JPH01158704A - Manufacture of nonmagnetic core for air core coil - Google Patents

Manufacture of nonmagnetic core for air core coil

Info

Publication number
JPH01158704A
JPH01158704A JP62316333A JP31633387A JPH01158704A JP H01158704 A JPH01158704 A JP H01158704A JP 62316333 A JP62316333 A JP 62316333A JP 31633387 A JP31633387 A JP 31633387A JP H01158704 A JPH01158704 A JP H01158704A
Authority
JP
Japan
Prior art keywords
core
ferrite
sintered
air
core made
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP62316333A
Other languages
Japanese (ja)
Inventor
Takeyoshi Ikeda
池田 勇悦
Motoi Kumagai
熊谷 基
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
TDK Corp
Original Assignee
TDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by TDK Corp filed Critical TDK Corp
Priority to JP62316333A priority Critical patent/JPH01158704A/en
Publication of JPH01158704A publication Critical patent/JPH01158704A/en
Pending legal-status Critical Current

Links

Landscapes

  • Magnetic Ceramics (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

PURPOSE:To inexpensively manufacture air core coils having good shape retension and large Q in mass production by polishing a core made of a sintered specific substance and then oxidizing the surface at a rising temperature in an oxidative atmosphere. CONSTITUTION:A core made of Zn ferrite of diaferromagnetic material or sintered Zn ferritic oxide is manufactured, and polished in a predetermined size. It is further heat treated in an oxidative atmosphere thereby to obtain a core made of Zn ferrite or sintered Zn ferritic oxide having high surface resistance. Since an eddy current occurs on the surface, the core can provide an inductor having excellent high frequency properties. Since the core can be fired at much lower firing temperature than that of ceramics, such as alumina or the like, its manufacturing cost is reduced, and a mass production can be achieved.

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明は非磁性体芯体の製造方法に関し、さらに詳しく
は空芯コイルの巻き芯として使用するための芯体に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to a method for manufacturing a non-magnetic core, and more particularly to a core for use as a winding core of an air-core coil.

(従来技術) 空芯コイルは開磁路型のインダクターであり電子機器に
広く使用されている。空芯コイルはコイルを流れる電流
によって飽和しにくいため直流重畳特性が良い。しかし
ながら、空芯コイルは外力によって巻線構造が変化し易
く、信頼性が悪い。
(Prior Art) Air-core coils are open magnetic path type inductors and are widely used in electronic devices. Air-core coils have good DC superimposition characteristics because they are less likely to be saturated by the current flowing through the coils. However, the winding structure of air-core coils tends to change due to external forces, resulting in poor reliability.

従って、外力に左右されないように保形性を高める必要
がある。保形性を高めるためにアルミナ、ステアタイト
等の絶縁材料やフェノール、エポキシ等の高分子材料を
使用して芯体を形成し、その周囲に巻かれた線輪や導体
めっき配線によりインダクターを、形成している。しか
し、これらの素子には一長一短があり、未だ満足なもの
がない。
Therefore, it is necessary to improve shape retention so that it is not affected by external forces. In order to improve shape retention, insulating materials such as alumina and steatite and polymeric materials such as phenol and epoxy are used to form the core, and the inductor is formed using wire rings and conductor-plated wiring wrapped around the core. is forming. However, these elements have advantages and disadvantages, and none are yet satisfactory.

(従来技術の問題点)、 上記素子のうち、アルミナ、ステアタイト等の絶縁材料
は電気絶縁性が高く、高周波用として有用である。しか
し、焼成によって芯体を製造する際に焼結温度がきわめ
て高いために製造コストが高い。また硬度が高いために
砥石等による機械加工性が悪く、SMT化による高寸法
精度の設計要求に応じ得ない欠点がある。
(Problems with the Prior Art) Among the above elements, insulating materials such as alumina and steatite have high electrical insulation properties and are useful for high frequency applications. However, the manufacturing cost is high because the sintering temperature is extremely high when manufacturing the core by firing. Furthermore, due to its high hardness, machinability with a grindstone or the like is poor, and it has the disadvantage that it cannot meet the design requirements for high dimensional accuracy due to SMT.

フェノール、エポキシ樹脂等の高分子樹脂は、耐熱性が
悪く変形し易い欠点があり、また比較的高価である。
Polymer resins such as phenol and epoxy resins have the disadvantage of poor heat resistance and easy deformation, and are also relatively expensive.

そのほか、フェライト形の酸化物焼結体としては反強磁
性体であるZnフェライトがあり、これを芯体として使
用することも考えられるが、Znフェライトは電気抵抗
が10〜103Ωcmときわめて低く、巻線に対する絶
縁性が低く、また高周波帯では、渦電流損が大きくなり
、Qが空芯コイル比で50%も低下することも稀ではな
い。
In addition, there is Zn ferrite, which is an antiferromagnetic material, as a ferrite-type oxide sintered body, and it is possible to use this as a core, but Zn ferrite has an extremely low electrical resistance of 10 to 103 Ωcm, so it cannot be rolled. The insulation against wires is low, and in high frequency bands, eddy current loss increases, and it is not uncommon for Q to decrease by as much as 50% compared to an air-core coil.

従って、Znフェライトを芯体として用いるには同調型
のフィルター等を構成した場合に装入損失が増大するな
どの問題が生じる。
Therefore, when Zn ferrite is used as a core, there arise problems such as an increase in charging loss when configuring a tunable filter or the like.

しかしながら、Znフェライトは低温度で焼結すること
により容易に製造することが出来るから、本発明者は、
その特徴を生かした芯体が提供てきないかと考え本発明
にに想到した。
However, since Zn ferrite can be easily manufactured by sintering at low temperatures, the inventors
We thought that it would be possible to provide a core that takes advantage of these characteristics, and came up with the present invention.

(発明の目的) 本発明は、空芯コイルの巻き芯として好適な芯体を製造
する方法を提供することにある。
(Object of the Invention) An object of the present invention is to provide a method for manufacturing a core body suitable as a winding core of an air-core coil.

(発明の概要) 本発明の方法は、反強磁性体であるZnフェライト又は
これに近いZnフェライト系酸化物焼結体より成る芯体
を製造し、所定の寸法に研磨した後、酸化性雰囲気中で
昇温下表面を酸化することを特徴とする非磁性芯体の製
造方法である。このような芯体は原料混合物の成形体例
えば棒状コア、鼓状コアの形に成形され、その後所定の
高温度で焼成されるが、本発明者の研究によると表面に
おいて電気抵抗が比較的高いが、内部の電気抵抗が低い
。そのため機械加工により所定の寸法に仕上げると、電
気抵抗が低下してしまう。そこで酸化雰囲気中でさらに
熱処理することにより、表面抵抗の高いZnフェライト
又はZnフェライト系酸化物焼結体より成る芯体を提供
することができた。渦電流現象がが表面における現象で
あることから、本発明の方法により製造された芯体は高
周波用として優れたインダクターを提供できる。
(Summary of the Invention) The method of the present invention involves manufacturing a core made of Zn ferrite, which is an antiferromagnetic material, or a sintered Zn ferrite-based oxide similar to the antiferromagnetic material, polishing it to a predetermined size, and then polishing it in an oxidizing atmosphere. This method of manufacturing a non-magnetic core is characterized by oxidizing the surface under elevated temperature. Such a core is formed from a raw material mixture into the shape of a rod-shaped core or a drum-shaped core, and then fired at a predetermined high temperature, but according to the research of the present inventor, the electrical resistance on the surface is relatively high. However, the internal electrical resistance is low. Therefore, when finished to a predetermined size by machining, the electrical resistance decreases. Therefore, by further heat-treating in an oxidizing atmosphere, it was possible to provide a core made of Zn ferrite or Zn ferrite-based oxide sintered body with high surface resistance. Since the eddy current phenomenon is a phenomenon on the surface, the core manufactured by the method of the present invention can provide an excellent inductor for high frequency applications.

(発明の詳細な説明) 以下に本発明の方法を詳しく説明する。本発明の方法に
より製造される芯体はより具体的には、酸化物焼結体組
成で(Z n I−x M X ) OF e 203
 (ただしMは2価金属でXはOまたは非磁性又は殆ど
非磁性であるように選択した少量のFe、Cu、Ni、
Coの1種以上。)やZnOにたいしFe2O3を化学
量論量よりも不足量で配合したものなどである。CuO
を配合したものは電気抵抗が高くなるので、本発明の表
面酸化処理は必要のないものもあるが、Fe、Zn、C
uのモル比によっては電気抵抗の低いものもあり本発明
の処理により特性の大幅な改善がみられる。
(Detailed Description of the Invention) The method of the present invention will be described in detail below. More specifically, the core produced by the method of the present invention has an oxide sintered body composition (Z n I-x MX ) OF e 203
(where M is a divalent metal and X is O or a small amount of Fe, Cu, Ni selected to be non-magnetic or almost non-magnetic,
One or more types of Co. ) and ZnO mixed with Fe2O3 in an amount less than the stoichiometric amount. CuO
Some products containing Fe, Zn, and C have high electrical resistance, so the surface oxidation treatment of the present invention is not necessary.
Depending on the molar ratio of u, some have low electrical resistance, and the treatment of the present invention can significantly improve the properties.

夫巖■ユ 従来慣用されている方法で第1表に示される成分比で表
わされるZnフェライト系酸化物焼結体を作成後、ポリ
ビニルアルコールを添加し造粒を行ない、外形6 m 
m 、長さ12mmの丸棒の加圧成形を行なった。その
後、空気中で1250°Cで焼成を行ない焼結体を得た
。得られた丸棒コアの表面を、抵抗計を用いてコアの長
手方向に測定端子間距離を7mmに取り、抵抗値を測定
し電気抵抗値とした。その後、丸棒コアの表面を砥石に
より丸棒の表面を1.5mmの厚さだけ除去して内部面
の電気抵抗を上記と同じ方法で測定した。
After creating a Zn ferrite oxide sintered body with the component ratio shown in Table 1 using a conventionally used method, polyvinyl alcohol was added and granulated to obtain an outer diameter of 6 m.
A round bar with a length of 12 mm was press-formed. Thereafter, firing was performed in air at 1250°C to obtain a sintered body. The resistance value was measured on the surface of the obtained round bar core using a resistance meter at a distance between measurement terminals of 7 mm in the longitudinal direction of the core, which was defined as an electrical resistance value. Thereafter, the surface of the round bar core was removed by a thickness of 1.5 mm using a grindstone, and the electrical resistance of the internal surface was measured in the same manner as above.

各成分比について、表面と研磨後の内部面の電気抵抗値
を第1表に示す。これによるとZnフェライト系酸化物
焼結体は、表面と内部面の電気抵抗値が著しく違うこと
が分かる。
Table 1 shows the electrical resistance values of the surface and the internal surface after polishing for each component ratio. This shows that the electrical resistance value of the surface and internal surface of the Zn ferrite oxide sintered body is significantly different.

次いで、これらの研磨した丸棒コアを再び空気中で11
50℃の温度で1時間熱処理して上記と同じ方法で電気
抵抗を測定した。結果を第1表に示す。明かに表面抵抗
が回復していることが分かる。
These polished round bar cores were then heated again in air for 11 hours.
After heat treatment at a temperature of 50° C. for 1 hour, the electrical resistance was measured in the same manner as above. The results are shown in Table 1. It can be seen that the surface resistance has clearly recovered.

去」1頒λ モル比で表わして、Fe20342.5%およびZn○
57.5 (試料1)、及びFe203425%、Cu
01%及びZn056.5%(試料2)の組成を有する
丸棒コアを実施例1と同一の方法により製造した。酸化
物焼結体を実施例1の方法により製造した。次いで実施
例1の方法で電気抵抗を測定したところ、試料1は4×
107Ω及び試料2は4×lo 8Ωであった。次いで
実施例1と同じ方法で表面層を除去し再び電気抵抗を測
定したところ試料1は6X102Ω、試料2はI X 
10’Ωであった。次いで実施例1と同じ条件で表面酸
化をしたところ基の電気抵抗値を回復した。
Expressed in molar ratio, Fe20342.5% and Zn○
57.5 (sample 1), and Fe203425%, Cu
A round bar core having a composition of Zn01% and Zn056.5% (Sample 2) was manufactured by the same method as in Example 1. An oxide sintered body was manufactured by the method of Example 1. Then, when the electrical resistance was measured by the method of Example 1, Sample 1 was 4×
107Ω and sample 2 was 4×lo 8Ω. Next, the surface layer was removed in the same manner as in Example 1, and the electrical resistance was measured again. Sample 1 was 6 x 102 Ω, and sample 2 was I
It was 10'Ω. Then, when the surface was oxidized under the same conditions as in Example 1, the electrical resistance value of the base was recovered.

(作用効果) 以上のように、本発明によると、表面抵抗の高いZnフ
ェライト系酸化物焼結体より成る非磁性芯体が得られた
。従って、外部応力にたいして保形性の良い、またQの
大きい空芯コイルを提供することができた。また、本発
明の芯体ばアルミナ等のセラミックに比較してはるかに
低い焼成温度で焼成できるから、製造コストを低下し、
また大量生産が可能となる。
(Effects) As described above, according to the present invention, a nonmagnetic core made of a Zn ferrite oxide sintered body with high surface resistance was obtained. Therefore, it was possible to provide an air-core coil that has good shape retention against external stress and has a large Q. Additionally, since the core of the present invention can be fired at a much lower firing temperature than ceramics such as alumina, manufacturing costs can be reduced.
Also, mass production becomes possible.

Claims (1)

【特許請求の範囲】[Claims] (1)反強磁性体であるZnフェライト又はこれに近い
Znフェライト系酸化物焼結体より成る芯体を製造し、
所定の寸法に研磨した後、酸化性雰囲気中で昇温下表面
を酸化することを特徴とする空芯コイル用非磁性芯体の
製造方法。
(1) Producing a core made of Zn ferrite, which is an antiferromagnetic material, or a sintered Zn ferrite-based oxide similar to this,
A method for manufacturing a non-magnetic core for an air-core coil, which comprises polishing to a predetermined size and then oxidizing the surface at an elevated temperature in an oxidizing atmosphere.
JP62316333A 1987-12-16 1987-12-16 Manufacture of nonmagnetic core for air core coil Pending JPH01158704A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP62316333A JPH01158704A (en) 1987-12-16 1987-12-16 Manufacture of nonmagnetic core for air core coil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP62316333A JPH01158704A (en) 1987-12-16 1987-12-16 Manufacture of nonmagnetic core for air core coil

Publications (1)

Publication Number Publication Date
JPH01158704A true JPH01158704A (en) 1989-06-21

Family

ID=18075956

Family Applications (1)

Application Number Title Priority Date Filing Date
JP62316333A Pending JPH01158704A (en) 1987-12-16 1987-12-16 Manufacture of nonmagnetic core for air core coil

Country Status (1)

Country Link
JP (1) JPH01158704A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008534113A (en) * 2005-03-31 2008-08-28 スン チョイ,イン Orthodontic device for foot with shock absorbing member
JP2014183182A (en) * 2013-03-19 2014-09-29 Fdk Corp Non-magnetic material, and method for manufacturing non-magnetic ceramic composition

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008534113A (en) * 2005-03-31 2008-08-28 スン チョイ,イン Orthodontic device for foot with shock absorbing member
JP2014183182A (en) * 2013-03-19 2014-09-29 Fdk Corp Non-magnetic material, and method for manufacturing non-magnetic ceramic composition

Similar Documents

Publication Publication Date Title
KR101603827B1 (en) Multilayer coil part
KR101460037B1 (en) Coil type electronic component
TWI582804B (en) Coil parts
KR20010066871A (en) Low loss ferrites, a component applying the same, and method for manufacturing the low loss ferrites
KR20000028996A (en) Ferrite oxide magnetic material
JP2006294775A (en) Magnetic material and inductor using the same
JP7508986B2 (en) Ferrite sintered body and wound coil parts
TW202414451A (en) Magnetic powder-winding co-fired inductance element and preparation method thereof
JPH01158704A (en) Manufacture of nonmagnetic core for air core coil
JP4687536B2 (en) Magnetic body and method for manufacturing the same, and winding coil and method for manufacturing the same
JPS6349890B2 (en)
JPH06310320A (en) Oxide magnetic substance material
JP7331817B2 (en) Ferrite sintered body and wire-wound coil parts
JP3683680B2 (en) Magnetic material for high frequency multilayer inductors
US20020148995A1 (en) Oxide magnetic material and coil part using the same
JP7508985B2 (en) Ferrite sintered body and wound coil parts
JPS60210572A (en) Low temperature sintered oxide magnetic material
JP2019201154A (en) Powder magnetic core and inductor element
US5966065A (en) Core for inductance elements and its production method
KR20150094371A (en) Soft magnetic core having excellent dc bias characteristics and method for manufacturing the same
JPH0787047B2 (en) Inductor core
JPH0478114A (en) Composite magnetic core
JPH0374811A (en) Ferrite magnetic material
JPH1072252A (en) Ferrite material for plating
KR940011694B1 (en) Ferrite for chip inductor