JPH01160056A - Manufacture of thin-film field-effect transistor - Google Patents

Manufacture of thin-film field-effect transistor

Info

Publication number
JPH01160056A
JPH01160056A JP31986487A JP31986487A JPH01160056A JP H01160056 A JPH01160056 A JP H01160056A JP 31986487 A JP31986487 A JP 31986487A JP 31986487 A JP31986487 A JP 31986487A JP H01160056 A JPH01160056 A JP H01160056A
Authority
JP
Japan
Prior art keywords
film
amorphous silicon
silicon layer
insulating film
etching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31986487A
Other languages
Japanese (ja)
Inventor
Osamu Tadokoro
田所 理
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31986487A priority Critical patent/JPH01160056A/en
Publication of JPH01160056A publication Critical patent/JPH01160056A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thin Film Transistor (AREA)

Abstract

PURPOSE:To reduce the stepped section of a gate electrode disposed onto the surface of an insulating film by removing a protruding section on all amorphous silicon layer appearing at a time when the insulating film coating the amorphous silicon layer on a drain electrode and a source electrode is formed through etching and smoothing the surface of the insulating film. CONSTITUTION:A film is shaped to a glass substrate 1 through a sputtering method from metal chromium, and machined to specified shapes through photolithographic-etching, thus forming a drain electrode 2 and a source electrode 3. A film is shaped through a plasma CVD method from an amorphous silicon film, and machined to a specified shape through photolithographic-etching, and an amorphous silicon layer 4 is formed onto the drain electrode 2 and the source electrode 3. A film is shaped through the sputtering method from a silicon oxide film, a resist is applied onto the film and patterned, and the protruding section of the surface of the silicon oxide film on the amorphous silicon layer 4 is etched to form a smooth section 10. A film is shaped through the sputtering method from metal chromium, and machined to a specified shape through photolithographic-etching, thus forming a gate electrode 6.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 本発明は、アクティブマトリクス液晶デイスプレィに用
いられる薄膜電界効果型トランジスタの製造方法に関し
、特にドレイン電極とソース電極とゲート電極の交差部
の構造に関する。
DETAILED DESCRIPTION OF THE INVENTION [Field of Industrial Application] The present invention relates to a method for manufacturing a thin film field effect transistor used in an active matrix liquid crystal display, and particularly relates to the structure of the intersection of a drain electrode, a source electrode, and a gate electrode. .

〔従来の技術〕[Conventional technology]

スパッタ法による金属膜や酸化シリコン膜の形成、及び
、プラズマCVD法による窒化シリコン膜や非晶質シリ
コン膜の形成が、ガラス基板上に容易にできることから
、これを用いた薄膜電界効果型トランジスタ(T P 
T)はアクティブマトリクス液晶デイスプレィ用として
、開発実用化が進められている。
Since metal films and silicon oxide films can be easily formed by sputtering, and silicon nitride films and amorphous silicon films can be formed by plasma CVD on glass substrates, thin-film field-effect transistors using these films ( T P
T) is being developed and put into practical use for active matrix liquid crystal displays.

第3図に従来のTPTの一例の断面図を示す。FIG. 3 shows a sectional view of an example of a conventional TPT.

図において、ガラス基板1の表面にドレイン電極2とソ
ース電極3が設けられ、このドレイン電極2とソース電
極3を接続する半導体の非晶質シリコン層4が堆積され
、この非晶質シリコン層4を覆う窒化シリコン等の絶縁
膜15が形成される。
In the figure, a drain electrode 2 and a source electrode 3 are provided on the surface of a glass substrate 1, and a semiconductor amorphous silicon layer 4 is deposited to connect the drain electrode 2 and source electrode 3. An insulating film 15 made of silicon nitride or the like is formed to cover.

更にその表面にゲート電極16が配置されている。Furthermore, a gate electrode 16 is arranged on the surface.

このTPT構造は、順スタガー構造と呼ばれるものであ
るが、線幅10〜15μmの線状ドレイン電極2とソー
ス電極3が最下層にあり、とのドレイン電極2とソース
電極3間の非晶質シリコン層4を覆って絶縁膜15があ
り、その絶縁膜15の表面に線幅10〜15μmの線状
ゲート電極16が、ドレイン電極2およびソース電極3
と交差するように配設されている。
This TPT structure is called a staggered structure, in which a linear drain electrode 2 and a source electrode 3 with a line width of 10 to 15 μm are located at the bottom layer, and an amorphous layer between the drain electrode 2 and the source electrode 3 is located at the bottom layer. There is an insulating film 15 covering the silicon layer 4, and a linear gate electrode 16 with a line width of 10 to 15 μm is formed on the surface of the insulating film 15, and a drain electrode 2 and a source electrode 3 are formed on the surface of the insulating film 15.
It is arranged to intersect with the

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このドレイン電極2とゲート電極16との交差部では、
ドレイン電極2およびソース電極3の膜厚1500人、
非晶質シリコン層4の膜厚3000人、絶縁膜15の膜
厚3000人の堆積によって最上層のゲート電極には段
差が生じる。この段差は、ゲート電極16を形成する時
、成膜不足や異常エツチング等によって段切れを起した
り、段切れを起さないまでも高抵抗となる欠点があった
At the intersection of this drain electrode 2 and gate electrode 16,
The film thickness of the drain electrode 2 and source electrode 3 is 1500 mm,
Due to the deposition of the amorphous silicon layer 4 with a thickness of 3,000 layers and the deposition of the insulating film 15 with a thickness of 3,000 layers, a step is created in the gate electrode of the uppermost layer. This step has the disadvantage that when forming the gate electrode 16, a step breakage may occur due to insufficient film formation or abnormal etching, or even if a step breakage does not occur, the resistance becomes high.

この結果、製作した液晶デイスプレィを表示させると、
線状欠陥や表示ムラが発生して、表示品位を著しく損っ
ていた。
As a result, when you display the manufactured liquid crystal display,
Linear defects and display unevenness occurred, significantly impairing display quality.

〔問題点を解決するための手段〕[Means for solving problems]

上述した従来のTPTの製造方法に対し、本発明は、ド
レイン電極およびソース電極上の非晶質シリコン層を覆
う絶縁膜を形成する時現出する非晶質シリコン層上の凸
部を、エツチングによって除去し、絶縁膜の表面を平滑
にすることで、絶縁膜の表面に配設するゲート電極の段
差を小さくすることが可能となり、また、外部配線との
コンタクトを信頼性の高いものとするためにドレイン電
極の膜厚を厚くしても、膜厚増分によって段差が大きく
なることはない。
In contrast to the conventional TPT manufacturing method described above, the present invention etches the protrusions on the amorphous silicon layer that appear when forming an insulating film covering the amorphous silicon layer on the drain and source electrodes. By removing the insulating film and smoothing the surface of the insulating film, it is possible to reduce the step difference in the gate electrode disposed on the surface of the insulating film, and also to make contact with external wiring highly reliable. Therefore, even if the thickness of the drain electrode is increased, the step difference will not increase due to the increase in the thickness.

〔実施例〕〔Example〕

つぎに本発明を実施例により説明する。 Next, the present invention will be explained by examples.

第1図は本発明の実施例1を説明するための断面図であ
る。第1図において、まず、ガラス基板1に金属クロム
をスパッタ法により膜厚1500人を成膜した後、フォ
トリングラフィ・エツチングにより所定の形状に加工し
てドレイン電極2とソース電極3を形成する。次に非晶
質シリコン膜をプラズマCVD法により膜厚3000人
に成膜した後、フォトリングラフィ・エツチングにより
所定の形状に加工して、ドレイン電極2とソース電極3
上に非晶質シリコン層4を形成する。次いで、酸化シリ
コン膜をスパッタ法により膜厚7500人を成膜し、こ
の上にレジストを塗布してパターニングし、非晶質シリ
コン層4上の酸化シリコン膜の表面の凸部を厚味450
0人エツチングして平滑部10にする。更に金属クロム
をスパッタ法により膜厚1500人を成膜し、フォトリ
ングラフィ・エツチングにより所定の形状に加工してゲ
ート電極6を形成してTPTは完成する。
FIG. 1 is a sectional view for explaining Embodiment 1 of the present invention. In FIG. 1, first, metal chromium is deposited on a glass substrate 1 by sputtering to a thickness of 1,500 mm, and then processed into a predetermined shape by photolithography and etching to form a drain electrode 2 and a source electrode 3. . Next, an amorphous silicon film was formed to a thickness of 3,000 yen by plasma CVD, and then processed into a predetermined shape by photolithography and etching to form drain electrode 2 and source electrode 3.
An amorphous silicon layer 4 is formed thereon. Next, a silicon oxide film was formed to a thickness of 7,500 mm by sputtering, and a resist was applied and patterned on this to form a 450 mm thick silicon oxide film on the amorphous silicon layer 4.
A smooth part 10 is obtained by etching. Furthermore, a 1500 mm thick film of metallic chromium is formed by sputtering and processed into a predetermined shape by photolithography and etching to form the gate electrode 6, thereby completing the TPT.

第2図は、本発明の実施例2を説明するための断面図で
ある。第2図において、まず、ガラス基板1に金属クロ
ムをスパッタ法により膜厚1500人を成膜した後、フ
ォトリソグラフィ・エツチングにより所定の形状に加工
してドレイン電極2とソース電極3を形成する。次に非
晶質シリコン膜をプラズマCVD法により膜厚3000
人に成膜した後、フォトリングラフィ・エツチングによ
り所定の形状に加工して、ドレイン電極2とソース電極
3上に非晶質シリコン層を形成する。次いで、窒化シリ
コン膜7をプラズマCVD法により膜厚2000人、更
に酸化シリコン膜8をスパッタ法により膜厚5500人
を堆積して2重の絶縁膜を形成し、その上にレジストを
塗布してパターニングし、非晶質シリコン層4上の酸化
シリコン膜8の表面の凸部を厚味4500人エツチング
して平滑部10にする。更に金属クロムをスパッタ法に
よる膜厚1500人を成膜し、パターニング加工してゲ
ート電極6を形成してTPTは完成する。
FIG. 2 is a sectional view for explaining Example 2 of the present invention. In FIG. 2, first, metallic chromium is deposited on a glass substrate 1 to a thickness of 1500 mm by sputtering, and then processed into a predetermined shape by photolithography and etching to form a drain electrode 2 and a source electrode 3. Next, an amorphous silicon film was formed with a thickness of 3000 using plasma CVD method.
After the film is formed, it is processed into a predetermined shape by photolithography and etching to form an amorphous silicon layer on the drain electrode 2 and source electrode 3. Next, a silicon nitride film 7 was deposited to a thickness of 2,000 yen by plasma CVD, and a silicon oxide film 8 was deposited to a thickness of 5,500 yen by sputtering to form a double insulating film, and a resist was applied thereon. After patterning, the convex portions on the surface of the silicon oxide film 8 on the amorphous silicon layer 4 are etched to a thickness of 4,500 mm to form a smooth portion 10. Further, metallic chromium is deposited to a thickness of 1,500 mm by sputtering and patterned to form the gate electrode 6, completing the TPT.

〔発明の効果〕〔Effect of the invention〕

以上説明したように本発明によれば、ドレイン電極とソ
ース電極と非晶質シリコン層上の絶縁膜表面に現出する
膜厚による凸部を、フォトリングラフィ・エツチングに
よって平滑にすることから、その上に形成するゲート電
極には段切れを生°じることは無く、また、外部配線と
のコンタクトを良好なものとするためにドレイン電極の
膜厚を厚くしても、膜厚増分による段差が大きくなるこ
とはない。従って、製作した液晶デイスプレィは、配線
の信頼性が高く、表示ムラが無いことから、表示品位の
優れたものが提供できる。
As explained above, according to the present invention, the protrusions caused by the film thickness that appear on the surface of the insulating film on the drain electrode, source electrode, and amorphous silicon layer are smoothed by photolithography etching. There is no step break in the gate electrode formed on top of the gate electrode, and even if the drain electrode is made thicker in order to make good contact with external wiring, the increase in film thickness will cause The difference in steps will never be large. Therefore, the manufactured liquid crystal display has high wiring reliability and no display unevenness, so it can provide an excellent display quality.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例1に係るTPTの断面図、第2
図は本発明の実施例2に係るTPTの断面図、第3図は
従来のTPTを示す断面図である。 1・・・・・・ガラス基板、2・・・・・・ドレイン電
極、3・・・・・・ソース電極、4・・・・・・非晶質
シリコン層、5・・・・・・絶縁膜、6・・・・・・ゲ
ート電極、7・・・・・・窒化シリコン膜、8・・・・
・・酸化シリコン膜、10・・・・・・平滑部。 代理人 弁理士  内 原   音 菊 2 聞 箭5 図
FIG. 1 is a sectional view of TPT according to Example 1 of the present invention, and FIG.
The figure is a sectional view of a TPT according to a second embodiment of the present invention, and FIG. 3 is a sectional view of a conventional TPT. DESCRIPTION OF SYMBOLS 1... Glass substrate, 2... Drain electrode, 3... Source electrode, 4... Amorphous silicon layer, 5... Insulating film, 6...gate electrode, 7...silicon nitride film, 8...
...Silicon oxide film, 10...Smooth part. Agent Patent Attorney Otokiku Uchihara 2 Mikiku 5 Diagram

Claims (1)

【特許請求の範囲】[Claims]  絶縁基板上にドレイン電極とソース電極を形成し、こ
のドレイン電極とソース電極とを接続するように非晶質
シリコン層を堆積した後、この非晶質シリコン層を覆う
ように絶縁膜を形成し、この絶縁膜の上にゲート電極を
形成することを含む薄膜電界効果型トランジスタの製造
方法において、前記非晶質シリコン層を覆う絶縁膜表面
に現出した凸部を、エッチングによって除去することに
よって絶縁膜表面を平滑にした後、ゲート電極を形成す
ることを特徴とする薄膜電界効果型トランジスタの製造
方法。
A drain electrode and a source electrode are formed on an insulating substrate, an amorphous silicon layer is deposited to connect the drain electrode and the source electrode, and an insulating film is formed to cover this amorphous silicon layer. , in a method of manufacturing a thin film field effect transistor including forming a gate electrode on the insulating film, a convex portion appearing on the surface of the insulating film covering the amorphous silicon layer is removed by etching. A method for manufacturing a thin film field effect transistor, which comprises forming a gate electrode after smoothing the surface of an insulating film.
JP31986487A 1987-12-16 1987-12-16 Manufacture of thin-film field-effect transistor Pending JPH01160056A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31986487A JPH01160056A (en) 1987-12-16 1987-12-16 Manufacture of thin-film field-effect transistor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31986487A JPH01160056A (en) 1987-12-16 1987-12-16 Manufacture of thin-film field-effect transistor

Publications (1)

Publication Number Publication Date
JPH01160056A true JPH01160056A (en) 1989-06-22

Family

ID=18115084

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31986487A Pending JPH01160056A (en) 1987-12-16 1987-12-16 Manufacture of thin-film field-effect transistor

Country Status (1)

Country Link
JP (1) JPH01160056A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215058A (en) * 2007-02-09 2008-09-18 Yanmar Co Ltd Working machine operating lever
CN111463272A (en) * 2020-04-29 2020-07-28 中山大学 Tunneling field effect transistor structure

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008215058A (en) * 2007-02-09 2008-09-18 Yanmar Co Ltd Working machine operating lever
CN111463272A (en) * 2020-04-29 2020-07-28 中山大学 Tunneling field effect transistor structure

Similar Documents

Publication Publication Date Title
KR100445286B1 (en) Liquid crystal display device and method of manufacturing the same
US6897479B2 (en) ITO film contact structure, TFT substrate and manufacture thereof
JPS60160173A (en) Thin film transistor
EP0301571A2 (en) Thin film transistor array
JP3916349B2 (en) Liquid crystal display
JPH0580650B2 (en)
JPH0824185B2 (en) Thin film transistor device and manufacturing method thereof
JP2759207B2 (en) Method of forming pixel electrode and thin film transistor
JPS60261174A (en) Matrix array
JPH0587029B2 (en)
JPH01160056A (en) Manufacture of thin-film field-effect transistor
JP2001332740A (en) Method for manufacturing array board
JPH02177563A (en) Thin film transistor and manufacture thereof
JPS61145582A (en) Display unit
JPH06132536A (en) Film transistor
JPS62276526A (en) Manufacture of active matrix liquid crystal display
JP2808742B2 (en) TFT panel and method of manufacturing the same
JPH08321621A (en) Thin film transistor
JPH01297624A (en) Thin film transistor and its production
KR20020028014A (en) Method for fabricating tft-lcd
JPH03201540A (en) Manufacture of thin film transistor
JPS63182863A (en) Manufacture of thin film field-effect transistor
JPS63182864A (en) Manufacture of thin film field-effect transistor
JPH03283540A (en) Manufacture of thin film transistor
JPH02137826A (en) Active matrix substrate