JPH01160037A - Manufacture of semiconductor device - Google Patents

Manufacture of semiconductor device

Info

Publication number
JPH01160037A
JPH01160037A JP31944187A JP31944187A JPH01160037A JP H01160037 A JPH01160037 A JP H01160037A JP 31944187 A JP31944187 A JP 31944187A JP 31944187 A JP31944187 A JP 31944187A JP H01160037 A JPH01160037 A JP H01160037A
Authority
JP
Japan
Prior art keywords
silicon
deposited
annealing
oxide film
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31944187A
Other languages
Japanese (ja)
Other versions
JP2558765B2 (en
Inventor
Seiji Okuda
誠司 奥田
Shinichi Ogawa
真一 小川
Takehito Yoshida
岳人 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=18110232&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=JPH01160037(A) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP62319441A priority Critical patent/JP2558765B2/en
Publication of JPH01160037A publication Critical patent/JPH01160037A/en
Application granted granted Critical
Publication of JP2558765B2 publication Critical patent/JP2558765B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)
  • Formation Of Insulating Films (AREA)

Abstract

PURPOSE:To reduce one part of an oxide film existing on the interface of a semiconductor substrate and a deposited thin-film, and to remove oxygen in the oxide film by a diffusion from the oxide film by depositing the thin-film onto the substrate in an atmosphere containing a reducing element, introducing the reducing element into the thin-film and annealing the whole. CONSTITUTION:Silicon 3 is deposited onto silicon substrates 1 through a chemical vapor growth method in a chamber 8. Silicon 3 is deposited onto the silicon substrates 1 by introducing monosilane gas (SiH4), keeping a temperature in the chamber 8 at 550-650 deg.C. When hydrogen 5 is induced into the chamber 8 as a reducing element in addition to SiH4 4 at that time, hydrogen 5 is introduced on the interfaces of the silicon substrates 1 and deposited silicon 3 and into silicon 3. Silicon 3 is deposited, and annealing using the infrared radiation 11 of a lamp electric furnace 10 is conducted in an Ar atmosphere to the silicon substrates 1 and deposited silicon 3. Accordingly, oxide films on the surfaces of the substrates can easily be removed through annealing.

Description

【発明の詳細な説明】 2へ−7 産業上の利用分野 本発明は半導体装置の製造方法に関するものである。[Detailed description of the invention] to 2-7 Industrial applications The present invention relates to a method of manufacturing a semiconductor device.

従来の技術 従来、半導体基板に薄膜を堆積する前に半導体基板表面
に形成された酸化膜を、あらかじめエツチング液によっ
て溶解、除去することで半導体基板と堆積された薄膜と
の界面に存在する酸化膜を除去していた。
Conventional technology Conventionally, before depositing a thin film on a semiconductor substrate, the oxide film formed on the surface of the semiconductor substrate is dissolved and removed using an etching solution, thereby removing the oxide film existing at the interface between the semiconductor substrate and the deposited thin film. was being removed.

第3図はこの従来の方法を示すものであシ、1はシリコ
ン基板である。13は例えば弗化水素酸と水を1=20
の体積比で混合してつくったエツチング液である。14
はエツチング液13を溜める容器であシ、通例弗化水素
酸に溶けないテフロンなどを材料としている。
FIG. 3 shows this conventional method, in which 1 is a silicon substrate. 13 is, for example, hydrofluoric acid and water 1 = 20
This is an etching solution made by mixing in a volume ratio of 14
is a container for storing the etching solution 13, and is usually made of Teflon or the like which is insoluble in hydrofluoric acid.

以上のように構成された従来の方法においては、容器1
4中のエツチング液13の中にシリコン基板1を適当な
時間浸たす。シリコン基板10表面に形成された酸化膜
2はエツチング液13へ溶解しシリコン基板1の表面か
ら除去される。
In the conventional method configured as described above, the container 1
The silicon substrate 1 is immersed in the etching solution 13 in the etching solution 4 for an appropriate period of time. The oxide film 2 formed on the surface of the silicon substrate 10 is dissolved in the etching liquid 13 and removed from the surface of the silicon substrate 1.

3、−7 このような方法については、例えばジャーナルオブアプ
ライドフィシックス、ボリューム57゜ナンバー4,1
5(1985)2月第1322頁から1327頁(J、
 Appl、 Phys、 57 (4) 。
3,-7 Such methods are described, for example, in Journal of Applied Physics, Volume 57° Number 4,1.
5 (1985) February, pp. 1322-1327 (J,
Appl, Phys, 57 (4).

15 February 1985  PP 1322
−1327 )に発表されている。
15 February 1985 PP 1322
-1327).

発明が解決しようとする問題点 しかしながら上記のような方法では、シリコン基板1の
表面に存在する酸化膜2をエツチング液13の中で除去
しても、その後シリコン基板1をエツチング液13から
取シ出してシリコン基板1が大気に接するとシリコン基
板1の表面は大気中の酸素によってすぐに酸化されてし
まうという問題点を有していた。
Problems to be Solved by the Invention However, in the above method, even if the oxide film 2 existing on the surface of the silicon substrate 1 is removed in the etching solution 13, the silicon substrate 1 cannot be removed from the etching solution 13 afterwards. There was a problem in that when the silicon substrate 1 was taken out and brought into contact with the atmosphere, the surface of the silicon substrate 1 was immediately oxidized by oxygen in the atmosphere.

問題点を解決するだめの手段 本発明は上述の問題点を解決するため、還元性を有する
元素を含んだ雰囲気中において半導体基板上に薄膜を堆
積することによってその薄膜中に還元性を有する元素を
導入し、その後アニールを行うという方法を用いるもの
である。
Means for Solving the Problems The present invention solves the above-mentioned problems by depositing a thin film on a semiconductor substrate in an atmosphere containing a reducing element, and depositing a reducing element in the thin film. This method uses a method in which a material is introduced and then annealing is performed.

作   用 還元性を有する元素を含む雰囲気中で半導体基板に薄膜
を堆積することによって還元性を有する元素の一部は、
半導体基板と堆積された薄膜の界面、および薄膜中に導
入され、薄膜堆積後にアニールを行うことによってその
還元性を有する元素は半導体基板と堆積された薄膜との
界面に存在する酸化膜の少くとも一部を還元し、その酸
化膜中の酸素を酸化膜から拡散によって除去することを
可能とする。
By depositing a thin film on a semiconductor substrate in an atmosphere containing elements that have action reducing properties, some of the elements that have reducing properties can be removed.
When introduced into the interface between the semiconductor substrate and the deposited thin film, and into the thin film, and annealed after the deposition of the thin film, the reducing element reduces at least the oxide film present at the interface between the semiconductor substrate and the deposited thin film. This makes it possible to partially reduce the oxygen in the oxide film and remove it from the oxide film by diffusion.

実施例 この発明の実施例を図面を参照しながら説明する。Example Embodiments of the invention will be described with reference to the drawings.

第1の実施例 この発明の第1の実施例を第1図を参照しながら説明す
る。この実施例ではチャンバー8中でシリコン基板1の
上にシリコン3を化学的気相成長法で堆積する。シリコ
ン3はチャンバー3内の温度を550°Cから650°
CKiち々がら、モノシランガス(S I H4)を導
入することによってシリ5ヘ−ン コン基板1上に堆積される。このときS I H44に
加えて還元性を有する元素として水素5をチャンバー8
内へ導入すればシリコン基板1と堆積されたシリコン3
の界面、およびシリコン3の中に水素5が導入される。
First Embodiment A first embodiment of the present invention will be described with reference to FIG. In this embodiment, silicon 3 is deposited on a silicon substrate 1 in a chamber 8 by chemical vapor deposition. Silicon 3 increases the temperature inside chamber 3 from 550°C to 650°
CKi is deposited on the silicon 5 silicon substrate 1 by introducing monosilane gas (SIH4). At this time, in addition to S I H44, hydrogen 5 is added to the chamber 8 as a reducing element.
When introduced into the silicon substrate 1 and the deposited silicon 3
Hydrogen 5 is introduced into the interface and into the silicon 3.

シリコン3を堆積した後、シリコン基板1と堆積された
シリコン3に対して例えばAr雰囲気においてランプ電
気炉1oの赤外線輻射11を用いたアニールを行う。ア
ニール条件は900’Cから1200’C,時間は1秒
から10分が最適である。
After depositing the silicon 3, the silicon substrate 1 and the deposited silicon 3 are annealed using infrared radiation 11 from a lamp electric furnace 1o, for example, in an Ar atmosphere. The optimum annealing conditions are 900'C to 1200'C and the optimum time is 1 second to 10 minutes.

アニールによってシリコン基板1とシリコン3の界面、
およびシリコン3の中に含捷れる水素5は、シリコン基
板1とシリコン3の界面に存在する酸化膜2の少くとも
一部を還元除去する(矢印b)。こうして基板表面の酸
化膜をアニールによって容易に除去することが可能とな
る。
By annealing, the interface between silicon substrate 1 and silicon 3,
The hydrogen 5 contained in the silicon 3 reduces and removes at least a portion of the oxide film 2 present at the interface between the silicon substrate 1 and the silicon 3 (arrow b). In this way, the oxide film on the surface of the substrate can be easily removed by annealing.

第4図に実験データを示す。堆積されたシリココン基板
1の界面に酸化膜2が存在していることA−7 がわかる。1100°C,30秒のアニールによって酸
化膜2の一部が還元除去されている。
Figure 4 shows the experimental data. It can be seen in A-7 that the oxide film 2 is present at the interface of the deposited silicon substrate 1. A part of the oxide film 2 is reduced and removed by annealing at 1100° C. for 30 seconds.

このようにしてシリコン基板1と堆積されたシリコン3
の界面に存在する酸化膜2を還元除去することで、例え
ば、シリコン基板1上に堆積されたシリコン3を配線と
して用いたときにシリコン基板1とシリコン3との電気
的接触を低抵抗で行うことが可能となる。
In this way, the silicon substrate 1 and the deposited silicon 3
By reducing and removing the oxide film 2 present at the interface, for example, when silicon 3 deposited on the silicon substrate 1 is used as a wiring, electrical contact between the silicon substrate 1 and the silicon 3 can be made with low resistance. becomes possible.

@2の実施例 この発明の第2の実施例を、第2図を参照しながら説明
する。同図において1はシリコン基板、2は酸化膜、3
は水素5を含んだ雰囲気中で堆積されたシリコンで、以
上は第1図の構成と同様なものである。シリコン3の形
成方法は第1の実施例で述べた化学的気相成長法以外の
方法、例えばスパンター法を用いても良い。第1図の構
成と異なるのは、アニールの方法としてArCWレーザ
ービーム12を用いる点である。
@2 Embodiment A second embodiment of the present invention will be described with reference to FIG. In the figure, 1 is a silicon substrate, 2 is an oxide film, and 3 is a silicon substrate.
is silicon deposited in an atmosphere containing hydrogen 5, and the above structure is similar to that shown in FIG. The method for forming the silicon 3 may be a method other than the chemical vapor deposition method described in the first embodiment, such as a spunter method. The difference from the configuration shown in FIG. 1 is that an ArCW laser beam 12 is used as the annealing method.

シリコン基板1の上に堆積されたシリコン3に対してA
rCWレーザービーム12を例えば出力7 ベーン 10W、試料面上のビーム直径約100μm、走査速度
1ocm/秒の条件で照射し加熱する。これによってA
rCWレーザービーム12を照射された部分のシリコン
基板1とシリコン3の界面、およびシリコン3の中に存
在する水素5がシリコン基板1とシリコン3の界面に存
在する酸化膜2の少くとも一部を還元除去する。
A for silicon 3 deposited on silicon substrate 1
The rCW laser beam 12 is irradiated and heated under the conditions of, for example, an output of 7, a vane of 10 W, a beam diameter of about 100 μm on the sample surface, and a scanning speed of 1 ocm/sec. This allows A
The hydrogen 5 present in the interface between the silicon substrate 1 and silicon 3 and in the silicon 3 in the area irradiated with the rCW laser beam 12 removes at least a portion of the oxide film 2 present at the interface between the silicon substrate 1 and silicon 3. Reduce and remove.

なお第2の実施例においてArCWレーザービーム12
を高エネルギービームとして用いたが、ArCWレーザ
ービーム12を照射するかわシにイオンビーム例えばシ
リコンイオンビームラ1゜mA /(i 、数10 K
eV 、走査速度10α/秒の条件で照射するか、電子
ビームを10 mA / 7 、6KeV 、走査速度
10m/秒の条件で照射しても同様の効果が得られる。
Note that in the second embodiment, the ArCW laser beam 12
was used as a high-energy beam, but instead of irradiating the ArCW laser beam 12, an ion beam, for example, a silicon ion beam, was used as a high-energy beam.
A similar effect can be obtained by irradiating with an electron beam at 10 mA/7, 6 KeV, and a scanning speed of 10 m/sec.

そのとき雰囲気の圧力は1O−5Torr程度の減圧状
態で行う。
At this time, the pressure of the atmosphere is reduced to about 10-5 Torr.

発明の詳細 な説明したように本発明によれば、半導体基板と堆積さ
れた薄膜との間に存在する酸化膜の少くとも一部を薄膜
堆積後に還元除去することができ、半導体装置において
すぐれた実用的効果を発揮することが可能となる。
DETAILED DESCRIPTION OF THE INVENTION According to the present invention, at least a part of the oxide film existing between the semiconductor substrate and the deposited thin film can be reduced and removed after the thin film is deposited, which is an excellent feature in semiconductor devices. It becomes possible to demonstrate practical effects.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図aは本発明の薄膜堆積工程のだめの薄膜堆積装置
の断面構造図、第1図すは本発明の第1の実施例のアニ
ール工程の断面工程概略図、第2図は本発明の第2の実
施例のアニール工程の断面工程概略図、第3図は従来の
酸化膜除去のだめのエツチング工程の断面工程概略図、
第4図は110゜°C930秒のアニール前後の水素と
酸素の濃度を、二次イオン質量分析装置を用いて測定し
た不純物分布特性図である。 1・・・・シリコン基板、2・・・・・・酸化膜、3・
・・・・・堆積されたシリコン、1o・・・ランプN’
X 炉。 代理人の氏名 弁理士 中 尾 敏 男 ほか1名−四
 子 w&S 第2図 第4図 :      308 第3図 、・・・h′ス゛N 」
FIG. 1a is a cross-sectional structural diagram of a thin film deposition apparatus used in the thin film deposition process of the present invention, FIG. 1 is a cross-sectional process schematic diagram of the annealing process of the first embodiment of the present invention, and FIG. A cross-sectional process schematic diagram of the annealing process of the second embodiment, FIG. 3 is a cross-sectional process schematic diagram of the conventional etching process for removing the oxide film,
FIG. 4 is an impurity distribution characteristic diagram obtained by measuring the hydrogen and oxygen concentrations before and after annealing at 110° C. for 930 seconds using a secondary ion mass spectrometer. 1...Silicon substrate, 2...Oxide film, 3.
...Deposited silicon, 1o...Lamp N'
X Furnace. Name of agent: Patent attorney Toshio Nakao and 1 other person - Yoko W&S Figure 2 Figure 4: 308 Figure 3...h's゛N''

Claims (4)

【特許請求の範囲】[Claims] (1)還元性を有する元素を含む雰囲気中において半導
体基板上に薄膜を堆積する工程と、前記薄膜堆積後に前
記半導体基板および前記薄膜に対してアニールを行う工
程を有することを特徴とする半導体装置の製造方法。
(1) A semiconductor device comprising the steps of: depositing a thin film on a semiconductor substrate in an atmosphere containing a reducing element; and annealing the semiconductor substrate and the thin film after depositing the thin film. manufacturing method.
(2)アニールを赤外線輻射によって行うことを特徴と
する特許請求の範囲第1項記載の半導体装置の製造方法
(2) The method for manufacturing a semiconductor device according to claim 1, wherein the annealing is performed by infrared radiation.
(3)アニールを高エネルギービーム照射によって行う
ことを特徴とする特許請求の範囲第1項記載の半導体装
置の製造方法。
(3) The method for manufacturing a semiconductor device according to claim 1, wherein the annealing is performed by high-energy beam irradiation.
(4)高エネルギービームが、紫外光、レーザービーム
、イオンビームもしくは電子ビームであることを特徴と
する特許請求の範囲第3項記載の半導体装置の製造方法
(4) The method for manufacturing a semiconductor device according to claim 3, wherein the high-energy beam is an ultraviolet light, a laser beam, an ion beam, or an electron beam.
JP62319441A 1987-12-17 1987-12-17 Method for manufacturing semiconductor device Expired - Fee Related JP2558765B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62319441A JP2558765B2 (en) 1987-12-17 1987-12-17 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62319441A JP2558765B2 (en) 1987-12-17 1987-12-17 Method for manufacturing semiconductor device

Publications (2)

Publication Number Publication Date
JPH01160037A true JPH01160037A (en) 1989-06-22
JP2558765B2 JP2558765B2 (en) 1996-11-27

Family

ID=18110232

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62319441A Expired - Fee Related JP2558765B2 (en) 1987-12-17 1987-12-17 Method for manufacturing semiconductor device

Country Status (1)

Country Link
JP (1) JP2558765B2 (en)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133626A (en) * 1981-02-13 1982-08-18 Toshiba Corp Manufacture of semiconductor thin film
JPS59143318A (en) * 1983-02-03 1984-08-16 Seiko Epson Corp Optical annealing method
JPS61141118A (en) * 1984-12-14 1986-06-28 Matsushita Electric Ind Co Ltd Vapor growth method
JPS61158178A (en) * 1984-12-29 1986-07-17 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS57133626A (en) * 1981-02-13 1982-08-18 Toshiba Corp Manufacture of semiconductor thin film
JPS59143318A (en) * 1983-02-03 1984-08-16 Seiko Epson Corp Optical annealing method
JPS61141118A (en) * 1984-12-14 1986-06-28 Matsushita Electric Ind Co Ltd Vapor growth method
JPS61158178A (en) * 1984-12-29 1986-07-17 Fujitsu Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JP2558765B2 (en) 1996-11-27

Similar Documents

Publication Publication Date Title
KR100391840B1 (en) Method and apparatus for forming an insulating film on the surface of a semiconductor substrate
JPH0228322A (en) Preliminary treatment of semiconductor substrate
CA1093216A (en) Silicon device with uniformly thick polysilicon
JPH04233734A (en) Fluorization silicon nitride adhesion method
JP2560251B2 (en) Manufacturing method of silicon single crystal self-supporting thin film
JPH05308076A (en) Oxygen deposition method of silicon wafer
JPH01160037A (en) Manufacture of semiconductor device
JPH03116727A (en) Manufacture of semiconductor device
JP2771472B2 (en) Method for manufacturing semiconductor device
JP2840802B2 (en) Method and apparatus for manufacturing semiconductor material
JPH04119631A (en) Manufacture of semiconductor device
JPS61160939A (en) Method of dry removal of si surface damage after dry etching
JPH0133936B2 (en)
JPS59201426A (en) Processing of semiconductor substrate
JPH06349801A (en) Surface treatment method
JP2611496B2 (en) Surface treatment method
JPS5840818A (en) Introduction of impurity
JPS63314836A (en) Manufacture of semiconductor device
JPH088205A (en) Manufacture of semiconductor element
JP2024007890A (en) Manufacturing method for epitaxial wafer
JP2998336B2 (en) Method for etching compound semiconductor and method for forming semiconductor structure
JPS63178520A (en) Method of adding impurity to semiconductor
JPH02151026A (en) Manufacture of silicon semiconductor wafer
JPS63196064A (en) Production of semiconductor device
JPH09283456A (en) Manufacture of semiconductor device

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees