 moulding Methods 0.000 description 1
- 239000002245 particle Substances 0.000 description 1
- 239000011301 petroleum pitch Substances 0.000 description 1
- 229920002239 polyacrylonitrile Polymers 0.000 description 1
- 229920002451 polyvinyl alcohol Polymers 0.000 description 1
- 238000002360 preparation method Methods 0.000 description 1
- 238000012545 processing Methods 0.000 description 1
- 230000000979 retarding effect Effects 0.000 description 1
- 229910052708 sodium Inorganic materials 0.000 description 1
- 239000011734 sodium Substances 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000004575 stone Substances 0.000 description 1
- BDHFUVZGWQCTTF-UHFFFAOYSA-M sulfonate Chemical compound [O-]S(=O)=O BDHFUVZGWQCTTF-UHFFFAOYSA-M 0.000 description 1
- 239000004094 surface-active agent Substances 0.000 description 1
- 150000003918 triazines Chemical class 0.000 description 1
Landscapes
- Curing Cements, Concrete, And Artificial Stone (AREA)
Abstract
Description
【発明の詳細な説明】
(産業上の利用分野)
本発明は、ビル等の建物のカーテンウオール、手摺、バ
ルコニー、庇等の高凍結融解性能及び、十分な曲げ強度
を必要とする建設用材料として、使用される炭素繊維補
強セメントモルタルに関するものである。Detailed Description of the Invention (Field of Industrial Application) The present invention is applicable to construction materials that require high freeze-thaw performance and sufficient bending strength, such as curtain walls, handrails, balconies, and eaves of buildings. The invention relates to carbon fiber reinforced cement mortar used as a carbon fiber reinforced cement mortar.
(従来の技術)
近年、高層ビル等に軽量化、ひび割れ防止等を目的とし
た炭素繊維補強セメントモルタルによるプレキャスト板
がカーテンウオールの様な外装材として使用され始めて
いる。ところで、この種の炭素繊維補強セメントモルタ
ルを用いた外装部材は、高温・高圧の蒸気養生(オート
クレーブ養生)を行なうことにより、乾燥収縮低減防止
、凍結融解性能等の向上をはかっている。(Prior Art) In recent years, precast boards made of carbon fiber-reinforced cement mortar have begun to be used as exterior materials such as curtain walls for high-rise buildings and the like to reduce weight and prevent cracks. By the way, exterior members using this type of carbon fiber-reinforced cement mortar are subjected to high-temperature, high-pressure steam curing (autoclave curing) to prevent drying shrinkage and improve freeze-thaw performance.
又、一般のコンクリ−1・では、コンクリート内部の空
気量を7〜6%含有する事で、良好な凍結融解性能が得
られることは、よく知られている。Furthermore, it is well known that good freezing and thawing performance can be obtained by containing 7 to 6% air in the concrete in general concrete.
(発明が解決しようとする課題)
前述のオートクレーブ処理による場合、製造コストカ割
高でありかつ一般的なオートクレー処理装置ではサイズ
に限度があるので炭素繊維補強セメントモルタルの製品
サイズが限定されるという不都合があった。(Problems to be Solved by the Invention) When using the autoclave treatment described above, the production cost is relatively high, and the size of the carbon fiber reinforced cement mortar is limited because the size is limited by a general autoclave processing device. was there.
また、一般のコンクリートでは、空気連行剤であるAE
剤あるいは、界面活性効果と空気連行による流動性向上
により、単位水量を減するA、 E減水剤の混和如より
、コンクリート内部に+−A%の空気を含有させ凍結融
解性能を得て(・るが、凍結融解性能の発揮には大きな
気泡より微細な気泡、−船釣には径が700−.2θO
μ以下の気泡が有効とされている。ところで、炭素繊維
補強セメントモルタルの場合は混線の際に内部に巻き込
まれた空気は炭素繊維の効果により、拘束され、比較的
大きな気泡として存在するので単KAE剤を投入しても
微細な気泡は炭素繊維補強セメントモルタル内に生じな
い。In addition, in general concrete, AE, which is an air entraining agent,
By incorporating water reducing agents A and E, which reduce the unit amount of water by improving fluidity through surfactant effects and air entrainment, +-A% air can be contained inside the concrete to obtain freeze-thaw performance (・However, fine bubbles are more effective than large bubbles for freeze-thaw performance, and for boat fishing the diameter is 700-.2θO.
Bubbles smaller than μ are considered effective. By the way, in the case of carbon fiber-reinforced cement mortar, the air that is drawn into the interior during crosstalk is restrained by the effect of the carbon fibers and exists as relatively large bubbles, so even if a single KAE agent is added, fine bubbles will not be generated. Does not occur in carbon fiber reinforced cement mortar.
そのため眞、良好な凍結融解性能が得られないという課
題があった。発明者らはこれらの課題を解決しオートク
レーブ未処理で、外装部材として要求される凍結融解性
能を満足する炭素繊維補強セメントモルタルを得るべく
鋭意検討を重ね本発明を完成した。Therefore, there was a problem that good freezing and thawing performance could not be obtained. The inventors have completed the present invention through intensive studies to solve these problems and obtain a carbon fiber-reinforced cement mortar that is not subjected to autoclave treatment and satisfies the freeze-thaw performance required for exterior members.
(課題を解決するための手段)
本発明の前記の目的は、短繊維の炭素繊維を含有量が全
体に対する体積百分率で/〜り(%)、好マしくは/〜
3(%)混入し、対セメント重量百分率でセメント/水
(W/C) −j O〜A O(%)、好ましくはW/
C= s 2〜汐/l(%)、及び骨相の中ニジラスバ
ルーンを含有し、減水剤として高縮合トリアジン系化合
物を対セメント重量百分率で4.t〜/(%)、AE減
水剤として非イオン系界面活性剤を対セメント重量百分
率で、0.002〜o、ooq(%)の配合を有する炭
素繊維強化セメントにより達成することができる。すな
わち本発明は、上記の様な配合を有しかつ一般のモルタ
ルミキサー又はコンクリ−トミキザで製造される炭素繊
維強化セメントモルタル製品がその特性と耐久性を維持
することを見出したものである。(Means for Solving the Problems) The above-mentioned object of the present invention is that the content of short carbon fibers is /~ (%) by volume of the whole, preferably /~
3 (%) mixed, cement/water (W/C) -j O~A O (%), preferably W/
C = s 2~shio/l (%), and contains Nijirus balloon in the bone phase, and contains a highly condensed triazine compound as a water reducing agent at a weight percentage of 4. This can be achieved by carbon fiber reinforced cement containing a nonionic surfactant as an AE water reducing agent in a weight percentage of 0.002 to 0.000000000000000000000 (%). That is, the present invention has discovered that a carbon fiber-reinforced cement mortar product having the above-mentioned formulation and manufactured using a general mortar mixer or concrete mixer maintains its characteristics and durability.
以下て本発明の詳細な説明する。The present invention will be described in detail below.
まず、本発明において、セメントとしては、たとえばポ
ルトランドセメント、高炉セメント、アルミナセメント
等が用いられる。この場合、水/セメント重量百分率(
W/C)は、Sθ〜乙0(%)から選ばれるが、SO(
%)未満では混線時固い炭素繊維強化セメントとなり施
工が困難となり、乙0(%)超では、強度及び、凍結融
解性能が低下するためである。First, in the present invention, as the cement, for example, Portland cement, blast furnace cement, alumina cement, etc. are used. In this case, the water/cement weight percentage (
W/C) is selected from Sθ~Otsu0 (%), but SO(
This is because if it is less than 0 (%), the carbon fiber reinforced cement will be hard when crossed, making construction difficult, and if it exceeds 0 (%), the strength and freeze-thaw performance will decrease.
骨材としては、砂、ケイ砂、砂利、砕石、フライアッシ
ュ超微粉シリカ等、及びシラスバルーンが挙げられる。Examples of the aggregate include sand, silica sand, gravel, crushed stone, fly ash, ultrafine silica, and whitebait balloons.
骨42/セメント重量百分率は、AO(%)〜100(
%)である。混入量が乙O(%)未満、及び100(%
)超では、炭素繊維が均一に分散せず強度が低下するた
めである。Bone 42/cement weight percentage is AO (%) ~ 100 (
%). The amount of contamination is less than O (%) and 100 (%)
), the carbon fibers are not uniformly dispersed and the strength decreases.
骨材の中にシラスバルーンを混入させるのは、炭素繊維
強化セメントの軽量化の為と、粒径の小さい(SOμ程
度)シラスバルーン如より炭素繊維をセメントマトリッ
クス中に均一分散させるためである。シラスバルーンの
混入量は骨材中に、20〜.to(wt%)である。混
入量が1.20(%)未満では、炭素繊維が均一に分散
せず強度が低下し、かつ炭素繊維強化セメントの軽量化
が達成できない。一方、SO(%)超では、シラスバル
ーンの保水性により、混練時固い炭素繊維セメントとな
り、施工が困難となる。The reason why shirasu balloons are mixed into the aggregate is to reduce the weight of the carbon fiber-reinforced cement and to uniformly disperse carbon fibers in the cement matrix using shirasu balloons with a small particle size (about SOμ). The amount of shirasu balloons mixed into the aggregate is 20~. to (wt%). If the mixing amount is less than 1.20 (%), the carbon fibers will not be uniformly dispersed and the strength will decrease, and the weight of the carbon fiber reinforced cement cannot be reduced. On the other hand, if the SO (%) exceeds the water retention property of the Shirasu balloon, the carbon fiber cement becomes hard during kneading, making construction difficult.
また、本発明で用いる炭素繊維としては公知の炭素繊維
であれば、特に限定されることなく使用でき、例えばコ
ールタールピッチ、石油系ピッチ、石炭液化物、ポリア
クリロニトリル、セルロース、ポリビニルアルコール等
を原料とした炭素繊維を用いることができる。Further, the carbon fiber used in the present invention can be used without any particular limitation as long as it is a known carbon fiber. For example, coal tar pitch, petroleum pitch, liquefied coal, polyacrylonitrile, cellulose, polyvinyl alcohol, etc. can be used as raw materials. It is possible to use carbon fiber with a
これらの炭素繊維は、短繊維で用いられ、糸長さが通常
/〜/ o o (+++m)程度のものが好適である
。These carbon fibers are used in the form of short fibers, and those having a yarn length of usually about /~/o o (+++m) are suitable.
本発明においては、これらの短繊維状炭素繊維の含有量
を全体に対する体積比で/〜7(%)の範囲で用いられ
る。/(%)未満では必要強度が得られず、7(%)超
では、一般のモルタルミキサー及びコンクリートミキサ
ーでは炭素繊維がセメント中洗均−分散せず強度低下を
引き起こすためである。In the present invention, the content of these short carbon fibers is used in a volume ratio of / to 7 (%) with respect to the whole. If it is less than / (%), the required strength cannot be obtained, and if it exceeds 7 (%), carbon fibers will not be leveled and dispersed in cement in general mortar mixers and concrete mixers, resulting in a decrease in strength.
さらに、本発明においては、減水剤として高縮合トリア
ジン系化合物、AE減水剤として非イオン系界面活性剤
が用いられる。Further, in the present invention, a highly condensed triazine compound is used as a water reducing agent, and a nonionic surfactant is used as an AE water reducing agent.
高縮合トリアジン系化合物としては、例えばメラミン樹
脂スルホン酸ソーダ、非イオン系界面活性剤としては、
例えばポリオギシエチレンアルキルアリルエーテル、高
級アルコール縮合物、ソルビタン−モノ脂肪酸エステル
等が誉げられる。Examples of highly condensed triazine compounds include melamine resin sodium sulfonate, and nonionic surfactants such as
Examples include polyoxyethylene alkyl allyl ether, higher alcohol condensates, sorbitan monofatty acid esters, and the like.
減水剤は、対セメント重量百分率で0.S〜/(%)の
範囲で選ばれ、0.S(%)未満では減水効果が得られ
ず強度低下及び凍結融解性能低下がある。また、/(%
)超では減水剤の遅延効果により炭素繊維強化セメント
の固化が遅れる。The water reducing agent has a weight percentage of 0.0% relative to cement. Selected in the range of S~/(%), 0. If it is less than S (%), no water reduction effect can be obtained, resulting in a decrease in strength and a decrease in freeze-thaw performance. Also,/(%
), the solidification of carbon fiber reinforced cement is delayed due to the retarding effect of the water reducing agent.
AE減水剤は対セメント重量百分率で0.00.2〜0
.θ09(%)の範囲から選ばれ、0.002(%)未
満では炭素繊維強化セメント中に適切な空気量が確保で
きないため、凍結融解性能が低下し、0.009(%)
超では炭素繊維強化セメント中に過剰にAirが混入し
、強度低下、凍結融解性能低下が起こる。AE water reducing agent has a weight percentage of 0.00.2 to 0 relative to cement.
.. Selected from the range of θ09 (%), if it is less than 0.002 (%), an appropriate amount of air cannot be secured in the carbon fiber reinforced cement, resulting in a decrease in freeze-thaw performance, and 0.009 (%)
If the carbon fiber reinforced cement exceeds 100%, air will be mixed into the carbon fiber reinforced cement in excess, resulting in a decrease in strength and a decrease in freeze-thaw performance.
本発明知従い、前記の割合に配合される配合物は、常法
により、一般のモルタルミキザコンクリートミキサーで
混合及び混練され、炭素繊維強化セメントモルタルが製
造されろ。According to the present invention, the composition blended in the above proportions is mixed and kneaded in a common mortar mixer concrete mixer in a conventional manner to produce carbon fiber reinforced cement mortar.
(実施例9 以下、実施例により本発明を更に詳細に説明する。(Example 9 Hereinafter, the present invention will be explained in more detail with reference to Examples.
実施例/
(1)試験体の作製
第1表の配合割合の各原料をモルタルミキサーで混練し
、得られた混線物を幅/ 0 (CrrL)、厚さ/
0 (Cm)、長さtlO(cr/L)の直方体に成形
した後、水中養生を/グ日間行った。Examples / (1) Preparation of test specimen Each raw material with the mixing ratio shown in Table 1 is kneaded with a mortar mixer, and the resulting mixed wire is mixed with width / 0 (CrrL) and thickness /
After molding into a rectangular parallelepiped with a length of 0 (Cm) and a length of tlO (cr/L), it was cured in water for /g days.
(2) 凍結融解性能試験法
凍結融解性能試験は、ASTM CA 64 B法(気
中凍結水中融解法)に準じて下記の様に行った。(2) Freeze-thaw performance test method The freeze-thaw performance test was conducted as follows according to the ASTM CA 64 B method (air-freeze-in-water thaw method).
凍結融解試験機(■マルイ製” M I T −/Ag
、2−A、、?型″)に前記試験体を装着し、気中凍結
と水中融解とを順次繰り返すことにより試験体の中心温
度を−/ g (℃)±、2 (℃)(凍結)と+5(
℃)±−2(℃) (融解)との間を往復させるサイク
ルを、/サイクル当り3時間〜1時間を要して300サ
イクル行った。Freeze-thaw tester (Made by Marui) MIT-/Ag
,2-A,,? The test specimen was mounted on a mold ("), and by repeating freezing in air and thawing in water, the center temperature of the specimen was adjusted to -/g (°C) ±, 2 (°C) (freezing) and +5 (
℃)±-2(℃) (melting) was repeated for 300 cycles, taking 3 to 1 hour per cycle.
評価方法は、JISA//、27(共鳴振動によるコン
クリートの動弾性係数、動せん断連性係数及び動ポアソ
ン比試験方法)に準じて、たわみ振動の一次共鳴振動数
測定装置(■マルイ製゛″MIN−00/ −/−03
型″)により、凍結融解3θサイクル毎に試験体の一次
共鳴振動数fzを測定し、相対動弾性係数(fz/fo
)z×100(fO0凍結融解試験前の一次共鳴振動数
)にて評価を行った。The evaluation method was based on JISA//, 27 (Dynamic elastic modulus, dynamic shear continuity coefficient, and dynamic Poisson's ratio test method of concrete using resonance vibration), using a primary resonance frequency measurement device for flexural vibration (made by Marui). MIN-00/-/-03
The primary resonant frequency fz of the specimen was measured every freeze-thaw 3θ cycle, and the relative dynamic elastic modulus (fz/fo
) z×100 (fO0 primary resonance frequency before the freeze-thaw test).
得られた結果を第1図(−〇−)に示す。The obtained results are shown in Fig. 1 (-〇-).
なお、試験体数は3個で、評価は3個の平均値を用いた
。また、上記試験体の曲げ強度は/q o (kg7’
c+n2)であった。曲げ試験は、JISR&、i0/
(セメントの物理試験方法)如準じ、ミバエリス形曲げ
試験機により行った。The number of specimens tested was three, and the average value of the three specimens was used for evaluation. In addition, the bending strength of the above test specimen is /q o (kg7'
c+n2). The bending test is JISR &, i0/
(Physical test method for cement) The test was conducted using a Miberellis type bending tester.
比較例/〜λ
配合割合を第ス表蹟示すように変更する以外は実施例/
と同様にして試験体を作製し、実施例と同様に凍結融解
性能試験を行った。得られた試験結果を第1図に示す。Comparative example/~λ Example/except that the blending ratio was changed as shown in Table 1.
A test specimen was prepared in the same manner as above, and a freeze-thaw performance test was conducted in the same manner as in the example. The test results obtained are shown in FIG.
図から明らかなように、いずれも300サイクルて到る
前に破断した。As is clear from the figure, all of them broke before 300 cycles were completed.
第7図より明らかな様に、比較例/及びコ(本発明以外
の配合を有する炭素繊維補強セメントモルタル及び市販
のA、L、C,(軽量気泡コンクIJ −) ) )は
、それぞれ、凍結融解220サイクル、/クサイクルに
て試験体は破壊に到り、外装部材の凍結融解性能として
必要なASTM(C−6乙乙)規準、凍結融解300サ
イクル後、相対動弾性係数go(%)以上を満足できな
い(比較例/ニーロー、比較例、2ニー△これに対し、
本発明の炭素繊維補強セメントモルタルは、凍結融解3
00サイクル後も相対動弾性係数は100(%)であり
、凍結融解作用による試験体の劣化は見られず、極めて
良好な凍結融解性能を有する。As is clear from FIG. 7, Comparative Examples/and Co (carbon fiber-reinforced cement mortar having a composition other than the present invention and commercially available A, L, C, (lightweight cellular concrete IJ-)) were frozen, respectively. The test specimen was destroyed after 220 cycles of thawing, and the relative dynamic elastic modulus go (%) was determined according to the ASTM (C-6) standard required for the freeze-thaw performance of exterior members, after 300 cycles of freeze-thaw. The above cannot be satisfied (Comparative example/knee low, comparative example, 2 knee△On the other hand,
The carbon fiber reinforced cement mortar of the present invention has a freeze-thaw
Even after 00 cycles, the relative dynamic elastic modulus was 100 (%), and no deterioration of the specimen due to freeze-thaw action was observed, indicating extremely good freeze-thaw performance.
(発明の効果)
本発明の炭素繊維補強セメントモルタルは、特定の成分
を特定量配合するという簡単な操作により、通常のコン
クリート及びセメント製品と同等のあるいはそれ以上如
優れた凍結融解性能を有する。(Effects of the Invention) The carbon fiber-reinforced cement mortar of the present invention has freeze-thaw performance equivalent to or even better than ordinary concrete and cement products by a simple operation of blending specific components in specific amounts.
〕。].
グ
このことは、特に今後ますます軽量化と強靭性が要求さ
れる高層ビルのカーテンウオール等の外装部材用の炭素
繊維補強セメントモルタルの耐久性と長寿命化に資する
もののみならず、本発明による炭素繊維補強セメントモ
ルタルの広範囲の用途に有利に利用できる顕著な効果を
示すものである。This not only contributes to the durability and longevity of carbon fiber-reinforced cement mortar for exterior members such as curtain walls of high-rise buildings, where lighter weight and toughness will be increasingly required in the future, but also contributes to the present invention. This shows that the carbon fiber reinforced cement mortar has remarkable effects that can be advantageously used in a wide range of applications.
第1図は、実施例及び比較例における試1験体の凍結融
解試験結果をプロットした図である。
縦軸は相対動弾性係数、横軸は凍結融解サイクル数であ
る。図中、−〇−は実施例/、−ロー及び−△−はそれ
ぞれ比較例/及びコの結果を示す。FIG. 1 is a diagram plotting the freeze-thaw test results of one test specimen in Examples and Comparative Examples. The vertical axis is the relative dynamic elastic modulus, and the horizontal axis is the number of freeze-thaw cycles. In the figure, -〇- indicates the results of Example/, -Rho and -△- indicate the results of Comparative Example/ and C, respectively.
Claims (1)
E減水剤及び水を混合して得られる炭素繊維補強セメン
トモルタルに於いて、 (a)水/セメント重量百分率が50〜60%、 (b)骨材/セメント重量百分率が60〜100%、 (c)骨材中のシラスバルーンの配合量が20〜50w
t%、 (d)炭素繊維含量が全体の1〜7Vol%、 (e)減水剤として高縮合トリアジン系化合物をセメン
トの0.5〜1wt%、 (f)AE減水剤として、非イオン系界面活性剤をセメ
ントの0.002〜0.009wt%、配合したことを
特徴とする炭素繊維補強セメントモルタル。(1) Cement, aggregate, short carbon fiber, water reducing agent, A
E In the carbon fiber reinforced cement mortar obtained by mixing water reducing agent and water, (a) water/cement weight percentage is 50 to 60%, (b) aggregate/cement weight percentage is 60 to 100%, ( c) The amount of Shirasu balloons in the aggregate is 20 to 50w
t%, (d) Carbon fiber content is 1 to 7 vol% of the total, (e) 0.5 to 1 wt% of highly condensed triazine compound of cement as a water reducing agent, (f) Nonionic interface as an AE water reducing agent. A carbon fiber-reinforced cement mortar characterized in that an activator is blended in an amount of 0.002 to 0.009 wt% based on cement.
Priority Applications (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8767989A JPH02267145A (en) | 1989-04-06 | 1989-04-06 | Carbon fiber-reinforced cement mortar |
US07/480,768 US5062897A (en) | 1989-02-17 | 1990-02-16 | Carbon fiber-reinforced hydraulic composite material |
DE90103051T DE69000939T2 (en) | 1989-02-17 | 1990-02-16 | Carbon fiber reinforced hydraulic composite. |
EP90103051A EP0383348B1 (en) | 1989-02-17 | 1990-02-16 | Carbon fiber-reinforced hydraulic composite material |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP8767989A JPH02267145A (en) | 1989-04-06 | 1989-04-06 | Carbon fiber-reinforced cement mortar |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH02267145A true JPH02267145A (en) | 1990-10-31 |
Family
ID=13921623
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP8767989A Pending JPH02267145A (en) | 1989-02-17 | 1989-04-06 | Carbon fiber-reinforced cement mortar |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH02267145A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04219354A (en) * | 1990-11-13 | 1992-08-10 | Kazuji Fukunaga | Hardening of mortar and concrete |
JPH0648863A (en) * | 1992-07-24 | 1994-02-22 | Shimizu Corp | Glass fiber reinforced cement lightweight hardened body |
CN106746940A (en) * | 2016-11-10 | 2017-05-31 | 无锡市明盛强力风机有限公司 | A kind of method of the modified cement of waste tyre particle |
-
1989
- 1989-04-06 JP JP8767989A patent/JPH02267145A/en active Pending
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04219354A (en) * | 1990-11-13 | 1992-08-10 | Kazuji Fukunaga | Hardening of mortar and concrete |
JPH0648863A (en) * | 1992-07-24 | 1994-02-22 | Shimizu Corp | Glass fiber reinforced cement lightweight hardened body |
JPH0696473B2 (en) * | 1992-07-24 | 1994-11-30 | 清水建設株式会社 | Glass fiber reinforced cement lightweight cured product |
CN106746940A (en) * | 2016-11-10 | 2017-05-31 | 无锡市明盛强力风机有限公司 | A kind of method of the modified cement of waste tyre particle |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Leung et al. | Sorptivity of self-compacting concrete containing fly ash and silica fume | |
Folliard et al. | Properties of high-performance concrete containing shrinkage-reducing admixture | |
Shi et al. | Mixture proportioning and properties of self-consolidating lightweight concrete containing glass powder | |
Mousa et al. | Self-curing concrete types; water retention and durability | |
US9353008B2 (en) | Structural lightweight concrete or mortar, method for manufacturing same and use thereof as self-placing concrete | |
US4746364A (en) | Flowing concrete and process of producing the same | |
KR20040030525A (en) | Low density calcium silicate hydrate strength accelerant additive for cementitious products | |
RU2649996C1 (en) | Fine-grained concrete mixture | |
KR100873514B1 (en) | Binder for concrete having ultra high strength and a method for manufacturing concrete using the binder | |
Esen et al. | Investigation of the effect on the physical and mechanical properties of the dosage of additive in self-consolidating concrete | |
US20180290926A1 (en) | Concrete composition | |
Li et al. | Influence of silica flour–silica fume combination on the properties of high performance cementitious mixtures at ambient temperature curing | |
US4767461A (en) | Method for manufacturing concrete | |
Muthupriya et al. | Strength study on fiber reinforced self-compacting concrete with fly ash and GGBFS | |
Hunyak et al. | The effect of natural pozzolans on properties of vibropressed interlocking concrete blocks in different curing conditions | |
KR20030036392A (en) | Crack retardant mixture made from flyash and its application to concrete | |
KR20100024091A (en) | High-performance floor mortar composition using the plasticizer compound and manufacturing method thereof | |
JPH02267145A (en) | Carbon fiber-reinforced cement mortar | |
CN115321924A (en) | Durable self-compacting filling concrete material for underground structural engineering | |
Mohamed et al. | Properties of structural lightweight high strength self-compacting concrete | |
JP2567322B2 (en) | Highly Fillable Fresh Concrete for Cast-in-Place | |
JP3760630B2 (en) | Lightweight concrete composition and method for producing the same | |
KR101750831B1 (en) | Low viscosity-low heat generation binder and Low viscosity-low heat generation-high strength concrete composition using the same | |
Collepardi et al. | Properties of SCC and flowing concrete | |
Sahmenko et al. | Effect of various additives and aeration on the properties of lightweight concrete |