JPH01159017A - Psa switchover valve system - Google Patents

Psa switchover valve system

Info

Publication number
JPH01159017A
JPH01159017A JP62317169A JP31716987A JPH01159017A JP H01159017 A JPH01159017 A JP H01159017A JP 62317169 A JP62317169 A JP 62317169A JP 31716987 A JP31716987 A JP 31716987A JP H01159017 A JPH01159017 A JP H01159017A
Authority
JP
Japan
Prior art keywords
gas
pipe
way valve
tower
adsorption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62317169A
Other languages
Japanese (ja)
Inventor
Hiroteru Yamamoto
山本 博照
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
NKK Corp
Nippon Kokan Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NKK Corp, Nippon Kokan Ltd filed Critical NKK Corp
Priority to JP62317169A priority Critical patent/JPH01159017A/en
Publication of JPH01159017A publication Critical patent/JPH01159017A/en
Pending legal-status Critical Current

Links

Landscapes

  • Separation Of Gases By Adsorption (AREA)

Abstract

PURPOSE:To simplify a valve system of PSA gas purifier, by providing a three or more way valve which, by switching action, can be connected with only one of a raw gas supply pipe, a washed gas supply pipe and a deodorized gas pull-out pipe connected to an inlet of an absorbing tower. CONSTITUTION:The raw gas is sent from a pipe 7 to an absorbing tower 6A through a four-way valve 21 and the exhaust gas resulting from the adsorption of a target gas is delivered to a pipe 19 through a four-way valve 20. In the subsequent washing process, the target gas is sent from a blower 11 to the adsorbing tower 6A through pipes 13 and 10 and the four-way valve 21 to force the off-gas out of the tower and said gas is sent from a pipe 20 to a pipe 7 through the four-way valve 21. In a detaching process, the pressure of the adsorbing tower 6A is reduced by a vacuum pump 15 and the detached gas is sent from the four-way valve 21 to a gas holder 12. In a pressure raising process, the washed exhaust gas is sent from an adsorbing tower 6C to the adsorbing tower 6A through pipes 7 and 9 and the four-way valve 21 for a rise in the pressure. The use of such four-way valve prevents the inclusion in a product gas of the other gases in the event of valve malfunctions.

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は、PSA法によるガス分離精製装置のガスの
切替システムに関するものである。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Application Field] The present invention relates to a gas switching system for a gas separation and purification device using the PSA method.

〔従来の技術〕[Conventional technology]

圧力変動吸着分離法、いわゆるPSA法は、加圧下に目
的とするガス成分だけを特殊な吸着剤に吸着させ、後こ
れを減圧して取出す分離方法である。
The pressure fluctuation adsorption separation method, so-called PSA method, is a separation method in which only the target gas component is adsorbed on a special adsorbent under pressure, and then the gas component is extracted by reducing the pressure.

その−船釣な工程は、まず、吸着剤を充填した吸着塔に
加圧された原料ガスを送入して目的ガス成分を吸着させ
、残った吸着排ガス(オフガス)は塔外に排出して吸着
工程を終える。次に、目的ガス成分以外の成分を除き目
的とするガス成分の純度を高めるため、高純度の目的ガ
スを塔内に送気して洗浄し、洗浄ガスは次の吸着塔に送
ってそこに含まれている目的ガスを吸着回収する。続い
て、塔内を減圧にして吸着層から目的ガス成分を放出さ
せ、脱着工程を終える。脱着工程が終わった吸着塔に原
料ガスと他吸着塔からの洗浄ガスを送入して昇圧し、昇
圧工程が終わったら吸着工程に移行し前記工程を繰返す
方法である。昇圧工程は吸着工程の前半部分として含め
られ3工程に分けられる場合もある。
In this process, pressurized raw material gas is first fed into an adsorption tower filled with adsorbent to adsorb target gas components, and the remaining adsorbed exhaust gas (off-gas) is discharged outside the tower. Finish the adsorption process. Next, in order to remove components other than the target gas components and increase the purity of the target gas components, high-purity target gas is sent into the tower for cleaning, and the cleaning gas is sent to the next adsorption tower where it is The contained target gas is adsorbed and recovered. Subsequently, the pressure inside the column is reduced to release the target gas component from the adsorption layer, thereby completing the desorption process. This is a method in which the raw material gas and cleaning gas from other adsorption towers are fed into the adsorption tower where the desorption process has been completed to raise the pressure, and when the pressure increase process is completed, the process moves to the adsorption process and the above steps are repeated. The pressure increasing step may be included as the first half of the adsorption step and may be divided into three steps.

この方法に用いられる装置においては第1図及び第2図
に示すように通常3〜4塔の吸着塔6を用い、それぞれ
の塔に別の工程を行なわせて各工程を順次次の塔で行な
わせる循環方式がとられている。すなわち、まず吸着塔
6Aに原料ガスを送って吸着工程を行わせ、その間吸着
塔6Bでは洗浄ガスを送って洗浄工程を行なわせる。吸
着塔6Cは脱着工程にあって真空ポンプ15で吸気され
ており、吸着塔6Dは昇圧工程にあって原料ガス及び吸
着塔Bからの洗浄排ガスの混合ガスが送られて昇圧され
ている。全塔のそれぞれの工程が終了すると各塔とも次
の工程に入り、塔6Aでは洗浄工程が、塔6Bでは脱着
工程が、塔6Cでは昇圧工程が、そして塔6Dでは吸着
工程が行なわれる。
In the equipment used in this method, three to four adsorption towers 6 are usually used as shown in Figures 1 and 2, and each tower performs a different process, and each process is sequentially carried out in the next tower. A cyclical system is used. That is, first, a raw material gas is sent to the adsorption tower 6A to perform an adsorption process, and during that time, a cleaning gas is sent to the adsorption tower 6B to perform a cleaning process. The adsorption tower 6C is in the desorption process and is being sucked in by the vacuum pump 15, and the adsorption tower 6D is in the pressure increasing process and a mixed gas of raw material gas and cleaning exhaust gas from the adsorption tower B is sent to increase the pressure. When each step in all the columns is completed, each column enters the next step, with column 6A carrying out a washing process, column 6B carrying out a desorption process, column 6C carrying out a pressurization process, and column 6D carrying out an adsorption process.

全塔のこれらの工程が終了するとそれぞれがその次の工
程に入り、1サイクルの工程が終了すると次のサイクル
に入ってこれらが順次繰返される。
When these steps of all the columns are completed, each enters the next step, and when the steps of one cycle are completed, the next cycle starts and these steps are repeated one after another.

従来、この方法によるガス分離精製装置では、ガスの流
れの切替えを行うのには、バルブの配列を第2図に示す
ように吸着塔6−塔当り底部に3個、頂゛部に2個のボ
ール弁またはバタフライ弁等の2方式弁1.2.3.4
.5を用いた組合せで行っており、これら吸着塔回りの
おのおののバルブを開閉することによってガスの流路の
切替えが行われていた。
Conventionally, in gas separation and purification equipment using this method, in order to switch the gas flow, the arrangement of valves is as shown in Figure 2: 6 adsorption columns - 3 at the bottom and 2 at the top per column. Two-way valves such as ball valves or butterfly valves 1.2.3.4
.. 5 in combination, and gas flow paths were switched by opening and closing the respective valves around these adsorption towers.

吸着工程におけるガスの流れは、原料ガスが原料ガスヘ
ッダー管7からバルブ1を経由して各吸着塔6に順次入
り、吸着塔6のオフガスはバルブ4を経てオフガスヘッ
ダー管19へ送られていた。
The flow of gas in the adsorption process was such that the raw material gas sequentially entered each adsorption tower 6 from the raw gas header pipe 7 via valve 1, and the off-gas from the adsorption tower 6 was sent to the off-gas header pipe 19 through valve 4. .

この吸着工程では、吸着塔回りのバルブの開閉状態は次
のようになっていた。
In this adsorption process, the valves around the adsorption tower were opened and closed as follows.

洗浄工程では、目的ガスがパージガスブロワ−11より
バルブ2を経由して吸着塔6に入り、塔を洗浄した洗浄
排ガスはバルブ5を経由して次の吸着塔6へ送られてい
た。この洗浄工程では、バルブの開閉状態は次のように
なっていた。
In the cleaning process, target gas enters the adsorption tower 6 from the purge gas blower 11 via valve 2, and the cleaning exhaust gas that has cleaned the tower is sent to the next adsorption tower 6 via valve 5. In this cleaning process, the valves were opened and closed as follows.

脱着工程では、真空ポンプ15からの減圧により、吸着
されていた目的ガス成分は吸着層から離れ、バルブ3を
経由して真空ポンプ15からガスホルダー12ス送られ
ていた。この脱着工程では、バルブの開閉状態は次のよ
うになっていた。
In the desorption process, the adsorbed target gas component was separated from the adsorption layer by the reduced pressure from the vacuum pump 15, and was sent to the gas holder 12 from the vacuum pump 15 via the valve 3. In this desorption process, the valves were opened and closed as follows.

脱着工程が終わった後、吸着塔6Aは昇圧工程に移り、
バルブlを経由して来た原料ガスと、洗浄工程中の吸着
塔6Cからの洗浄ガスとを混合して吸着塔6Aに流入さ
せ昇圧する。
After the desorption process is finished, the adsorption tower 6A moves to the pressure increase process,
The raw material gas that has passed through the valve 1 and the cleaning gas from the adsorption tower 6C during the cleaning process are mixed and flowed into the adsorption tower 6A, where the pressure is increased.

一方、生じたオフガスはバルブ4を経由してオフガスヘ
ッダー19へ送られていた。この昇圧工程でのバルブの
開閉状態は次のようになっていた。
On the other hand, the generated off-gas was sent to the off-gas header 19 via the valve 4. The opening and closing states of the valves during this pressure increasing process were as follows.

昇圧工程の後、吸着塔6Aは吸着工程へ移って1サイク
ルが終了し、各工程が移るごとに、各吸着塔回りのバル
ブが開閉の動作を繰り返すことによって、ガスの流れの
切替えが行なわれていた。
After the pressure increasing step, the adsorption tower 6A moves to the adsorption step and one cycle is completed, and each time the adsorption tower 6A moves, the gas flow is switched by repeating the opening and closing operations of the valves around each adsorption tower. was.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

このような装置においては多数のバルブを所定の時期に
的確に操作する必要があり、この操作は容易ではなかっ
た。例えば、第2図に示す装置にあっては20余個のバ
ルブを各工程の切替時ごとに的確に操作する必要があり
、これらを手動で行なうことは並大抵ではなかった。そ
こで、−gには自動操作によってバルブの開閉が行なわ
れているが、その場合にも多数回の開閉が行なわれる多
数のバルブをいずれも故障なく作動させるための維待管
理が大変であった。バルブの一個に誤作動あるいは作動
時期にずれを生じるとこれらはガスの精製に多大な影響
を及ぼし、多くは製品ガスの不合格につながるため装置
の運転を一旦中止して装置内のガスを抜き出してから再
開せざるをえなかった。これらは多大な労力を要し、か
つ製品のコストを上昇させるため全バルブが常に的確に
作動するとともに仮に誤作動があってもオフガスが製品
ガスラインに混入することのないシステムの開発が望ま
れていた。
In such a device, it is necessary to accurately operate a large number of valves at predetermined times, and this operation is not easy. For example, in the apparatus shown in FIG. 2, it is necessary to operate more than 20 valves accurately each time each process is changed over, and it is difficult to do this manually. Therefore, in -g, the valves are opened and closed by automatic operation, but even in this case, it is difficult to maintain and manage the large number of valves that are opened and closed many times to ensure that they all operate without failure. . If one of the valves malfunctions or the timing of its operation is incorrect, this will have a significant impact on gas purification, and in many cases will lead to the product gas being rejected. I had no choice but to restart it. These require a lot of labor and increase the cost of the product, so it is desirable to develop a system in which all valves always operate accurately and even if there is a malfunction, off-gas will not enter the product gas line. was.

〔問題点を解決するための手段〕[Means for solving problems]

この発明は上記目的を達成するためになされたものであ
り、多方弁を用いることによってバルブの総数を大幅に
削減するとともにこの多方弁にいずれかひとつの管とだ
け接続するものを用いることによってこの目的を達成し
たものである。
This invention was made to achieve the above object, and by using a multi-way valve, the total number of valves can be significantly reduced, and by using a multi-way valve that is connected to only one pipe, this invention can be achieved. The purpose has been achieved.

すなわち、本発明は、複数の吸着塔よりなり、各吸着塔
の入口にはいずれも原料ガス供給管、洗浄ガス供給管及
び脱着ガス引抜管が接続され、かつ出口には吸着排ガス
排出管が接続されている。
That is, the present invention consists of a plurality of adsorption towers, each of which has a raw material gas supply pipe, a cleaning gas supply pipe, and a desorption gas withdrawal pipe connected to its inlet, and an adsorbed exhaust gas discharge pipe connected to its outlet. has been done.

PSA法により目的ガスを分離精製する装置において、
前記入口に前記原料ガス供給管、洗浄ガス供給管及び脱
着ガス引抜管を切替えてそのいずれかひとつの管とだけ
接続する4方以上の多方弁を設けたことを特徴とするP
SA切替バルブシステムに関するものである。
In a device that separates and purifies target gas using the PSA method,
P characterized in that the inlet is provided with a four-way or more multi-way valve that switches between the source gas supply pipe, the cleaning gas supply pipe, and the desorption gas withdrawal pipe and connects to only one of them.
This relates to the SA switching valve system.

吸着塔の数は通常は4塔又はその倍数であるが3塔でも
よく、また、5塔以上であってもよい。
The number of adsorption towers is usually 4 or a multiple thereof, but it may be 3 or 5 or more.

一方、PSA法においては洗浄排ガスを他の塔において
昇圧工程で利用するため吸着塔は少なくとも2塔必要で
ある。
On the other hand, in the PSA method, at least two adsorption towers are required because the washed exhaust gas is used in another tower in the pressure increasing step.

各吸着塔の入口にはいずれも原料ガス供給管、洗浄ガス
供給管及び脱着ガス引抜管が接続される。
A raw material gas supply pipe, a cleaning gas supply pipe, and a desorption gas drawing pipe are connected to the inlet of each adsorption tower.

原料ガスは目的ガスの種類に応じ、例えば−酸化炭素ガ
スを分離取得する場合には転炉ガス、メタノール分解ガ
ス等が炭酸ガスを分離取得する場合にはボイラー等の燃
焼廃ガスとか高炉の熱風炉ガス等が、そして水素ガスを
分離取得する場合にはCOGガス等が利用される。
The raw material gas depends on the type of target gas, for example - converter gas to separate and obtain carbon oxide gas, combustion waste gas from a boiler etc., or hot air from a blast furnace to separate and obtain carbon dioxide from methanol decomposition gas, etc. COG gas and the like are used to separate and obtain furnace gas and hydrogen gas.

洗浄ガスは吸着工程後に塔内に残った原料ガスを吸着層
を通過させて塔内を目的ガスで置換するものであり、通
常は脱着ガスの一部が洗浄ガスとして利用される。
The cleaning gas is used to pass the raw material gas remaining in the tower after the adsorption step through an adsorption layer to replace the inside of the tower with the target gas, and usually a part of the desorption gas is used as the cleaning gas.

脱着ガスはそのままあるいは必要により更に精製して製
品ガスになる。
The desorbed gas may be used as it is or further purified if necessary to become a product gas.

目的ガスの比重が一般に軽いため、吸着塔の入口は通常
底部に設けられる。
Since the specific gravity of the target gas is generally light, the inlet of the adsorption tower is usually provided at the bottom.

一方、各吸着塔の出口にはいずれも吸着排ガス排出管が
接続される。吸着排ガスは通常は必要により無公害化処
理が施されて大気中に放出されるが、まだ有用ガスが残
っている場合にはその回収工程にまわされることもある
。そのほか、各吸着塔出口には洗浄排ガス排出管を別途
接続し、この洗浄排ガス排出管の他端を洗浄排ガスを昇
圧工程にある他の吸着塔の入口に導入できるように接続
することによって洗浄排ガス中の目的ガスをこの塔の吸
着層に吸着させて回収することが望ましい。
On the other hand, an adsorption exhaust gas exhaust pipe is connected to the outlet of each adsorption tower. Adsorbed exhaust gas is normally treated to make it non-polluting if necessary and then released into the atmosphere, but if useful gas still remains, it may be sent to a recovery process. In addition, a cleaning exhaust gas exhaust pipe is separately connected to the outlet of each adsorption tower, and the other end of this cleaning exhaust gas exhaust pipe is connected so that the cleaning exhaust gas can be introduced into the inlet of another adsorption tower in the pressure increasing process. It is desirable to recover the target gas inside by adsorbing it to the adsorption layer of this tower.

この場合、洗浄排ガス排出管のへラダー管を別途設け、
このヘッダー管から各吸着塔の入口への分岐管をそれぞ
れ設けてもよいが、各排出管を原料ガス供給管に接続し
て洗浄排ガスを原料ガスと混合状態で昇圧工程の塔に送
り込むのが簡便である。
In this case, install a separate ladder pipe for the cleaning exhaust gas discharge pipe.
Although a branch pipe may be provided from this header pipe to the inlet of each adsorption tower, it is preferable to connect each discharge pipe to the raw material gas supply pipe and send the cleaning exhaust gas mixed with the raw material gas to the tower for the pressurization process. It's simple.

各吸着塔の出口は通常は塔の上部に設けられる。The outlet of each adsorption column is usually located at the top of the column.

本発明のシステムにおいてはこのような各吸着塔の入口
に原料ガス供給管、洗浄ガス供給管及び脱着ガス引き樋
管を切替えてそのいずれかひとつの管とだけ接続する4
方以上の多方弁を設けたところに特徴がある。従って、
前記3管はいずれもこの多方弁に接続され、弁が切替わ
ることによりそのいずれかの1管だけが吸着塔と接続す
ることになる。なお、洗浄排ガス排出管のヘッダー管を
別途設けたときは多方弁を5方弁とし、このヘッダー管
からの分岐管もこの多方弁に接続するのがよい。各吸着
塔の多方弁は同時に作動させるのが原則であるが各塔の
それぞれが工程終了餞別々に作動させてもよい。
In the system of the present invention, the raw material gas supply pipe, the cleaning gas supply pipe, and the desorption gas sluice pipe are switched to the inlet of each adsorption tower, and only one of them is connected.
The feature is that it has more than one multi-way valve. Therefore,
All of the three pipes are connected to this multi-way valve, and by switching the valve, only one of the pipes is connected to the adsorption tower. In addition, when a header pipe for the cleaning exhaust gas discharge pipe is provided separately, it is preferable that the multi-way valve is a five-way valve, and a branch pipe from this header pipe is also connected to this multi-way valve. In principle, the multi-way valves of each adsorption tower are operated simultaneously, but each tower may be operated separately at the end of the process.

一方、出口に洗浄排ガス排出管を設けたときはこの洗浄
排ガス排出管と吸着排ガス排出管を切替える3方以上の
多方弁を設けることが好ましい。
On the other hand, when a cleaning exhaust gas exhaust pipe is provided at the outlet, it is preferable to provide a three-way or more multi-way valve for switching between the cleaning exhaust gas exhaust pipe and the adsorbed exhaust gas exhaust pipe.

その場合各吸着塔の入口の多方弁と出口の多方弁は連動
させるようにする。出口に接続される配管が吸着排ガス
排出管だけのときは2方切替弁を取付ければよい。
In that case, the multi-way valve at the inlet and the multi-way valve at the outlet of each adsorption tower are linked. If the only pipe connected to the outlet is an adsorbed exhaust gas discharge pipe, a two-way switching valve may be installed.

〔作用〕[Effect]

本発明のバルブシステムにおいては、吸着工程では入口
の多方弁は原料ガス供給管のみが、洗浄工程では洗浄ガ
ス供給管のみが、脱着工程では脱着ガス引抜管のみが、
そして昇圧工程では原料ガス供給管その他吸着塔の昇圧
に使用されるガスの供給管のみが吸着塔に接続される。
In the valve system of the present invention, the multi-way valve at the inlet is used only for the raw material gas supply pipe in the adsorption process, only the cleaning gas supply pipe in the cleaning process, and only the desorption gas withdrawal pipe in the desorption process.
In the pressure increasing step, only the raw material gas supply pipe and other gas supply pipes used to raise the pressure of the adsorption tower are connected to the adsorption tower.

従って、脱着ガス引抜管は弁のどのような誤作動があっ
ても他の管と誤って接続されることはない。
Therefore, the desorption gas drawing pipe will not be erroneously connected to another pipe even if there is any malfunction of the valve.

〔実施例〕〔Example〕

第1図はこの発明にかかるPSA切替バルブシステムの
一実施例を示す配管構成図である。この切替バルブシス
テムは、各吸着塔6へ流出入するガスの切替バルブとし
て、吸着塔頂部へ一個の4方弁20を設け、底部へ一個
の4方弁21を設けた構成となっている。
FIG. 1 is a piping configuration diagram showing an embodiment of the PSA switching valve system according to the present invention. This switching valve system has a configuration in which one four-way valve 20 is provided at the top of the adsorption tower and one four-way valve 21 is provided at the bottom as switching valves for gas flowing in and out of each adsorption tower 6.

底部4方弁21の流路22は吸着塔6との接続口に当り
、配管8によって吸着塔6と接続する。流路23.24
.25は第2図におけるバルブ1、バルブ2、バルブ3
に該当し、流路23は原料ガス供給バルブ1に相当し原
料ガス供給管9によって原料ガスヘッダー管7と接続す
る。流路24は洗浄ガス供給バルブ2に相当し洗浄ガス
供給管10によってパージガスブロアー11からのヘッ
ダー管13と接続する。
The flow path 22 of the bottom four-way valve 21 corresponds to a connection port with the adsorption tower 6, and is connected to the adsorption tower 6 through a pipe 8. Channel 23.24
.. 25 are valve 1, valve 2, and valve 3 in Fig. 2.
The flow path 23 corresponds to the raw material gas supply valve 1 and is connected to the raw material gas header pipe 7 via the raw material gas supply pipe 9. The flow path 24 corresponds to the cleaning gas supply valve 2 and is connected to the header pipe 13 from the purge gas blower 11 via the cleaning gas supply pipe 10.

流路25は脱着ガス取出バルブ3に相当し脱着ガス引抜
管14によって真空ポンプ15からのヘッダー管16と
接続する。
The flow path 25 corresponds to the desorption gas extraction valve 3 and is connected to the header pipe 16 from the vacuum pump 15 via the desorption gas extraction pipe 14 .

4方弁20の流路26は吸着塔6との接続口に当り配管
17によって吸着塔6との接続口に当り、配管17によ
って吸着塔6と接続する。流路27.28は第2図にお
けるバルブ4、バルブ5に該当し、流路27はオフガス
取出バルブ4に相当し吸着排ガス排出管18によってオ
フガスヘッダー管19に接続する。
The flow path 26 of the four-way valve 20 is connected to the adsorption tower 6 through a pipe 17, and is connected to the adsorption tower 6 through the pipe 17. The flow paths 27 and 28 correspond to the valves 4 and 5 in FIG. 2, and the flow path 27 corresponds to the off-gas take-off valve 4 and is connected to the off-gas header pipe 19 through the adsorption exhaust gas discharge pipe 18.

流路28は洗浄ガス取出バルブ5に相当し配管20によ
って原料ガスへラダー管7と接続する。
The flow path 28 corresponds to the cleaning gas take-off valve 5 and is connected to the ladder pipe 7 through a pipe 20 to the raw material gas.

このような装置を用いてガスの分離精製を行う場合、塔
6Aで行なわれる吸着工程では、原料ガスヘッダー管7
からの原料ガスは配管9から4方弁21の流路23から
流路22を経由して吸着塔6Aへ入り、吸着層に目的ガ
スを吸着された吸着排ガスは、4方弁20の流路26か
ら流路27を経由し、配管18を通ってオフガスヘッダ
ー管19へ送られる。その間、塔6Bでは洗浄工程、塔
6Cでは脱着工程そして塔6Dでは昇圧工程がそれぞれ
行われている。吸着工程の後、吸着塔6Aは洗浄工程に
移る。
When separating and purifying gas using such a device, in the adsorption process performed in the column 6A, the raw gas header pipe 7
The raw material gas from the pipe 9 enters the adsorption tower 6A via the flow path 23 and 22 of the four-way valve 21, and the adsorbed exhaust gas with the target gas adsorbed by the adsorption layer enters the flow path of the four-way valve 20. 26 , the gas is sent to the off-gas header pipe 19 via the flow path 27 and the piping 18 . During this time, a washing process is carried out in the column 6B, a desorption process is carried out in the column 6C, and a pressure increasing process is carried out in the column 6D. After the adsorption process, the adsorption tower 6A moves to a cleaning process.

洗浄工程では、目的ガスがパージガスブロワ−11から
配管13、配管10を通り、さらに4方弁21の流路2
4から流路22を経由して吸着塔6Aに入り、塔内のオ
フガスを押し出す。洗浄排ガスは4方弁20の流路26
から流路28を経由して配管20を通り原料ガスヘッダ
ー管7へ送られる。その間、塔6Bでは脱着工程、塔6
Cでは昇圧工程そして塔6Dでは吸着工程がそれぞれ行
なわれている。洗浄工程の後、吸着塔6Aは脱着工程に
移る。
In the cleaning process, the target gas passes from the purge gas blower 11 through the piping 13 and piping 10, and then through the flow path 2 of the four-way valve 21.
4 into the adsorption tower 6A via the flow path 22, and pushes out the off-gas in the tower. The cleaning exhaust gas flows through the flow path 26 of the four-way valve 20.
The raw material gas is sent to the header pipe 7 via the flow path 28 and the pipe 20 . Meanwhile, in tower 6B, a desorption process is carried out in tower 6B.
A pressure increasing step is carried out in C and an adsorption step is carried out in column 6D. After the washing step, the adsorption tower 6A moves to a desorption step.

脱着工程では、吸着塔6Aは真空ポンプ15によって吸
気され減圧にされる。減圧によって吸着層から脱着され
た脱着ガス(目的ガス)は、4方弁21の流路22から
流路25を経由し配管14、配管16を通り真空ポンプ
15からガスホルダー12へ送られてそこに貯められる
。このとき4方弁20の流路は盲の位置にあり閉の状態
である。その間、塔6Bでは昇圧工程、塔6Cでは吸着
工程6Dでは洗浄工程がそれぞれ行なわれている。脱着
工程の後、吸着塔6Aは昇圧工程に移る。
In the desorption step, the adsorption tower 6A is sucked in by the vacuum pump 15 and is reduced in pressure. The desorbed gas (target gas) desorbed from the adsorption layer by the reduced pressure is sent from the flow path 22 of the four-way valve 21 via the flow path 25 to the piping 14 and piping 16 to the gas holder 12 from the vacuum pump 15. can be stored in At this time, the flow path of the four-way valve 20 is in the blind position and is in a closed state. During this time, a pressure raising process is being carried out in the column 6B, and a washing process is being carried out in the adsorption process 6D in the column 6C. After the desorption step, the adsorption tower 6A moves to a pressure increasing step.

昇圧工程では、洗浄工程にある吸気基6Cから排出され
る洗浄排ガスが流入している原料ガスへラダー管7から
この混合ガスが配管9を通り、4方弁21の流路23か
ら流路22を経由して吸着塔6Aに入って塔内を昇圧す
る。その間4方弁20は閉じている。
In the pressure increasing process, this mixed gas passes through the pipe 9 from the ladder pipe 7 to the raw material gas into which the cleaning exhaust gas discharged from the intake group 6C in the cleaning process is flowing, and from the flow path 23 of the four-way valve 21 to the flow path 22. It enters the adsorption tower 6A via , and the pressure inside the tower is increased. During this time, the four-way valve 20 is closed.

上記工程を1サイクルとして目的ガスの分離精製が連続
的に行なわれる。
Separation and purification of the target gas is performed continuously with the above steps as one cycle.

〔発明の効果〕〔Effect of the invention〕

本発明のバルブシステムにおいては、吸着塔の入口に多
方弁を導入することにより、脱着工程においては出口側
の弁が開くという誤作動を除きどのような弁の誤作動が
あっても原料ガス供給管、吸着排ガス排出管及び洗浄排
ガス排出管のいずれもが脱着ガス引抜管と接続されるこ
とはなく、従って、これらのガスが製品ガスに混入する
ことはない。また、切替弁として多方弁を採用したので
切替バルブの数が少なぐ、バルブの設置場所が小さく、
システムを簡単にすることができるため設備維持費の低
減を計ることができる。
In the valve system of the present invention, by introducing a multi-way valve at the inlet of the adsorption tower, the feedstock gas can be supplied even if any valve malfunctions in the desorption process, except for malfunctions in which the valve on the outlet side opens. None of the pipes, the adsorption exhaust gas discharge pipe and the cleaning exhaust gas discharge pipe are connected to the desorption gas withdrawal pipe, so that these gases do not mix with the product gas. In addition, since a multi-way valve is used as the switching valve, the number of switching valves is small, and the installation space for the valve is small.
Since the system can be simplified, equipment maintenance costs can be reduced.

制御系統も簡単となるため、トラブルの発生が少なく、
信頼性の高い装置を安価に得ることができる。さらに操
作工程の1サイクルが切替弁の1回転で対応できること
により、バルブの寿命を伸ばすことができる。
The control system is also simpler, so troubles are less likely to occur.
A highly reliable device can be obtained at low cost. Furthermore, since one cycle of the operating process can be handled by one rotation of the switching valve, the life of the valve can be extended.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例によるPSA切替バルブシス
テムの配管構成図である。第2図は従来のPSA切替パ
ルプシステムの配管構成図である。
FIG. 1 is a piping configuration diagram of a PSA switching valve system according to an embodiment of the present invention. FIG. 2 is a piping configuration diagram of a conventional PSA switching pulp system.

Claims (2)

【特許請求の範囲】[Claims] (1)複数の吸着塔よりなり、各吸着塔の入口にはいず
れも原料ガス供給管、洗浄ガス供給管及び脱着ガス引抜
管が接続され、かつ出口には吸着排ガス排出管が接続さ
れている、PSA法により目的ガスを分離精製する装置
において、前記入口に前記原料ガス供給管、洗浄ガス供
給管及び脱着ガス引抜管を切替えてそのいずれかひとつ
の管とだけ接続する3方以上の多方弁を設けたことを特
徴とするPSA切替バルブシステム
(1) Consisting of multiple adsorption towers, the inlet of each adsorption tower is connected to a raw material gas supply pipe, cleaning gas supply pipe, and desorption gas withdrawal pipe, and the outlet is connected to an adsorbed exhaust gas discharge pipe. , in an apparatus for separating and purifying target gas by the PSA method, a three-way or more multi-way valve that switches between the source gas supply pipe, the cleaning gas supply pipe, and the desorption gas withdrawal pipe and connects only one of them to the inlet. A PSA switching valve system characterized by the provision of
(2)前記出口に前記原料ガス供給管と結ぶ洗浄排ガス
排出管が接続されるとともに該洗浄排ガス排出管と前記
吸着排ガス排出管を切替える3方以上の多方弁が設けら
れた特許請求の範囲第1項記載のPSA切替バルブシス
テム
(2) A cleaning exhaust gas discharge pipe connected to the raw material gas supply pipe is connected to the outlet, and a three-way or more multi-way valve is provided for switching between the cleaning exhaust gas discharge pipe and the adsorption exhaust gas discharge pipe. PSA switching valve system as described in item 1
JP62317169A 1987-12-15 1987-12-15 Psa switchover valve system Pending JPH01159017A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62317169A JPH01159017A (en) 1987-12-15 1987-12-15 Psa switchover valve system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62317169A JPH01159017A (en) 1987-12-15 1987-12-15 Psa switchover valve system

Publications (1)

Publication Number Publication Date
JPH01159017A true JPH01159017A (en) 1989-06-22

Family

ID=18085227

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62317169A Pending JPH01159017A (en) 1987-12-15 1987-12-15 Psa switchover valve system

Country Status (1)

Country Link
JP (1) JPH01159017A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100939055B1 (en) * 2006-06-30 2010-01-28 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Pressure swing adsorption system with indexed rotatable multi-port valves

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100939055B1 (en) * 2006-06-30 2010-01-28 에어 프로덕츠 앤드 케미칼스, 인코오포레이티드 Pressure swing adsorption system with indexed rotatable multi-port valves

Similar Documents

Publication Publication Date Title
US4857083A (en) Vacuum swing adsorption process with vacuum aided internal rinse
EP0008882B1 (en) Separation of multicomponent gas mixtures by pressure swing adsorption
EP0758625B1 (en) Method of recovering oxygen-rich gas
KR100254295B1 (en) Pressure swing adsorption process with a single adsorbent bed
CA1304699C (en) Preparation of high purity oxygen
EP0008512A1 (en) Separation of multicomponent gas mixtures
NO177693B (en) Process for producing oxygen-enriched product stream
JP2002191925A (en) Pressure swing adsorption method for separating feed gas
WO2004076030A1 (en) Off-gas feed method and object gas purification system
KR20000076623A (en) Single bed pressure swing adsorption process and system
CN101810980A (en) The PSA circulation of high-recovery and the equipment that complexity reduces
US6461410B1 (en) Method and apparatus for separating, removing, and recovering gas components
CN109179335A (en) A kind of device and method that pressure-variable adsorption prepares high-purity oxygen
CN108236829B (en) From the content of CO2Separation of high purity CO from raw material gas2Method and apparatus
CN111841244A (en) Pressure swing adsorption hydrogen purification system
KR20020081304A (en) Method of recovering enriched gaseous oxygen
JP7374925B2 (en) Gas separation equipment and gas separation method
JPH01159017A (en) Psa switchover valve system
CA1132918A (en) Pressure swing adsorption process and system for gas separation
TW201605722A (en) Purification method and purification device for target gas
CN209865695U (en) Gas flow distributor and nitrogen production equipment
JPH0312307A (en) Method for enriching oxygen
JPS61254219A (en) Apparatus for removing co2
KR100228239B1 (en) Apparatus and process for producing nitrogen using psa system depending on nitrogen concentration in the product
JPH0517133Y2 (en)