JP2014183182A - Non-magnetic material, and method for manufacturing non-magnetic ceramic composition - Google Patents

Non-magnetic material, and method for manufacturing non-magnetic ceramic composition Download PDF

Info

Publication number
JP2014183182A
JP2014183182A JP2013056558A JP2013056558A JP2014183182A JP 2014183182 A JP2014183182 A JP 2014183182A JP 2013056558 A JP2013056558 A JP 2013056558A JP 2013056558 A JP2013056558 A JP 2013056558A JP 2014183182 A JP2014183182 A JP 2014183182A
Authority
JP
Japan
Prior art keywords
magnetic
nonmagnetic
mol
magnetic material
cuo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013056558A
Other languages
Japanese (ja)
Other versions
JP6205149B2 (en
Inventor
Masayuki Inagaki
正幸 稲垣
Daisuke Matsubayashi
大介 松林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP2013056558A priority Critical patent/JP6205149B2/en
Publication of JP2014183182A publication Critical patent/JP2014183182A/en
Application granted granted Critical
Publication of JP6205149B2 publication Critical patent/JP6205149B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Soft Magnetic Materials (AREA)
  • Manufacturing Cores, Coils, And Magnets (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a non-magnetic material which allows a low temperature baking to be conducted while preventing the worsening of a direct current superposition property owing to the diffusion of a magnetic substance from a magnetic layer in a multilayer inductor.SOLUTION: A non-magnetic material is used to form a non-magnetic layer functioning as a magnetic gap in a multilayer inductor. The non-magnetic material comprises: a mixture including a mol% of FeO, b mol% of ZnO and c mol% of CuO; and d wt% of BiOadded to the mixture. In the non-magnetic material, "a", "b", "c" and "d" satisfy the conditions: a+b+c=100, 30≤a≤40, 0≤c≤10 and 0<d≤3.0. Preferably, "c" and "d" meet the conditions: 5≤c≤10 and 0<d≤1.5.

Description

本発明は、積層インダクタに用いられる非磁性材料とその非磁性材料を焼結させてなる非磁性磁器組成物の製造方法に関する。   The present invention relates to a nonmagnetic material used for a multilayer inductor and a method for producing a nonmagnetic ceramic composition obtained by sintering the nonmagnetic material.

周知のごとく、積層インダクタでは、電気絶縁性の磁性層と導体パターンが交互に積層されるとともに、各層の導体パターンが順次層間で接続されることで、磁性体中で積層方向に重畳しながら螺旋状に周回するコイルが形成される。このような積層インダクタは、コイルの周囲が磁性体で囲まれているため、外部への磁気漏洩が少なく、比較的少ない巻数で必要なインダクタンスが得られる特徴があり、小型化、薄型化に適している。しかしながら、小さなコイル電流(励磁電流)でも磁性体の磁気飽和が生じるため、直流重畳電流が低電流領域にあってもインダクタンスが大きく変動する。つまり、直流重畳特性が悪いという問題があった。   As is well known, in a multilayer inductor, an electrically insulating magnetic layer and a conductor pattern are alternately stacked, and the conductor pattern of each layer is connected between the layers in sequence, thereby spiraling while overlapping in the stacking direction in the magnetic material. A coil that circulates in a shape is formed. Such a multilayer inductor is characterized by the fact that the coil is surrounded by a magnetic material, so there is little magnetic leakage to the outside, and the required inductance can be obtained with a relatively small number of turns, making it suitable for downsizing and thinning. ing. However, since magnetic saturation of the magnetic material occurs even with a small coil current (excitation current), the inductance fluctuates greatly even if the DC superimposed current is in a low current region. That is, there is a problem that the direct current superimposition characteristic is bad.

そこで、以下の特許文献1に記載されている積層インダクタでは、一部の磁性層全体を電気絶縁性の非磁性層で置き換えることにより、積層インダクタ中に磁気的なギャップを介在させ、これによって磁気飽和レベルを高めて、トランスやチョークコイルなどとして大きな定格電流が得られるようにしている。そして、このような積層インダクタは、厚膜技術によって磁性層非磁性層のそれぞれに対応するペースト状のシートを電極パターンを形成する電極層を介して積層した積層体を焼成して得られた焼結体の表面に外部電極用ペーストを形成することで製造される。なお電極層は、融点が962℃の銀を導電体として用いるのが一般的であることから、磁性層や非磁性層にはFeを主体として900℃以下での低温焼成が可能な材料が用いられる。例えば、磁性層を構成する磁性材料としては、Ni−Cu−Zn系フェライトやNi−Zn系フェライトが用いられ、非磁性層を構成する非磁性材料としては、Zn系フェライトが用いられる。なお以下の特許文献2、3などには、積層インダクタに用いられる非磁性材料の組成について記載されている。   Therefore, in the multilayer inductor described in the following Patent Document 1, a magnetic gap is interposed in the multilayer inductor by replacing a part of the entire magnetic layer with an electrically insulating nonmagnetic layer, thereby magnetically. The saturation level is increased so that a large rated current can be obtained as a transformer or choke coil. Such a multilayer inductor is obtained by firing a laminated body obtained by firing a paste sheet corresponding to each of the magnetic and nonmagnetic layers through an electrode layer forming an electrode pattern by thick film technology. It is manufactured by forming an external electrode paste on the surface of the bonded body. Since the electrode layer generally uses silver having a melting point of 962 ° C. as a conductor, the magnetic layer and the non-magnetic layer are made of a material mainly composed of Fe and capable of being sintered at a low temperature of 900 ° C. or lower. It is done. For example, Ni—Cu—Zn-based ferrite and Ni—Zn-based ferrite are used as the magnetic material constituting the magnetic layer, and Zn-based ferrite is used as the nonmagnetic material constituting the nonmagnetic layer. The following Patent Documents 2 and 3 describe the composition of the nonmagnetic material used for the multilayer inductor.

特開2005−45108号公報JP-A-2005-45108 特開2007−91538号公報JP 2007-91538 A 特開平06−77022号公報Japanese Patent Laid-Open No. 06-77022

積層インダクタを構成する磁性層と非磁性層は、それぞれ磁性材料からなるシート状のセラミックス(磁器組成物)と非磁性材料からなるシート状の磁器組成物である。そのため、磁性材料と非磁性材料の熱収縮特性が乖離していると焼成時に磁性層と非磁性層との界面にずれが生じ、焼結密度が低下する。もちろん電子部品としての寸法精度も劣化し製品としての品質の均一性を確保できない。   The magnetic layer and the nonmagnetic layer constituting the multilayer inductor are a sheet-like ceramic (a porcelain composition) made of a magnetic material and a sheet-like porcelain composition made of a nonmagnetic material, respectively. For this reason, if the heat shrinkage characteristics of the magnetic material and the nonmagnetic material are deviated, a deviation occurs at the interface between the magnetic layer and the nonmagnetic layer during firing, and the sintered density is lowered. Of course, the dimensional accuracy as an electronic component also deteriorates, and the quality uniformity as a product cannot be secured.

そのため、磁性層を構成する磁性材料が基本的にスピネル型のフェライトであることから、非磁性層を構成する非磁性材料についても組成中のFeの割合が50mol%程度のスピネル型のフェライトを用いて磁性材料の熱収縮特性と大きく乖離しないようにしている。また、積層インダクタでは、磁性層と非磁性層との層間に電極パターンを形成しているため、その電極パターンにおいて短絡が発生しないように非磁性材料には十分に高い絶縁特性も要求されている。そして上記特許文献2や3には、積層インダクタの用途に適した非磁性材料の組成について記載されていた。 Therefore, since the magnetic material constituting the magnetic layer is basically a spinel type ferrite, the spinel type ferrite in which the proportion of Fe 2 O 3 in the composition of the nonmagnetic material constituting the nonmagnetic layer is about 50 mol%. Ferrite is used so as not to greatly deviate from the heat shrinkage characteristics of the magnetic material. In addition, in the multilayer inductor, an electrode pattern is formed between the magnetic layer and the nonmagnetic layer. Therefore, the nonmagnetic material is required to have sufficiently high insulation characteristics so that a short circuit does not occur in the electrode pattern. . In Patent Documents 2 and 3, the composition of the nonmagnetic material suitable for the use of the multilayer inductor is described.

ところが、積層インダクタは、磁性層と非磁性層を含む積層体を磁器組成物として焼結させることで製造される電子部品であり、特許文献2や3に記載の非磁性材料を含め、従来の非磁性材料では、その焼成によって積層インダクタの直流重畳特性が劣化するという問題があることが判明した。具体的には、焼結時に磁性層に含まれるNiやCuなどの磁性体を含む物質が非磁性層のFe内に拡散し、非磁性層の物理的な厚さが同じでも磁気ギャップとして機能する非磁性層の厚さが実質的に減少し、期待されたほどの直流重畳特性が得られないという問題がある。また、磁性体の拡散も一様でないため、磁気ギャップとして機能する厚さも不均一となる。それによって積層インダクタの直流重畳特性が劣化するとともに、積層インダクタの特性が固体間で不均一になる。 However, the multilayer inductor is an electronic component manufactured by sintering a multilayer body including a magnetic layer and a nonmagnetic layer as a porcelain composition, and includes conventional nonmagnetic materials described in Patent Documents 2 and 3. It has been found that the non-magnetic material has a problem that the direct current superposition characteristics of the multilayer inductor deteriorate due to the firing. Specifically, a substance containing a magnetic material such as Ni or Cu contained in the magnetic layer at the time of sintering diffuses into the Fe 2 O 3 of the nonmagnetic layer, and the magnetic layer has the same physical thickness. There is a problem that the thickness of the nonmagnetic layer functioning as the gap is substantially reduced, and the DC superimposition characteristics as expected cannot be obtained. Further, since the diffusion of the magnetic material is not uniform, the thickness functioning as the magnetic gap is also non-uniform. As a result, the direct current superimposition characteristics of the multilayer inductor deteriorate, and the characteristics of the multilayer inductor become non-uniform between solids.

そこで非磁性材料であるフェライトの組成において、Fe以外の主要な成分であるZnの割合を増やすことが考えられるが、Znの割合を増やすと焼結温度が高くなり、焼結体として十分な密度を確保しようとすれば焼結温度が電極パターンを形成するAgの融点を超えてしまう。Agの融点以下で低温焼成すると十分な密度が維持できず、磁性層と非磁性層との界面で熱収縮特性の不一致に起因する「ずれ」が発生し、電子部品としての寸法精度が劣化する。 Therefore, in the composition of ferrite, which is a nonmagnetic material, it is conceivable to increase the proportion of Zn, which is a major component other than Fe 2 O 3 , but increasing the proportion of Zn increases the sintering temperature, and as a sintered body If a sufficient density is to be ensured, the sintering temperature will exceed the melting point of Ag forming the electrode pattern. When firing at a low temperature below the melting point of Ag, a sufficient density cannot be maintained, and a “displacement” due to a mismatch in heat shrinkage characteristics occurs at the interface between the magnetic layer and the nonmagnetic layer, and the dimensional accuracy as an electronic component deteriorates. .

本発明は以上のような問題に鑑みなされたもので、その主たる目的は、積層インダクタにおいて、磁性層からの磁性物質の拡散に起因する直流重畳特性の劣化を防止しつつ、低温焼成が可能な非磁性材料を提供することにある。   The present invention has been made in view of the above problems, and a main object of the present invention is to enable low-temperature firing in a multilayer inductor while preventing deterioration of direct current superposition characteristics due to diffusion of a magnetic substance from a magnetic layer. It is to provide a non-magnetic material.

上記目的を達成するための本発明は、積層インダクタにおいて磁気ギャップとして機能する非磁性層を構成する非磁性材料であって、
amol%のFeとbmol%のZnOとcmol%のCuOを含む混合物にdwt%のBiが添加されてなり、
a+b+c=100、30≦a≦40、0≦c≦10、0<d≦3.0
であることを特徴とする非磁性材料としている。また、5≦c≦10、0<d≦1.5である非磁性材料とすればより好ましい。
The present invention for achieving the above object is a nonmagnetic material constituting a nonmagnetic layer functioning as a magnetic gap in a multilayer inductor,
it is added dwt% of Bi 2 O 3 to the mixture containing amol% of Fe 2 O 3 and Bmol% of ZnO and cmol% of CuO,
a + b + c = 100, 30 ≦ a ≦ 40, 0 ≦ c ≦ 10, 0 <d ≦ 3.0
It is a non-magnetic material characterized by Further, it is more preferable to use a nonmagnetic material satisfying 5 ≦ c ≦ 10 and 0 <d ≦ 1.5.

本発明は、非磁性磁器組成物の製造方法にも及んでおり、当該製造方法に係る発明は、
a+b+c=100、35≦a≦40、0≦c≦10として、amol%のFeとbmol%のZnOとcmol%のCuOを混合して得た混合物を900℃よりも低い温度で仮焼成するステップと、
前記仮焼成によって得た所定の粒度以下の粉末にさらに解砕するステップと、
0<d≦3.0として、前記所定の粒度以下の粉末に対してdwt%のBiを添加したものにバインダーを加えて造粒物を得るステップと、
前記造粒物を所定の形状の成形体に成形するステップと、
前記成形体を銀の融点以下の温度で焼成して焼結体を得るステップと、
を含むことを特徴としている。
The present invention also extends to a method for producing a non-magnetic porcelain composition.
Assuming that a + b + c = 100, 35 ≦ a ≦ 40, and 0 ≦ c ≦ 10, a mixture obtained by mixing amol% Fe 2 O 3 , bmol% ZnO and cmol% CuO was temporarily prepared at a temperature lower than 900 ° C. Firing, and
Further crushing to a powder of a predetermined particle size or less obtained by the preliminary firing,
Adding 0 wt% Bi 2 O 3 to the powder having a predetermined particle size or less and adding a binder to obtain a granulated product, with 0 <d ≦ 3.0;
Molding the granulated product into a molded body having a predetermined shape;
Firing the molded body at a temperature below the melting point of silver to obtain a sintered body;
It is characterized by including.

本発明の非磁性材料によれば、積層インダクタの非磁性層に適用した際に、低温焼成を可能としつつ、磁性層からの磁性体の拡散に起因する直流重畳特性の劣化を防止することができる。   According to the nonmagnetic material of the present invention, when applied to a nonmagnetic layer of a multilayer inductor, it is possible to perform low-temperature firing, and to prevent deterioration of DC superimposition characteristics due to diffusion of a magnetic material from the magnetic layer. it can.

非磁性材料を用いた焼結体の製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the sintered compact using a nonmagnetic material. 非磁性材料と磁性材料が含まれる焼結体の製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the sintered compact containing a nonmagnetic material and a magnetic material. シート状の非磁材料とシート状の磁性材料とを積層してなる焼結体の製造方法の一例を示す図である。It is a figure which shows an example of the manufacturing method of the sintered compact formed by laminating | stacking a sheet-like nonmagnetic material and a sheet-like magnetic material.

===本発明の技術思想===
上述したように、従来の積層インダクタの非磁性層に用いられている非磁性材料では、磁性層からのNiやCuなどの磁性体が拡散するという現象により、期待された直流重畳特性が得られず、特性も不均一になるという問題があった。しかしこの現象は、積層インダクタが磁性層と非磁性層からなる焼結体である以上原理的に抑制することは不可能である。そこで本発明者は、磁性体の拡散自体を抑制するのではなく、拡散できる磁性体の量を制限することで直流重畳特性の劣化を最小限に抑制するという発想の転換を試みた。
=== Technical thought of the present invention ===
As described above, the non-magnetic material used in the non-magnetic layer of the conventional multilayer inductor achieves the expected DC superposition characteristics due to the phenomenon that a magnetic material such as Ni or Cu diffuses from the magnetic layer. In addition, there is a problem that the characteristics become non-uniform. However, this phenomenon cannot be suppressed in principle because the laminated inductor is a sintered body composed of a magnetic layer and a nonmagnetic layer. Therefore, the present inventor tried to change the idea of suppressing the deterioration of the DC superposition characteristics to a minimum by limiting the amount of the magnetic material that can be diffused, rather than suppressing the diffusion of the magnetic material itself.

概略的には、磁性材料も非磁性材料も主要な組成としてFeを含んでおり、磁性層からの磁性体が非磁性層のFe中に拡散することは不可避な現象であると判断し、その代わり、非磁性材料中のFeの割合を少なくして拡散できる磁性体の量を制限するという技術思想に想到した。もちろん、Feの割合を単純に少なくしただけでは十分な密度が得られない可能性がある。焼結性を確保するために非磁性材料の組成を安易に変えれば絶縁抵抗が増大することも考えられる。焼結させるための焼成温度がAgの融点を超えてしまう場合もある。本発明は、上記技術思想を出発点としつつ、想定される様々な問題を解決するために鋭意研究を重ねた結果なされたものである。 In general, both magnetic and non-magnetic materials contain Fe 2 O 3 as a main composition, and it is an inevitable phenomenon that a magnetic material from a magnetic layer diffuses into Fe 2 O 3 of the non-magnetic layer. Instead, the inventors came up with the technical idea of limiting the amount of magnetic material that can be diffused by reducing the proportion of Fe 2 O 3 in the nonmagnetic material. Of course, there is a possibility that a sufficient density cannot be obtained by simply reducing the proportion of Fe 2 O 3 . If the composition of the nonmagnetic material is easily changed to ensure sinterability, the insulation resistance may be increased. The firing temperature for sintering may exceed the melting point of Ag. The present invention has been made as a result of intensive studies in order to solve various problems that may occur, with the above technical idea as a starting point.

そして本発明の実施例に係る非磁性材料では、焼結性を確保するための焼結助剤の種類や添加量が最適化されて、Agの融点以下である900℃での低温焼成でも従来と同等かそれ以上の密度が確保され、積層インダクタにおける非磁性層として十分に高い絶縁性能も有している。以下では、本発明の実施例に係る非磁性材料の組成について説明する。   In the nonmagnetic material according to the embodiment of the present invention, the kind and amount of the sintering aid for ensuring the sinterability are optimized, and the conventional low temperature firing at 900 ° C. which is not higher than the melting point of Ag. Is equal to or higher than that of the non-magnetic layer in the multilayer inductor and has a sufficiently high insulation performance. Hereinafter, the composition of the nonmagnetic material according to the embodiment of the present invention will be described.

===非磁性材料の組成の最適化===
本発明の実施例に係る非磁性材料の組成を規定するために、組成が異なる各種非磁性材料からなる焼結体、磁性材料と組成が異なる各種磁性材料との混合材料の焼結体、あるいは積層インダクタと同様に磁性層と組成が異なる各種磁性材料からなる非磁性層との積層体を焼成した焼結体をサンプルとして作製し、各種サンプルについて種々の特性を評価した。
=== Optimization of composition of non-magnetic material ===
In order to define the composition of the nonmagnetic material according to the embodiment of the present invention, a sintered body made of various nonmagnetic materials having different compositions, a sintered body of a mixed material of magnetic materials and various magnetic materials having different compositions, or Similar to the multilayer inductor, a sintered body obtained by firing a laminate of nonmagnetic layers made of various magnetic materials having different compositions from the magnetic layer was prepared as a sample, and various characteristics of each sample were evaluated.

<サンプルの製造方法>
本発明の実施例に係る非磁性材料の組成を規定するのにあたり、まずFeの割合を少なくしつつ、焼結体として十分に高い密度と絶縁体として十分に高い抵抗値が得られる条件を求めた。図1に当該条件を求めるためのサンプルの作製手順を示した。まず、Zn系フェライトの原料としてFeとZnO、およびサンプルに応じて焼結助剤となるCuOを秤量した上で混合し(s1→s2→s4またはs1→s3→s4)、その混合物(以下、非磁性フェライト材料)を700〜850℃で仮焼成する(s5)。その仮焼成によって得られた粉体をボールミルにて20時間以上解砕し、最終的に1μm以下の粉体にする(s6)。ここでサンプルに応じて解砕後の粉末に焼結助剤であるBiを混合する(s7→s8)。なお、BiはCuOよりも焼結性を高める効果が高いため、非磁性フェライト材料とともに添加して仮焼成すると、その仮焼成時の温度で焼結してしまう可能性がある。そこでBiは仮焼成工程(s5)の後に添加している。
<Sample manufacturing method>
In defining the composition of the nonmagnetic material according to the embodiment of the present invention, a sufficiently high density as a sintered body and a sufficiently high resistance value as an insulator can be obtained while reducing the proportion of Fe 2 O 3. The conditions were sought. FIG. 1 shows a sample manufacturing procedure for obtaining the conditions. First, Fe 2 O 3 and ZnO as raw materials for Zn-based ferrite and CuO as a sintering aid according to the sample are weighed and mixed (s1 → s2 → s4 or s1 → s3 → s4), and the mixture (Hereinafter, non-magnetic ferrite material) is temporarily fired at 700 to 850 ° C. (s5). The powder obtained by the preliminary calcination is pulverized for 20 hours or more by a ball mill, and finally made into a powder of 1 μm or less (s6). Here, Bi 2 O 3 which is a sintering aid is mixed in the pulverized powder according to the sample (s7 → s8). Since Bi 2 O 3 has a higher effect of enhancing the sinterability than CuO, when added together with the non-magnetic ferrite material and temporarily fired, there is a possibility of sintering at the temperature at the time of the temporary firing. Therefore, Bi 2 O 3 is added after the pre-baking step (s5).

そして解砕した粉体、あるいはその粉体と必要に応じて添加したBiとの混合物にバインダーとしてPVA水溶液を加えて混合し、適宜な大きさの粒子径となるように造粒する(s8→s9またはs6→s7→s9)。さらにその造粒物を目的とする形状に成形する(s10)。ここではリング状に成形した。そして、その成形体をAgの融点以下である900℃で焼成し、サンプルとなる焼結体を得た(s11)。 Then, a PVA aqueous solution is added as a binder to the pulverized powder or a mixture of the powder and Bi 2 O 3 added as necessary, and mixed, and granulated to obtain an appropriate particle size. (S8 → s9 or s6 → s7 → s9). Further, the granulated product is formed into a desired shape (s10). Here, it was molded into a ring shape. And the molded object was baked at 900 degreeC which is below melting | fusing point of Ag, and the sintered compact used as a sample was obtained (s11).

<絶縁抵抗と密度>
以下の表1に、各サンプルの組成と絶縁抵抗と密度を示した。

Figure 2014183182
<Insulation resistance and density>
Table 1 below shows the composition, insulation resistance, and density of each sample.
Figure 2014183182

表1に示したように、作製したサンプルは、Zn系フェライトの主要な組成であるFeとZnOに焼結助剤としてCuOとBiのいずれか、あるいは両方が添加されたものである。ここでは、組成が異なる9種類のサンプル(サンプル1〜9)を作製した。 As shown in Table 1, in the prepared sample, either or both of CuO and Bi 2 O 3 were added as sintering aids to Fe 2 O 3 and ZnO, which are the main compositions of Zn-based ferrite. Is. Here, nine types of samples (samples 1 to 9) having different compositions were produced.

表1に示した各種サンプルにおいて、サンプル9は従来の非磁性材料に相当し、Feの割合が49mol%で、残りの51mol%が当該FeとともにZn系フェライトの主成分であるZnOと焼結助剤であるCuOである。そして、CuOの含有量は、焼結体として十分軟密度である5.0g/cmと1.0×1010Ω(1.0×10MΩ)以上の絶縁抵抗が得られるように11mol%に調整されている。 In the various samples shown in Table 1, sample 9 corresponds to a conventional nonmagnetic material, the proportion of Fe 2 O 3 is 49 mol%, and the remaining 51 mol% is the main component of Zn-based ferrite together with the Fe 2 O 3. Some ZnO and CuO which is a sintering aid. The CuO content is 11 mol so that 5.0 g / cm 2 which is sufficiently soft as a sintered body and an insulation resistance of 1.0 × 10 10 Ω (1.0 × 10 4 MΩ) or more can be obtained. % Has been adjusted.

一方、本発明の実施例に係る非磁性材料は、積層インダクタにおいて磁性層から非磁性層に拡散してくる磁性体の量を制限することで直流重畳特性の劣化を抑制するという技術思想に基づく組成が条件となることから、従来の非磁性材料に相当するサンプル9(以下、比較例1とも言う)以外のサンプル1〜8は、比較例1におけるFeの割合(49mol%)よりも20%程度低い40mol%以下に設定した。ZnOの割合については、ZnOが焼成温度の上昇、すなわち低温焼成では密度が低下する要因であることを鑑み、敢えて比較例1に対して相対的に故意に増加させて一律に60mol%に設定している。すなわち、ここでは不利な条件でも低温焼成によって十分に高い密度が得られる組成を見出すことを目的とした。CuOについては、Feの割合に応じてその割合を変えた。したがって、仮焼成の前に混合される原料であるFe、ZnO、CuOについては、各原料の割合を合計すると100mol%となる。 On the other hand, the nonmagnetic material according to the embodiment of the present invention is based on the technical idea that the deterioration of the DC superimposition characteristic is suppressed by limiting the amount of the magnetic material diffusing from the magnetic layer to the nonmagnetic layer in the multilayer inductor. Since the composition is a condition, Samples 1 to 8 other than Sample 9 (hereinafter also referred to as Comparative Example 1) corresponding to the conventional non-magnetic material have a proportion (49 mol%) of Fe 2 O 3 in Comparative Example 1. Is also set to 40 mol% or less, which is about 20% lower. Regarding the proportion of ZnO, in view of the fact that ZnO is a factor that raises the firing temperature, that is, the density decreases at low temperature firing, it is intentionally increased relative to Comparative Example 1 and is uniformly set to 60 mol%. ing. That is, the object here is to find a composition that can obtain a sufficiently high density by low-temperature firing even under disadvantageous conditions. For CuO, it changed its percentage in proportion to the Fe 2 O 3. Therefore, regarding the Fe 2 O 3 , ZnO, and CuO that are raw materials to be mixed before pre-baking, the sum of the proportions of the respective raw materials is 100 mol%.

表1に示した結果より、比較例1の絶縁抵抗と密度を基準として、その基準と同等以上となる条件について検討した。その結果、サンプルCuOの割合が相対的に多かった4、5において絶縁抵抗が比較例1よりも2桁〜3桁程度低下した。また、サンプル2では、CuOの割合がサンプル9の11mol%よりも低い10mol%であったが、絶縁抵抗がサンプル9と同じであった。以上の結果から、CuOの割合が多いほどは絶縁抵抗が低下し、Feを40mol%以下とした場合ではCuOの割合を10mol%以下にすれば比較例1と同等以上の十分な絶縁抵抗が得られることが分かった。 From the results shown in Table 1, on the basis of the insulation resistance and density of Comparative Example 1, conditions that are equal to or higher than the standard were examined. As a result, in 4 and 5 where the ratio of the sample CuO was relatively high, the insulation resistance decreased by about 2 to 3 digits compared to Comparative Example 1. In Sample 2, the CuO ratio was 10 mol%, which was lower than 11 mol% of Sample 9, but the insulation resistance was the same as Sample 9. From the above results, the insulation resistance decreases as the proportion of CuO increases. When Fe 2 O 3 is set to 40 mol% or less, sufficient insulation equivalent to or higher than that of Comparative Example 1 can be obtained if the proportion of CuO is set to 10 mol% or less. It turns out that resistance is obtained.

一方、密度については、Biが添加されていないサンプル4でのみがサンプル9の密度を下回った。またサンプル6〜8は、組成中にCuOが含まれていなかったが密度はサンプル9の特性を上回った。したがって、FeとZnOとCuOからなる組成を100mol%としたときにその組成中でCuOは10mol%以下であることが条件となり、Biの添加は必要であってもCuOは必要条件ではなく、FeとZnOとCuOからなる非磁性フェライト材料において0mol%以上10mol%以下が条件となる。 On the other hand, regarding the density, only the sample 4 to which Bi 2 O 3 was not added was lower than the density of the sample 9. Samples 6 to 8 did not contain CuO in the composition, but the density exceeded the characteristics of sample 9. Therefore, when the composition composed of Fe 2 O 3 , ZnO and CuO is 100 mol%, the condition is that CuO is 10 mol% or less in the composition. Even if Bi 2 O 3 needs to be added, CuO Not a necessary condition but a nonmagnetic ferrite material composed of Fe 2 O 3 , ZnO and CuO is not less than 0 mol% and not more than 10 mol%.

<透磁率>
つぎに、積層インダクタにおける磁性層から非磁性層へのNiなどの磁性体の拡散にともなう直流重畳特性の劣化を抑制するための条件を求めるために、非磁性材料の原料と磁性材料の原料とを含む一体的な焼結体をサンプルとして作製し、各サンプルの透磁率を測定した。図2はサンプルの作製手順を示す図であり、図1に示したサンプルの作製手順を基本としつつ、図1における非磁性フェライト材料を秤量する工程(s1)とその非磁性フェライト材料の原料を混合する工程(s4)が、非磁性フェライト材料とともにNi−Znフェライト磁性材料(以下、磁性材料)の原料を秤量する工程(s21)と非磁性フェライト材料と磁性材料のそれぞれの原料を混合する工程(s22)に置換されている。また、ここでは全てのサンプルにおいて非磁性フェライト材料中にCuOを含ませている。そして、図1における仮焼成工程(s5)から焼成工程(s11)までは同じ手順(s23〜s29)となっている。なお、磁性材料の原料には「フェライト磁性粉末」などと呼ばれる市販品を用いることができる。
<Permeability>
Next, in order to obtain the conditions for suppressing the deterioration of the DC superposition characteristics due to the diffusion of a magnetic material such as Ni from the magnetic layer to the nonmagnetic layer in the multilayer inductor, the raw material of the nonmagnetic material and the raw material of the magnetic material An integrated sintered body containing the sample was prepared as a sample, and the magnetic permeability of each sample was measured. FIG. 2 is a diagram showing a sample production procedure. Based on the sample production procedure shown in FIG. 1, the step (s1) of weighing the nonmagnetic ferrite material in FIG. 1 and the raw material of the nonmagnetic ferrite material are shown. The step of mixing (s4) includes a step of weighing raw materials of the Ni—Zn ferrite magnetic material (hereinafter referred to as magnetic material) together with the nonmagnetic ferrite material (s21), and a step of mixing the respective raw materials of the nonmagnetic ferrite material and the magnetic material. (S22) is substituted. Here, in all samples, CuO is included in the nonmagnetic ferrite material. And from the temporary baking process (s5) in FIG. 1 to a baking process (s11), it is the same procedure (s23-s29). A commercially available product called “ferrite magnetic powder” can be used as a raw material for the magnetic material.

表2に各サンプルの組成と透磁率との関係を示した。

Figure 2014183182
Table 2 shows the relationship between the composition and permeability of each sample.
Figure 2014183182

表2において、サンプル16(以下、比較例2とも言う)は比較例1の組成に磁性材料の原料を加えて焼成したものであり、この比較例2の透磁率が表2に示した他のサンプル10〜15の透磁率を評価する上での基準となる。そして、磁性層から非磁性層への磁性体の拡散にともなう直流重畳特性の劣化が非磁性層におけるFeの量に依存すると考えられることから、サンプル10〜15ではZnフェライトにおけるFeの割合を変えている。またサンプル10〜15におけるZnフェライト中のCuOについては、表1に示した結果から10mol%以下としている。ここでは5mol%あるいは10mol%としている。なお、サンプル10〜15におけるBiの添加量については、比較例2と同等の密度となるように調整した。磁性材料の原料の混合量については、比較例2における透磁率が65となるように調整し、他のサンプル10〜15もこの比較例2と同じ量を混合している。 In Table 2, a sample 16 (hereinafter also referred to as Comparative Example 2) is obtained by adding a raw material of a magnetic material to the composition of Comparative Example 1 and firing. The magnetic permeability of Comparative Example 2 is shown in Table 2 below. This is a standard for evaluating the magnetic permeability of samples 10 to 15. Since it is considered that the deterioration of the DC superimposition characteristic due to the diffusion of the magnetic material from the magnetic layer to the nonmagnetic layer depends on the amount of Fe 2 O 3 in the nonmagnetic layer, in samples 10 to 15 Fe 2 in Zn ferrite The ratio of O 3 is changed. Further, CuO in Zn ferrite in Samples 10 to 15 is set to 10 mol% or less from the results shown in Table 1. Here, it is 5 mol% or 10 mol%. As for the addition amount of Bi 2 O 3 in the samples 10 to 15 was adjusted to an equivalent density and Comparative Example 2. About the mixing amount of the raw material of a magnetic material, it adjusted so that the magnetic permeability in the comparative example 2 might be set to 65, and the other samples 10-15 are also mixing the same quantity as this comparative example 2.

そして表2に示した各サンプルの透磁率から、ZnフェライトにおけるFeの割合が40mol%より多いサンプル10、13、14では、透磁率が比較例と同等以上であった。したがって、ZnフェライトにおけるFeの割合は40mol%以下であることが条件となる。そして、表1に示した結果からCuOの割合の上限が10mol%であったことから、このときのFeの割合である30mol%をFeの割合の上限として規定した。すなわち、仮焼成前の非磁性フェライト材料におけるFeの割合を30mol%以上40mol%以下、CuOの割合を0mol%以上10mol%以下、残りをZnOとするとともに、仮焼成後にBiを添加して焼成すれば、比較例1と同等以上の絶縁抵抗と密度が確保できる。そして、非磁性フェライト材料にさらに磁性材料を混合して焼成して得た焼結体では透磁率が比較例2よりも減少していることから、上記組成を有する非磁性材料を積層インダクタの非磁性層として採用すれば直流重畳特性の劣化を防止することができる。 And from the magnetic permeability of each sample shown in Table 2, in samples 10, 13, and 14 in which the proportion of Fe 2 O 3 in Zn ferrite is more than 40 mol%, the magnetic permeability was equal to or higher than that of the comparative example. Therefore, the condition is that the proportion of Fe 2 O 3 in Zn ferrite is 40 mol% or less. Then, since the upper limit of the proportion of CuO was 10 mol% from the results shown in Table 1, it was defined 30 mol% is the percentage of Fe 2 O 3 in this case as the upper limit of the proportion of Fe 2 O 3. That is, the proportion of Fe 2 O 3 in the nonmagnetic ferrite material before calcination is 30 mol% or more and 40 mol% or less, the proportion of CuO is 0 mol% or more and 10 mol% or less, the remainder is ZnO, and Bi 2 O 3 after calcination. If added and fired, an insulation resistance and density equivalent to or higher than those of Comparative Example 1 can be secured. In the sintered body obtained by further mixing a nonmagnetic ferrite material with a magnetic material and firing, the magnetic permeability is lower than that of Comparative Example 2. Therefore, the nonmagnetic material having the above composition is not used in the multilayer inductor. When employed as a magnetic layer, it is possible to prevent the deterioration of the DC superposition characteristics.

<Biの添加量>
表1の結果から、Biを添加することは必須の条件であった。すなわち、Znフェライトに対して0wt%よりも多い量を添加する必要があった。しかし、Biは焼結性の向上効果が極めて高いため添加量が多すぎると、積層インダクタにおける磁性層の結晶性を阻害する可能性もある。具体的には、積層インダクタはシート状の磁性材料と非磁性材料とを電極パターンとなる電極層を介して積層した積層体を焼結させることで製造されるため、非磁性材料に多量のBiが添加されていると、磁性層や電極層に異常な粒成長が発生し、磁性層や電極層の強度や焼結性が変化してしまう可能性がある。Agの焼結性が損なわれれば電極層の配線に短絡が発生する場合もある。そこでBiの最適添加量を求めるために、シート状の磁性材料とBiの添加量が異なるシート状の各種非磁性材料を積層した上で焼成した焼結体をサンプルとして作製した。図3に当該焼結体の製造方法を示した。基本的には図1に示した製造手順と同じであるが、ここでは非磁性材料と磁性材料を個別にシート状に成形し(s31〜s38、s39〜s41)、それらのシートを積層した上で焼結体に焼成している(s42、s43)。そして、その焼結体をSEMなどを用いて観察し、磁性層における焼結性(結晶成長の状態)を評価した。
<Amount of Bi 2 O 3 added>
From the results in Table 1, it was an essential condition to add Bi 2 O 3 . That is, it was necessary to add an amount larger than 0 wt% with respect to Zn ferrite. However, since Bi 2 O 3 has an extremely high effect of improving the sinterability, if the addition amount is too large, the crystallinity of the magnetic layer in the multilayer inductor may be hindered. Specifically, since a multilayer inductor is manufactured by sintering a laminate in which a sheet-like magnetic material and a nonmagnetic material are laminated via an electrode layer serving as an electrode pattern, a large amount of Bi is added to the nonmagnetic material. When 2 O 3 is added, abnormal grain growth occurs in the magnetic layer and the electrode layer, and the strength and sinterability of the magnetic layer and the electrode layer may change. If the sinterability of Ag is impaired, a short circuit may occur in the wiring of the electrode layer. Therefore, in order to determine the optimum amount of Bi 2 O 3, prepare a sintered body added amount of the sheet-like magnetic material and Bi 2 O 3 is sintered after having stacked the different sheet of various non-magnetic material as a sample did. FIG. 3 shows a method for manufacturing the sintered body. The manufacturing procedure is basically the same as that shown in FIG. 1, but here, a non-magnetic material and a magnetic material are individually formed into sheets (s31 to s38, s39 to s41), and these sheets are laminated. To sinter (s42, s43). And the sintered compact was observed using SEM etc., and the sinterability (state of crystal growth) in a magnetic layer was evaluated.

表3に各サンプルの組成と磁性層の焼結性との関係を示した。

Figure 2014183182
Table 3 shows the relationship between the composition of each sample and the sinterability of the magnetic layer.
Figure 2014183182

表3に示したように、作製したサンプルは、Biの添加量の影響のみを発現させるためにBi以外の組成を全て同じにしている。またBiと同じ焼結助剤であるCuOも含ませていない。そして表3に示したように、Biを2.0wt%および3.0wt%添加したサンプル17および18では磁性層の焼結性に異常が見られなかったが、4.0wt%添加したサンプル19で異常があることが観察された。したがってBiの添加量の上限を3.0mol%以下と規定することができる。すなわち、本発明の実施例に係る非磁性材料におけるBiの最適添加量は非磁性フェライト材料に対して0wt%より多く3.0wt%以下なる。 As shown in Table 3, sample prepared is in all compositions except Bi 2 O 3 in order to express only the effect of the addition amount of Bi 2 O 3 same. Further, CuO which is the same sintering aid as Bi 2 O 3 is not included. As shown in Table 3, in Samples 17 and 18 to which Bi 2 O 3 was added at 2.0 wt% and 3.0 wt%, no abnormality was observed in the sinterability of the magnetic layer, but 4.0 wt% was added. Sample 19 was observed to be abnormal. Therefore, the upper limit of the addition amount of Bi 2 O 3 can be defined as 3.0 mol% or less. That is, the optimum addition amount of Bi 2 O 3 in the nonmagnetic material according to the embodiment of the present invention is more than 0 wt% and not more than 3.0 wt% with respect to the nonmagnetic ferrite material.

<CuOとBi
以上より、本発明の実施例に係る非磁性材料は、FeとZnOを主成分としつつ必要に応じてCuOを含む非磁性フェライト材料にBiが添加されたものである。そして非磁性フェライト材料の組成は、FeとZnOとCuOの割合の合計を100mol%として、Feが30mol%以上40mol%以下、CuOが0mol%以上10mol%以下で、残りがZnOであり、Biの添加量は非磁性フェライト材料に対して0wt%より多く3.0wt%以下である。
<CuO and Bi 2 O 3 >
From the above, the non-magnetic material according to an embodiment of the present invention, in which Bi 2 O 3 is added to the non-magnetic ferrite material including CuO as necessary while the main component Fe 2 O 3 and ZnO. The composition of the nonmagnetic ferrite material is that the total ratio of Fe 2 O 3 , ZnO and CuO is 100 mol%, Fe 2 O 3 is 30 mol% to 40 mol%, CuO is 0 mol% to 10 mol%, and the rest It is ZnO, and the addition amount of Bi 2 O 3 is more than 0 wt% and not more than 3.0 wt% with respect to the nonmagnetic ferrite material.

ところで、Biは高価なレアメタルであるため、非磁性材料中のBiの量は少ない方がより好ましい。そこで、焼結助剤であるBiを減量するともに非磁性フェライト材料の組成において同じ焼結助剤であるCuOを可能な限り多くすることが考えられる。そして、表2のサンプル11、23,15の組成からCuOの割合を5mol%以上10mol%以下とすると、Biの添加量の上限を1.5wt%まで少なくできることがわかる。 By the way, since Bi is an expensive rare metal, it is more preferable that the amount of Bi 2 O 3 in the nonmagnetic material is small. Therefore, it is conceivable to reduce the amount of Bi 2 O 3 that is a sintering aid and to increase as much as possible CuO that is the same sintering aid in the composition of the nonmagnetic ferrite material. From the compositions of Samples 11, 23, and 15 in Table 2, it can be seen that when the CuO ratio is 5 mol% or more and 10 mol% or less, the upper limit of Bi 2 O 3 addition can be reduced to 1.5 wt%.

s4 原料混合工程、s5 仮焼成工程、s6 解砕工程、s9 造粒工程、s10 成形工程、s11 焼成工程 s4 raw material mixing step, s5 temporary firing step, s6 crushing step, s9 granulation step, s10 molding step, s11 firing step

Claims (3)

積層インダクタにおいて磁気ギャップとして機能する非磁性層を構成する非磁性材料であって、
amol%のFeとbmol%のZnOとcmol%のCuOを含む混合物にdwt%のBiが添加されてなり、
a+b+c=100、30≦a≦40、0≦c≦10、0<d≦3.0
であることを特徴とする非磁性材料。
A nonmagnetic material constituting a nonmagnetic layer that functions as a magnetic gap in a multilayer inductor,
it is added dwt% of Bi 2 O 3 to the mixture containing amol% of Fe 2 O 3 and Bmol% of ZnO and cmol% of CuO,
a + b + c = 100, 30 ≦ a ≦ 40, 0 ≦ c ≦ 10, 0 <d ≦ 3.0
A non-magnetic material characterized by
請求項1において、5≦c≦10、0<d≦1.5であることを特徴とする非磁性材料。   The nonmagnetic material according to claim 1, wherein 5 ≦ c ≦ 10 and 0 <d ≦ 1.5. 非磁性磁器組成物の製造方法であって、
a+b+c=100、35≦a≦40、0≦c≦10として、amol%のFeとbmol%のZnOとcmol%のCuOを混合して得た混合物を900℃よりも低い温度で仮焼成するステップと、
前記仮焼成によって得た所定の粒度以下の粉末にさらに解砕するステップと、
0<d≦3.0として、前記所定の粒度以下の粉末に対してdwt%のBiを添加したものにバインダーを加えて造粒物を得るステップと、
前記造粒物を所定の形状の成形体に成形するステップと、
前記成形体を銀の融点以下の温度で焼成して焼結体を得るステップと、
を含むことを特徴とする非磁性磁器組成物の製造方法。
A method for producing a nonmagnetic porcelain composition, comprising:
Assuming that a + b + c = 100, 35 ≦ a ≦ 40, and 0 ≦ c ≦ 10, a mixture obtained by mixing amol% Fe 2 O 3 , bmol% ZnO and cmol% CuO was temporarily prepared at a temperature lower than 900 ° C. Firing, and
Further crushing to a powder of a predetermined particle size or less obtained by the preliminary firing,
Adding 0 wt% Bi 2 O 3 to a powder having a predetermined particle size or less as 0 <d ≦ 3.0 and adding a binder to obtain a granulated product;
Molding the granulated product into a molded body having a predetermined shape;
Firing the molded body at a temperature below the melting point of silver to obtain a sintered body;
The manufacturing method of the nonmagnetic porcelain composition characterized by including.
JP2013056558A 2013-03-19 2013-03-19 Nonmagnetic material and method for producing nonmagnetic porcelain composition Active JP6205149B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013056558A JP6205149B2 (en) 2013-03-19 2013-03-19 Nonmagnetic material and method for producing nonmagnetic porcelain composition

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013056558A JP6205149B2 (en) 2013-03-19 2013-03-19 Nonmagnetic material and method for producing nonmagnetic porcelain composition

Publications (2)

Publication Number Publication Date
JP2014183182A true JP2014183182A (en) 2014-09-29
JP6205149B2 JP6205149B2 (en) 2017-09-27

Family

ID=51701611

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013056558A Active JP6205149B2 (en) 2013-03-19 2013-03-19 Nonmagnetic material and method for producing nonmagnetic porcelain composition

Country Status (1)

Country Link
JP (1) JP6205149B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2966049A1 (en) 2014-07-10 2016-01-13 Shin-Etsu Chemical Co., Ltd. Thickener for hydraulic composition, one-component water-reducing agent, and preparation of hydraulic composition
JP2016175801A (en) * 2015-03-20 2016-10-06 日本碍子株式会社 Connection body, honeycomb structure, method for producing connection body and coating body

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988370A (en) * 1982-11-15 1984-05-22 ティーディーケイ株式会社 Low temperature baked dielectric ceramic material and manufacture
JPH01158706A (en) * 1987-12-16 1989-06-21 Tdk Corp Inductor
JPH01158704A (en) * 1987-12-16 1989-06-21 Tdk Corp Manufacture of nonmagnetic core for air core coil
JPH09110520A (en) * 1995-10-20 1997-04-28 Hitachi Metals Ltd Ferrite sintered compact
JP2004339031A (en) * 2003-05-19 2004-12-02 Matsushita Electric Ind Co Ltd Non-magnetic ferrite and multilayer electronic component using the same
JP2006216636A (en) * 2005-02-02 2006-08-17 Tdk Corp Composite laminated electronic component
WO2008004465A1 (en) * 2006-07-04 2008-01-10 Murata Manufacturing Co., Ltd. Stacked coil component
WO2009081984A1 (en) * 2007-12-25 2009-07-02 Hitachi Metals, Ltd. Stacked inductor and power converter using the stacked inductor
US20110095856A1 (en) * 2008-05-09 2011-04-28 Taiyo Yuden Co., Ltd. Multi layer inductor and method for manufacturing the same
JP2014120575A (en) * 2012-12-14 2014-06-30 Murata Mfg Co Ltd Laminated coil component

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5988370A (en) * 1982-11-15 1984-05-22 ティーディーケイ株式会社 Low temperature baked dielectric ceramic material and manufacture
JPH01158706A (en) * 1987-12-16 1989-06-21 Tdk Corp Inductor
JPH01158704A (en) * 1987-12-16 1989-06-21 Tdk Corp Manufacture of nonmagnetic core for air core coil
JPH09110520A (en) * 1995-10-20 1997-04-28 Hitachi Metals Ltd Ferrite sintered compact
JP2004339031A (en) * 2003-05-19 2004-12-02 Matsushita Electric Ind Co Ltd Non-magnetic ferrite and multilayer electronic component using the same
JP2006216636A (en) * 2005-02-02 2006-08-17 Tdk Corp Composite laminated electronic component
WO2008004465A1 (en) * 2006-07-04 2008-01-10 Murata Manufacturing Co., Ltd. Stacked coil component
WO2009081984A1 (en) * 2007-12-25 2009-07-02 Hitachi Metals, Ltd. Stacked inductor and power converter using the stacked inductor
US20110095856A1 (en) * 2008-05-09 2011-04-28 Taiyo Yuden Co., Ltd. Multi layer inductor and method for manufacturing the same
JP2014120575A (en) * 2012-12-14 2014-06-30 Murata Mfg Co Ltd Laminated coil component

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2966049A1 (en) 2014-07-10 2016-01-13 Shin-Etsu Chemical Co., Ltd. Thickener for hydraulic composition, one-component water-reducing agent, and preparation of hydraulic composition
JP2016175801A (en) * 2015-03-20 2016-10-06 日本碍子株式会社 Connection body, honeycomb structure, method for producing connection body and coating body

Also Published As

Publication number Publication date
JP6205149B2 (en) 2017-09-27

Similar Documents

Publication Publication Date Title
JP5626834B2 (en) Manufacturing method of open magnetic circuit type multilayer coil parts
JP5991494B2 (en) Multilayer coil parts
JP2013110171A (en) Laminated inductor
JP2007091539A (en) NONMAGNETIC Zn FERRITE AND COMPOUNDED MULTILAYER ELECTRONIC COMPONENT USING IT
JP2013089657A (en) Electronic component and manufacturing method therefor
KR101218984B1 (en) Magnetic material composition for ceramic electronic element, manufacturing method of the same, and an electronic element using the same
WO2013031940A1 (en) Ferrite ceramic composition, ceramic electronic component, and production method for ceramic electronic component
KR101367952B1 (en) Non magnetic material for multi-layered electronic component, multi-layered electronic component manufactured by using the same and a process thereof
JP2006219306A (en) Oxide magnetic material and laminated inductor
JP2019210204A (en) Composite magnetic material and electronic component using the same
JP6205149B2 (en) Nonmagnetic material and method for producing nonmagnetic porcelain composition
JP2003272912A (en) Oxide magnetic material and laminated electronic component using the same
JP6397606B2 (en) Magnetic material, magnetic porcelain composition, ferrite magnet and method for producing magnetic porcelain composition
JP2005317924A (en) Stacked inductor
JP2004172396A (en) Ferrite material and inductance element
WO2016072427A1 (en) Laminated coil component
JP2004014534A (en) Method for manufacture laminated chip inductor
JP2019064889A (en) Magnetic material, and laminated chip component
JP2019156664A (en) Composite magnetic material and electronic component using the same
JP2004339016A (en) Nonmagnetic ferrite and multilayer electronic component using it
JP6574574B6 (en) Multilayer inductor
JP6442251B2 (en) Magnetic material and magnetic porcelain composition
JP2006182633A (en) Ferrite material and inductor element
WO2011102452A1 (en) Ferrite porcelain production method, ferrite porcelain, and coil part
JP2006052100A (en) Ni-Zn-Cu-BASED FERRITE MATERIAL AND INDUCTOR ELEMENT

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160219

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170120

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20170131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20170309

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170904

R150 Certificate of patent or registration of utility model

Ref document number: 6205149

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250