WO2008004465A1 - Stacked coil component - Google Patents

Stacked coil component Download PDF

Info

Publication number
WO2008004465A1
WO2008004465A1 PCT/JP2007/062848 JP2007062848W WO2008004465A1 WO 2008004465 A1 WO2008004465 A1 WO 2008004465A1 JP 2007062848 W JP2007062848 W JP 2007062848W WO 2008004465 A1 WO2008004465 A1 WO 2008004465A1
Authority
WO
WIPO (PCT)
Prior art keywords
thickness
magnetic
layer
coil component
firing
Prior art date
Application number
PCT/JP2007/062848
Other languages
French (fr)
Japanese (ja)
Inventor
Kenichi Kato
Akihiro Nakamura
Keiichi Tsuzuki
Original Assignee
Murata Manufacturing Co., Ltd.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Murata Manufacturing Co., Ltd. filed Critical Murata Manufacturing Co., Ltd.
Priority to JP2008523647A priority Critical patent/JP4811465B2/en
Publication of WO2008004465A1 publication Critical patent/WO2008004465A1/en

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/265Compositions containing one or more ferrites of the group comprising manganese or zinc and one or more ferrites of the group comprising nickel, copper or cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/34Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials non-metallic substances, e.g. ferrites
    • H01F1/342Oxides
    • H01F1/344Ferrites, e.g. having a cubic spinel structure (X2+O)(Y23+O3), e.g. magnetite Fe3O4
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/18Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being compounds
    • H01F10/20Ferrites
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/26Thin magnetic films, e.g. of one-domain structure characterised by the substrate or intermediate layers
    • H01F10/265Magnetic multilayers non exchange-coupled
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/04Fixed inductances of the signal type  with magnetic core
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3262Manganese oxides, manganates, rhenium oxides or oxide-forming salts thereof, e.g. MnO
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3279Nickel oxides, nickalates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3281Copper oxides, cuprates or oxide-forming salts thereof, e.g. CuO or Cu2O
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3284Zinc oxides, zincates, cadmium oxides, cadmiates, mercury oxides, mercurates or oxide forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3293Tin oxides, stannates or oxide forming salts thereof, e.g. indium tin oxide [ITO]
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3298Bismuth oxides, bismuthates or oxide forming salts thereof, e.g. zinc bismuthate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F17/00Fixed inductances of the signal type 
    • H01F17/0006Printed inductances
    • H01F17/0013Printed inductances with stacked layers
    • H01F2017/002Details of via holes for interconnecting the layers

Definitions

  • the present invention relates to a laminated coil component, and more particularly to an open magnetic circuit type laminated coil component.
  • Patent Document 1 and Patent Document 2 Ni-Zn-Cu-based materials are provided on both main surfaces of a non-magnetic material layer made of a Cu-Zn-based non-magnetic material for the purpose of improving DC superposition characteristics.
  • An open magnetic circuit type multilayer coil component provided with a magnetic layer made of a magnetic material is described. However, sufficient DC superposition characteristics could not be obtained with this structure alone.
  • Patent Document 3 describes that SnO is 0.2 to 3 wt% for Ni-Zn-Cu based magnetic materials.
  • Patent Document 1 Japanese Patent Laid-Open No. 2005-259774
  • Patent Document 2 International Publication 2005/122192 Pamphlet
  • Patent Document 3 Japanese Patent Laid-Open No. 2003-272912
  • an object of the present invention is to provide a laminated coil component having good DC superimposition characteristics.
  • a laminated coil component according to the present invention includes:
  • a helical coil provided in the laminate
  • the magnetic layer is made of a Ni-Zn-Cu-based magnetic material, and the composition ratio is FeO.
  • the non-magnetic layer is made of a Cu_Zn-based non-magnetic material, and the composition ratio is FeO: 45-49 mol%, CuO: 5-15 mol%, the balance: ZnO as a main component, and further as a main component. In contrast, 0.6 to 4 wt% of SnO is added,
  • the SnO content of the nonmagnetic layer may be equal to or higher than the SnO content of the magnetic layer.
  • the Sn content in the magnetic layer is equal to or higher than the Sn content in the magnetic layer, so that the Sn component in the magnetic layer is less likely to diffuse into the nonmagnetic layer during co-sintering. Become.
  • the main component composition of the magnetic layer is
  • the main component composition of the non-magnetic layer is the main component composition of the non-magnetic layer.
  • the thickness of the green sheet constituting the nonmagnetic layer is preferably 25 to 50 ⁇ m (the thickness of the NiZn interdiffusion layer after firing / the thickness of the nonmagnetic layer after firing). Is 0.2 It is preferably in the range of ⁇ 0.6. Inductance value (L value) The temperature change is 12% or less in absolute value, and it becomes a coil component with stable inductance characteristics against temperature change.
  • the thickness of the green sheet constituting the nonmagnetic layer is preferably 30 to 50 ⁇ (the thickness of the NiZn interdiffusion layer after firing Z the thickness of the nonmagnetic layer after firing) ) Is preferably in the range of 0.2 to 0.5.
  • the L value temperature change is 9% or less in absolute value, and the coil component has stable inductance characteristics against temperature change.
  • the thickness of the green sheet constituting the nonmagnetic layer is preferably 6 to 20 am, (the thickness of the NiZn interdiffusion layer after firing Z the thickness of the nonmagnetic layer after firing) May be in the range of 0.7 to 5.0.
  • the L value temperature change is 14 to 35% in absolute value.
  • This coil component can be used, for example, by matching the temperature characteristics of other components (capacitors, etc.) on the wiring board.
  • the thickness of the green sheet constituting the nonmagnetic layer is preferably 6 to 10 ⁇ m, (the thickness of the NiZn interdiffusion layer after firing / the thickness of the nonmagnetic layer after firing).
  • the (thickness) may be in the range of 1.5 to 5.0.
  • L value temperature change is 25 to 35% in absolute value.
  • This coil component exhibits a negative temperature coefficient having a negative slope almost linearly, and can be used, for example, by matching with the temperature characteristics of other components (capacitors, etc.) on the wiring board.
  • the component diffusion at the co-sintering interface becomes moderate by bringing the composition of the nonmagnetic layer close to the composition of the magnetic layer, and the magnetic layer and the nonmagnetic layer during sintering The difference in the shrinkage behavior between the two is reduced, and it is possible to suppress cracks. As a result, it is possible to obtain a laminated coil component with good direct current superposition characteristics.
  • FIG. 1 is an exploded perspective view showing a laminated coil component according to the present invention.
  • FIG. 2 is an external perspective view of the multilayer coil component shown in FIG.
  • FIG. 3 is a vertical sectional view of the laminated coil component shown in FIG.
  • FIG. 4 is an enlarged schematic cross-sectional view of a portion A in FIG.
  • FIG. 6 is a graph showing the rate of temperature change when the thickness of the non-magnetic green sheet is 0, 6, 15 / m.
  • FIG. 1 is an exploded configuration diagram of the laminated coil component 1.
  • the laminated coil component 1 includes a magnetic green sheet 3 with a coil conductor 5 formed on the surface, a magnetic green sheet 2 with no conductor formed on the surface, and a non-magnetic green with a coil conductor 5 formed on the surface. Sheet 4 and are laminated.
  • the magnetic green sheets 2 and 3 are produced as follows. Fe ⁇ , Zn ⁇ , CuO, Ni
  • o is weighed at a specified ratio (see Table 1 below), and each material is put into a ball mill as a raw material and wet mixed. The resulting mixture is dried and then powdered, and the resulting powder is calcined at 750 ° C for 1 hour. The obtained calcined powder is wet pulverized with a ball mill and then dried and force crushed to obtain a magnetic powder.
  • a binder, a plasticizer, a wetting agent, and a dispersing agent are added to the magnetic powder and mixed with a ball minolet, and then defoamed under reduced pressure.
  • the obtained magnetic slurry is formed into a sheet using a lip coater, comma coater or die coater and dried to produce magnetic green sheets 2 and 3 made of a Ni_Zn_Cu based magnetic material.
  • the thickness of the magnetic green sheets 2 and 3 is, for example, 25 zm.
  • Non-magnetic green sheet 4 made of Cu_Zn-based non-magnetic material is composed of FeO, ZnO, C
  • the thickness of the nonmagnetic green sheet 4 is, for example, 20 ⁇ m.
  • via hole conductor holes are formed at predetermined positions of the sheets 3 and 4 by laser beam or punching. Thereafter, a conductive paste is applied to the surface by screen printing to form the coil conductor 5, and at the same time, the via hole conductor hole is filled with the conductive paste to form the interlayer connection via hole conductor.
  • Coil conductor 5 has high Q as an inductor element. In order to realize the value, it is preferable that the resistance value is low. Therefore, noble metals mainly composed of Ag, Au, Pt and the like, base metals such as Cu and Ni, and alloys thereof are used as the conductive paste. From the viewpoint of simultaneous firing at a low temperature, it is preferable to use Ag or an Ag alloy.
  • the coil conductor 5 and the via-hole conductor 10 may be formed separately.
  • the coil conductor 5 may be screen-printed a plurality of times in order to increase the film thickness. Further, instead of the screen printing method, a photolithography method or a transfer method may be used.
  • a plurality of sheets 2, 3, and 4 thus obtained are sequentially stacked and pressed to form a laminate.
  • the non-magnetic green sheet 4 is laminated so as to be positioned approximately at the center in the thickness direction of the laminated body.
  • the respective coil conductors 5 are electrically connected in series via the interlayer connection via-hole conductors 10 to form a spiral 3- il L in the laminate.
  • the coil axis of the spiral 3- il is parallel to the stacking direction of the sheets 2, 3, and 4.
  • the lead portions 6a and 6b of the spiral coil L are exposed on the right and left sides of the magnetic green sheet 3, respectively.
  • This laminate was cut into a predetermined product size, degreased at 500 ° C for 2 hours, and further fired at 890 ° C for 2 hours to obtain a rectangular parallelepiped shape as shown in Fig. 2.
  • a sintered body 20 is obtained.
  • both ends of the sintered body 20 are immersed in an Ag / Pd (80/20) paste bath, and external electrodes 21 and 22 are formed by baking at 780 ° C. for 2 hours.
  • the external electrodes 21 and 22 are electrically connected to the lead-out portions 6a and 6b of the spiral coil L formed in the sintered body 20.
  • the dimensions of the laminated coil component 1 are, for example, length and width 3.2 mm X l .6 mm and thickness 0.85 mm.
  • the open magnetic circuit type multilayer coil component 1 obtained in this way has Ni-Zn_Cu formed on both main surfaces of a non-magnetic layer 4 made of a Cu-Zn-based non-magnetic material.
  • Magnetic layers 3 and 2 are formed of a magnetic material.
  • the magnetic flux ⁇ generated by the spiral coil L passes through the open magnetic path formed by the nonmagnetic layer 4.
  • the magnetic material and the non-magnetic material may be added with BiO in the range of 0.10 to 0.30 after the addition.
  • MnO may be contained in a range of 0.002 to 0.006 wt% (for example, 0.005 wt%).
  • the L value temperature change rate is also as small as 6.5% or less in absolute value (however, in Example 2 it is 8 ⁇ 3%), and the ⁇ 30% current value is also 500mA. The value was higher than that, and it showed good characteristics.
  • the amount of SnO in the non-magnetic material is more than 4. Owt%, such as 6.Owt%, the sinterability will decrease and cracks will occur at the end of the laminate (chip body) during simultaneous firing. Was observed.
  • the amount of SnO of the non-magnetic material is set to the amount of SnO of the magnetic material, but Example 24 is a non-magnetic material compared to Example 21. This is the case where the SnO amount is smaller than the SnO amount of the magnetic material, and the Sn component in the magnetic layer diffuses to the non-magnetic material layer. Will deteriorate. Therefore, the -30% current value also decreased from 540mA to 530mA.
  • Example 25 is a case where the SnO amount of the nonmagnetic material was made smaller than the SnO amount of the magnetic material as compared with Example 22, and the Sn component in the magnetic layer diffused into the nonmagnetic material layer. As a result, the Sn component in the magnetic layer is reduced, and the direct current superimposition characteristics are deteriorated. Therefore, the 30% current value also decreased from 545 mA to 535 mA.
  • Example 26 is a case where the amount of SnO of the nonmagnetic material was smaller than the amount of SnO of the magnetic material compared to Example 23, and the Sn component in the magnetic material layer diffused into the nonmagnetic material layer. As a result, the Sn component in the magnetic layer is reduced, and the direct current superimposition characteristics are deteriorated. Therefore, the 30% current value also decreased from 555 mA to 540 mA.
  • the composition other than the magnetic SnO and the non-magnetic SnO is the composition other than the magnetic SnO and the non-magnetic SnO
  • the difference in the content of the composition other than is as small as possible. That is, the main component composition of the magnetic green sheet is
  • the main component composition of the non-magnetic Darine sheet is
  • composition ratio of non-magnetic material is Fe ⁇ : 47mol%, CuO: 8mol%
  • the L value temperature change rate was 9.2% in absolute value, but the 30% current value was 465 mA, which is much lower than 500 mA.
  • Table 2 shows a case where the laminated coil component 1 is manufactured by using the magnetic material and the nonmagnetic material having the composition of Example 3 shown in Table 1 and changing the thicknesses of the sheets 3 and 4 variously.
  • the evaluation result (L value temperature change rate) is shown.
  • FIG. 4 shows the thickness Tl of the magnetic layer 3 after firing, the thickness ⁇ 2 of the nonmagnetic layer 4 after firing, and the thickness ⁇ 3 of the Ni and ⁇ interdiffusion layer after firing.
  • T1 ′ is the thickness of the magnetic green sheet 3 before firing
  • T2 ′ is the thickness of the nonmagnetic green sheet 4 before firing.
  • the thickness of the non-magnetic green sheet was 6 10 ⁇ , and the L value temperature change rate was in the range of 25 35% in absolute value.
  • Curve A1 in Fig. 5 and curve ⁇ 2 in Fig. 6 show the inductance value and temperature change rate (L value / L) when the temperature is changed in the range of -40 to 125 ° C in the laminated coil component fabricated in Sample 1. Value (25 ° C)).
  • Trial Price 1 has a negative slope almost linearly, and has a negative temperature coefficient. In this way, the laminated coil components of Samples 1 to 4 can be used by matching the temperature characteristics of other electronic components (capacitors, etc.) on the wiring board, for example.
  • the curve C1 in FIG. 5 and the curve C2 in FIG. 6 each show the characteristics when the nonmagnetic green sheet is not provided. If the thickness of the non-magnetic green sheet is less than 5 ⁇ m, it will not remain as a non-magnetic layer due to mutual diffusion.
  • the thickness of the non-magnetic green sheet was 15 to 20 zm, and the L value temperature change rate was in the range of 14 to 20% in absolute value.
  • Curve B1 in Fig. 5 and curve B2 in Fig. 6 show the inductance value and rate of change of temperature (L) when the temperature is changed in the range of 40 ° C to 125 ° C for the laminated coil part fabricated in Sample 5. Value ZL value (25 ° C)).
  • the laminated coil components of Samples 5 to 10 can be used by matching the temperature characteristics of other electronic components (capacitors, etc.) on the wiring board, for example.
  • the thickness of the nonmagnetic green sheet was 25 / im, and the L value temperature change rate was in the range of 10 to 12% in absolute value.
  • the laminated coil parts of Samples 11 to 13 can be used in various applications as elements having stable inductance characteristics with respect to temperature changes.
  • the thickness of the non-magnetic green sheet was 30 to 50 ⁇ m, and the L value temperature change rate was 9% or less in absolute value.
  • the laminated coil component of Samples 14 to 22 can be used for various applications as an element having a more stable inductance characteristic with respect to a temperature change. If the thickness of the non-magnetic green sheet is 40-50 ⁇ m, it is even better. When the thickness of the non-magnetic green sheet exceeds 50 zm, the inductance characteristic as an open magnetic circuit tends to decrease, but it may be adjusted according to the required L value.
  • laminated coil component according to the present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the gist thereof.
  • the one in which one nonmagnetic layer is disposed in the central portion of the laminated body is shown. Up and down They may be separated into three layers. Alternatively, the nonmagnetic layer may be arranged in two layers so that the coil is divided into approximately three equal parts. The magnetic layer may be arranged in more than one layer.
  • the present invention is useful for an open magnetic circuit type laminated coil component, and is particularly excellent in that the DC folding characteristic is good.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Ceramic Engineering (AREA)
  • Dispersion Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Magnetic Ceramics (AREA)

Abstract

This invention provides a stacked coil component having good direct current superposition properties. The stacked coil component comprises a spiral coil (L) provided within a laminate comprising a magnetic material layer disposed on both main surfaces of a nonmagnetic material layer. A magnetic material green sheet (3) comprises as main components Fe2O3: 45 to 49 mol%, ZnO: 1 to 32 mol%, and CuO: 5 to 15 mol% with the balance consisting of: NiO and 0.6 to 4 wt% of SnO2 added to the main components. A nonmagnetic material green sheet (4) comprises as main components Fe2O3: 45 to 49 mol% and CuO: 5 to 15 mol% with the balance consisting of ZnO, and 0.6 to 4 wt% of SnO2 added to the main components.

Description

明 細 書  Specification
積層コイル部品  Multilayer coil parts
技術分野  Technical field
[0001] 本発明は、積層コイル部品、特に、開磁路型の積層コイル部品に関する。  [0001] The present invention relates to a laminated coil component, and more particularly to an open magnetic circuit type laminated coil component.
背景技術  Background art
[0002] 特許文献 1及び特許文献 2には、直流重畳特性を向上させる目的で、 Cu— Zn系 の非磁性体材料からなる非磁性体層の両主面に、 Ni— Zn— Cu系の磁性体材料か らなる磁性体層が設けられた開磁路型の積層コイル部品が記載されている。しかしな がら、この構造だけでは十分な直流重畳特性が得られなかった。  [0002] In Patent Document 1 and Patent Document 2, Ni-Zn-Cu-based materials are provided on both main surfaces of a non-magnetic material layer made of a Cu-Zn-based non-magnetic material for the purpose of improving DC superposition characteristics. An open magnetic circuit type multilayer coil component provided with a magnetic layer made of a magnetic material is described. However, sufficient DC superposition characteristics could not be obtained with this structure alone.
[0003] 一方、特許文献 3には、 Ni— Zn— Cu系の磁性体材料に対して Sn〇を 0. 2〜3wt [0003] On the other hand, Patent Document 3 describes that SnO is 0.2 to 3 wt% for Ni-Zn-Cu based magnetic materials.
%添加すると、直流重畳特性が改善されるという技術が記載されている。そこで、本 発明者らは、特許文献 1や特許文献 2に記載の積層コイル部品において、 Ni— Zn— Cu系の磁性体材料に対して Sn〇を 0. 2〜3wt%添加した力 所望の直流重畳特 性は得られなかった。 A technique is described in which the DC superposition characteristics are improved by adding%. Therefore, the inventors of the multilayer coil component described in Patent Document 1 and Patent Document 2 have a force obtained by adding 0.2 to 3 wt% of SnO to a Ni—Zn—Cu based magnetic material. DC superposition characteristics were not obtained.
特許文献 1 :特開 2005— 259774号公報  Patent Document 1: Japanese Patent Laid-Open No. 2005-259774
特許文献 2 :国際公開 2005/122192号パンフレット  Patent Document 2: International Publication 2005/122192 Pamphlet
特許文献 3 :特開 2003— 272912号公報  Patent Document 3: Japanese Patent Laid-Open No. 2003-272912
発明の開示  Disclosure of the invention
発明が解決しょうとする課題  Problems to be solved by the invention
[0004] そこで、本発明の目的は、直流重畳特性の良好な積層コイル部品を提供すること にある。 [0004] Therefore, an object of the present invention is to provide a laminated coil component having good DC superimposition characteristics.
課題を解決するための手段  Means for solving the problem
[0005] 前記目的を達成するため、本発明に係る積層コイル部品は、 In order to achieve the above object, a laminated coil component according to the present invention includes:
非磁性体層の両主面に磁性体層が配置された積層体と、  A laminate in which magnetic layers are disposed on both main surfaces of the non-magnetic layer;
前記積層体内に設けられた螺旋状コイルと、  A helical coil provided in the laminate;
前記積層体の表面に設けられた、前記螺旋状コイルに電気的に接続する外部電 極と、を備え、 前記磁性体層が Ni— Zn— Cu系の磁性体材料からなり、組成比が Fe〇 An external electrode provided on the surface of the laminate and electrically connected to the spiral coil; The magnetic layer is made of a Ni-Zn-Cu-based magnetic material, and the composition ratio is FeO.
: 45〜49mol%、 Zn〇: l〜32mol%、 CuO : 5〜15mol%、残部: Ni〇を主成分と し、さらに、主成分に対して SnOを 0. 6〜4wt%添加してなり、  : 45 ~ 49mol%, ZnO: l ~ 32mol%, CuO: 5 ~ 15mol%, balance: NiO is the main component, and SnO is added to the main component by 0.6-4wt%. ,
前記非磁性体層が Cu_Zn系の非磁性体材料からなり、組成比が Fe〇 : 45-49 mol%、 Cu〇:5〜15mol%、残部: Zn〇を主成分とし、さらに、主成分に対して Sn〇 を 0. 6〜4wt%添加してなること、  The non-magnetic layer is made of a Cu_Zn-based non-magnetic material, and the composition ratio is FeO: 45-49 mol%, CuO: 5-15 mol%, the balance: ZnO as a main component, and further as a main component. In contrast, 0.6 to 4 wt% of SnO is added,
を特徴とする。  It is characterized by.
[0006] 以上の構成により、非磁性体層の組成を磁性体層の組成に近付けることで、磁性 体層と非磁性体層との界面(共焼結界面)での成分拡散が適度となる。  [0006] With the above configuration, the component diffusion at the interface between the magnetic layer and the nonmagnetic layer (co-sintering interface) becomes appropriate by bringing the composition of the nonmagnetic layer closer to the composition of the magnetic layer. .
[0007] 本発明に係る積層コイル部品においては、前記非磁性体層の SnO含有量が前記 磁性体層の Sn〇含有量以上であってもよい。磁性体層中の Sn含有量と等量もしく はそれ以上の Snを非磁性体層中に含有することで、共焼結時に磁性体層中の Sn 成分が非磁性体層へ拡散しにくくなる。  [0007] In the multilayer coil component according to the present invention, the SnO content of the nonmagnetic layer may be equal to or higher than the SnO content of the magnetic layer. The Sn content in the magnetic layer is equal to or higher than the Sn content in the magnetic layer, so that the Sn component in the magnetic layer is less likely to diffuse into the nonmagnetic layer during co-sintering. Become.
[0008] また、本発明に係る積層コイル部品においては、 [0008] In the multilayer coil component according to the present invention,
前記磁性体層の主成分組成を、  The main component composition of the magnetic layer is
Fe O: amol% (但し、 45≤a≤49)  Fe O: amol% (45≤a≤49)
Zn〇 : bmol% (但し、 l≤b≤32)  Zn〇: bmol% (However, l≤b≤32)
CuO : cmol% (但し、 5≤c≤15)  CuO: cmol% (however, 5≤c≤15)
Ni〇 : dmol% (但し、 a + b + c + d= 100)とし、  Ni〇: dmol% (however, a + b + c + d = 100)
前記非磁性体層の主成分組成を、  The main component composition of the non-magnetic layer is
Fe O : xmol% (但し、 0· 5 + a≤x≤0. 5 + a)  Fe O: xmol% (0 · 5 + a≤x≤0. 5 + a)
ZnO : ymol% (但し、 _0. 5 + (b + d)≤y≤0. 5 + (b + d) )  ZnO: ymol% (However, _0. 5 + (b + d) ≤ y ≤ 0.5 + (b + d))
CuO : zmol% (但し、 -0. 5 + c≤z≤0. 5 + c、 x + y + z = 100)とすること、カ好 ましい。  CuO: zmol% (however, -0. 5 + c ≤ z ≤ 0.5 + c, x + y + z = 100) is preferable.
[0009] 以上の構成により、焼結時における磁性体層と非磁性体層との間の収縮挙動差が より一層低減され、クラックの発生などが抑えられる。  [0009] With the above configuration, the difference in shrinkage behavior between the magnetic layer and the nonmagnetic layer during sintering is further reduced, and the occurrence of cracks and the like is suppressed.
[0010] 前記非磁性体層を構成するグリーンシートの厚みは 25〜50 μ mであることが好ま しぐ(焼成後の NiZnの相互拡散層の厚み/焼成後の非磁性体層の厚み)は 0. 2 〜0. 6の範囲であることが好ましい。インダクタンス値 (L値)温度変化が絶対値で 12 %以下となり、温度変化に対してインダクタンス特性の安定したコイル部品となる。 [0010] The thickness of the green sheet constituting the nonmagnetic layer is preferably 25 to 50 μm (the thickness of the NiZn interdiffusion layer after firing / the thickness of the nonmagnetic layer after firing). Is 0.2 It is preferably in the range of ~ 0.6. Inductance value (L value) The temperature change is 12% or less in absolute value, and it becomes a coil component with stable inductance characteristics against temperature change.
[0011] また、前記非磁性体層を構成するグリーンシートの厚みは 30〜50 μ ΐηであることが 好ましく、(焼成後の NiZnの相互拡散層の厚み Z焼成後の非磁性体層の厚み)は 0 . 2〜0. 5の範囲であることが好ましい。 L値温度変化が絶対値で 9%以下となり、温 度変化に対してインダクタンス特性の安定したコイル部品となる。  [0011] The thickness of the green sheet constituting the nonmagnetic layer is preferably 30 to 50 μΐη (the thickness of the NiZn interdiffusion layer after firing Z the thickness of the nonmagnetic layer after firing) ) Is preferably in the range of 0.2 to 0.5. The L value temperature change is 9% or less in absolute value, and the coil component has stable inductance characteristics against temperature change.
[0012] また、前記非磁性体層を構成するグリーンシートの厚みは 6〜20 a mであることが 好ましく、(焼成後の NiZnの相互拡散層の厚み Z焼成後の非磁性体層の厚み)は 0 . 7〜5. 0の範囲であってもよい。 L値温度変化が絶対値で 14〜35%となる。このコ ィル部品は、例えば、配線基板上の他の部品(コンデンサなど)の温度特性とマッチ ングさせることにより使用可能である。  [0012] The thickness of the green sheet constituting the nonmagnetic layer is preferably 6 to 20 am, (the thickness of the NiZn interdiffusion layer after firing Z the thickness of the nonmagnetic layer after firing) May be in the range of 0.7 to 5.0. The L value temperature change is 14 to 35% in absolute value. This coil component can be used, for example, by matching the temperature characteristics of other components (capacitors, etc.) on the wiring board.
[0013] また、前記非磁性体層を構成するグリーンシートの厚みは 6〜: 10 μ mであることが 好ましく、(焼成後の NiZnの相互拡散層の厚み/焼成後の非磁性体層の厚み)は 1 . 5〜5. 0の範囲であってもよい。 L値温度変化が絶対値で 25〜35%となる。このコ ィル部品は、ほぼ直線的にマイナスの傾きを有する負の温度係数を示し、例えば、配 線基板上の他の部品(コンデンサなど)の温度特性とマッチングさせることにより使用 可能である。  [0013] The thickness of the green sheet constituting the nonmagnetic layer is preferably 6 to 10 μm, (the thickness of the NiZn interdiffusion layer after firing / the thickness of the nonmagnetic layer after firing). The (thickness) may be in the range of 1.5 to 5.0. L value temperature change is 25 to 35% in absolute value. This coil component exhibits a negative temperature coefficient having a negative slope almost linearly, and can be used, for example, by matching with the temperature characteristics of other components (capacitors, etc.) on the wiring board.
発明の効果  The invention's effect
[0014] 本発明によれば、非磁性体層の組成を磁性体層の組成に近付けることで、共焼結 界面での成分拡散が適度となり、焼結時における磁性体層と非磁性体層との間の収 縮挙動差が低減され、クラックを抑えること力 Sできる。この結果、直流重畳特性の良好 な積層コイル部品を得ることができる。  [0014] According to the present invention, the component diffusion at the co-sintering interface becomes moderate by bringing the composition of the nonmagnetic layer close to the composition of the magnetic layer, and the magnetic layer and the nonmagnetic layer during sintering The difference in the shrinkage behavior between the two is reduced, and it is possible to suppress cracks. As a result, it is possible to obtain a laminated coil component with good direct current superposition characteristics.
図面の簡単な説明  Brief Description of Drawings
[0015] [図 1]本発明に係る積層コイル部品を示す分解斜視図である。  FIG. 1 is an exploded perspective view showing a laminated coil component according to the present invention.
[図 2]図 1に示した積層コイル部品の外観斜視図である。  2 is an external perspective view of the multilayer coil component shown in FIG.
[図 3]図 2に示した積層コイル部品の垂直断面図である。  FIG. 3 is a vertical sectional view of the laminated coil component shown in FIG.
[図 4]図 3の A部分の拡大模式断面図である。  FIG. 4 is an enlarged schematic cross-sectional view of a portion A in FIG.
[図 5]非磁性体グリーンシートの厚みを 0, 6, 15 z mとした場合の温度に対する L値 を示すグラフである。 [Figure 5] L value with respect to temperature when the thickness of the non-magnetic green sheet is 0, 6, 15 zm It is a graph which shows.
[図 6]非磁性体グリーンシートの厚みを 0, 6, 15 / mとした場合の温度変化率を示す グラフである。  FIG. 6 is a graph showing the rate of temperature change when the thickness of the non-magnetic green sheet is 0, 6, 15 / m.
発明を実施するための最良の形態  BEST MODE FOR CARRYING OUT THE INVENTION
[0016] 以下に、本発明に係る積層コイル部品の実施例について添付図面を参照して説明 する。 Hereinafter, embodiments of the laminated coil component according to the present invention will be described with reference to the accompanying drawings.
[0017] 図 1は積層コイル部品 1の分解構成図である。積層コイル部品 1は、表面にコイル導 体 5をそれぞれ形成した磁性体グリーンシート 3と、表面に導体が形成されていない 磁性体グリーンシート 2と、表面にコイル導体 5を形成した非磁性体グリーンシート 4と を積層したものである。  FIG. 1 is an exploded configuration diagram of the laminated coil component 1. The laminated coil component 1 includes a magnetic green sheet 3 with a coil conductor 5 formed on the surface, a magnetic green sheet 2 with no conductor formed on the surface, and a non-magnetic green with a coil conductor 5 formed on the surface. Sheet 4 and are laminated.
[0018] 磁性体グリーンシート 2, 3は以下のようにして作製される。 Fe〇、 Zn〇、 CuO、 Ni  [0018] The magnetic green sheets 2 and 3 are produced as follows. Fe〇, Zn〇, CuO, Ni
2 3  twenty three
oを所定の比率(以下に示す表 1参照)で秤量し、それぞれの材料を原材料としてボ ールミルに投入し、湿式混合する。得られた混合物を乾燥してから粉碎し、得られた 粉末を 750°Cで 1時間仮焼する。得られた仮焼粉末をボールミルにて湿式粉砕した 後、乾燥して力 解砕し、磁性体粉末を得る。  o is weighed at a specified ratio (see Table 1 below), and each material is put into a ball mill as a raw material and wet mixed. The resulting mixture is dried and then powdered, and the resulting powder is calcined at 750 ° C for 1 hour. The obtained calcined powder is wet pulverized with a ball mill and then dried and force crushed to obtain a magnetic powder.
[0019] この磁性体粉末に対して結合剤、可塑剤、湿潤剤及び分散剤を加えてボールミノレ で混合した後、減圧により脱泡を行う。得られた磁性体スラリーをリップコータ、コンマ コータ又はダイコータなどを用いてシート状に成形して乾燥させ、 Ni_Zn_Cu系の 磁性体材料からなる磁性体グリーンシート 2, 3を作製する。磁性体グリーンシート 2, 3の厚みは、例えば、 25 z mである。  [0019] A binder, a plasticizer, a wetting agent, and a dispersing agent are added to the magnetic powder and mixed with a ball minolet, and then defoamed under reduced pressure. The obtained magnetic slurry is formed into a sheet using a lip coater, comma coater or die coater and dried to produce magnetic green sheets 2 and 3 made of a Ni_Zn_Cu based magnetic material. The thickness of the magnetic green sheets 2 and 3 is, for example, 25 zm.
[0020] Cu_Zn系の非磁性体材料からなる非磁性体グリーンシート 4は、 Fe〇、 Zn〇、 C  [0020] Non-magnetic green sheet 4 made of Cu_Zn-based non-magnetic material is composed of FeO, ZnO, C
2 3  twenty three
u〇を所定の比率(以下に示す表 1参照)で秤量し、それぞれの材料を前記磁性体グ リーンシート 2, 3と同様の方法で処理して作製する。非磁性体グリーンシート 4の厚 みは、例えば、 20 μ mである。  uO is weighed at a predetermined ratio (see Table 1 below), and each material is processed by the same method as the magnetic green sheets 2 and 3. The thickness of the nonmagnetic green sheet 4 is, for example, 20 μm.
[0021] さらに、シート 3, 4の所定の位置にレーザビームやパンチングにてビアホール導体 用穴を形成する。その後、表面に導電ペーストをスクリーン印刷法によって塗布し、コ ィル導体 5を形成すると同時に、ビアホール導体用穴に導電ペーストを充填して層間 接続用ビアホール導体 10を形成する。コイル導体 5は、インダクタ素子として高い Q 値を実現するため、抵抗値が低いことが好ましい。そのため、導電ペーストとして、 Ag 、 Au、 Ptなどを主成分とする貴金属やこれらの合金のほカ Cu、 Niなどの卑金属や これらの合金などが用いられる。低温で同時焼成するという観点からは、 Ag又は Ag 合金を用いることが好ましい。 Furthermore, via hole conductor holes are formed at predetermined positions of the sheets 3 and 4 by laser beam or punching. Thereafter, a conductive paste is applied to the surface by screen printing to form the coil conductor 5, and at the same time, the via hole conductor hole is filled with the conductive paste to form the interlayer connection via hole conductor. Coil conductor 5 has high Q as an inductor element. In order to realize the value, it is preferable that the resistance value is low. Therefore, noble metals mainly composed of Ag, Au, Pt and the like, base metals such as Cu and Ni, and alloys thereof are used as the conductive paste. From the viewpoint of simultaneous firing at a low temperature, it is preferable to use Ag or an Ag alloy.
[0022] なお、コイル導体 5とビアホール導体 10とは別々に形成してもよレ、。また、コイル導 体 5は膜厚を大きくするためにスクリーン印刷を複数回重ねて行ってもよい。また、ス クリーン印刷法の代わりにフォトリソグラフィ法ゃ転写法などで形成してもよい。  [0022] The coil conductor 5 and the via-hole conductor 10 may be formed separately. The coil conductor 5 may be screen-printed a plurality of times in order to increase the film thickness. Further, instead of the screen printing method, a photolithography method or a transfer method may be used.
[0023] こうして得られた複数のシート 2, 3, 4を順次積み重ねて圧着して積層体を形成す る。このとき、非磁性体グリーンシート 4は、積層体の厚さ方向の略中央に位置するよ うに積層される。それぞれのコイル導体 5は層間接続用ビアホール導体 10を介して 電気的に直列に接続され、積層体内に螺旋状3ィル Lを形成する。螺旋状3ィル の コイル軸はシート 2, 3, 4の積み重ね方向に対して平行である。螺旋状コイル Lの引 出し部 6a, 6bはそれぞれ磁性体グリーンシート 3の右辺及び左辺に露出している。 [0023] A plurality of sheets 2, 3, and 4 thus obtained are sequentially stacked and pressed to form a laminate. At this time, the non-magnetic green sheet 4 is laminated so as to be positioned approximately at the center in the thickness direction of the laminated body. The respective coil conductors 5 are electrically connected in series via the interlayer connection via-hole conductors 10 to form a spiral 3- il L in the laminate. The coil axis of the spiral 3- il is parallel to the stacking direction of the sheets 2, 3, and 4. The lead portions 6a and 6b of the spiral coil L are exposed on the right and left sides of the magnetic green sheet 3, respectively.
[0024] この積層体を所定の製品サイズにカットして 500°Cで 2時間の脱脂を行レ、、さらに、 890°Cで 2時間の焼成を行い、図 2に示すような直方体形状の焼結体 20を得る。次 に、焼結体 20の両端部をそれぞれ Ag/Pd (80/20)ペースト浴に浸漬させて、 78 0°Cで 2時間の焼付けによって外部電極 21 , 22を形成する。外部電極 21, 22は、焼 結体 20内に形成された螺旋状コイル Lの引出し部 6a, 6bと電気的に接続している。 積層コイル部品 1の寸法は、例えば、縦横 3. 2mm X l . 6mm、厚さ 0. 85mmである  [0024] This laminate was cut into a predetermined product size, degreased at 500 ° C for 2 hours, and further fired at 890 ° C for 2 hours to obtain a rectangular parallelepiped shape as shown in Fig. 2. A sintered body 20 is obtained. Next, both ends of the sintered body 20 are immersed in an Ag / Pd (80/20) paste bath, and external electrodes 21 and 22 are formed by baking at 780 ° C. for 2 hours. The external electrodes 21 and 22 are electrically connected to the lead-out portions 6a and 6b of the spiral coil L formed in the sintered body 20. The dimensions of the laminated coil component 1 are, for example, length and width 3.2 mm X l .6 mm and thickness 0.85 mm.
[0025] こうして得られた開磁路型の積層コイル部品 1は、図 3に示すように、 Cu— Zn系の 非磁性体材料からなる非磁性体層 4の両主面に、 Ni— Zn_Cu系の磁性体材料か らなる磁性体層 3, 2が形成されている。螺旋状コイル Lによって発生した磁束 φは、 非磁性体層 4が形成する開磁路を通る。 [0025] As shown in Fig. 3, the open magnetic circuit type multilayer coil component 1 obtained in this way has Ni-Zn_Cu formed on both main surfaces of a non-magnetic layer 4 made of a Cu-Zn-based non-magnetic material. Magnetic layers 3 and 2 are formed of a magnetic material. The magnetic flux φ generated by the spiral coil L passes through the open magnetic path formed by the nonmagnetic layer 4.
[0026] 磁性体グリーンシート 2, 3及び非磁性体グリーンシート 4の組成の詳細は以下の表 1に示すとおりであり、本発明者らは表 1に示したそれぞれの組成で積層コイル部品( 実施例:!〜 26及び比較例 1 , 2)を作製した。磁性体グリーンシート 2, 3の厚みは 25 z m、非磁性体グリーンシート 4の厚みは 20 z mである。作製した実施例:!〜 26及び 比較例 1 , 2について、クラックなどの外観異常の有無を判別し、インダクタンス値 (L 値)温度変化率及び 30%電流値を測定した。その結果を表 1に併せて示す。 L値 温度変化率とは、高温時(125°C)における試料の L値の常温時(25°C)に対する L 値の変化率である。また、—30%電流値とは、電流印加時の L値が— 30%になった ときの電流値である。 [0026] Details of the composition of the magnetic green sheets 2 and 3 and the non-magnetic green sheet 4 are as shown in Table 1 below, and the present inventors have the laminated coil components ( Examples:! To 26 and Comparative Examples 1 and 2) were prepared. The thickness of the magnetic green sheets 2 and 3 is 25 zm, and the thickness of the non-magnetic green sheet 4 is 20 zm. Examples made:! -26 and For Comparative Examples 1 and 2, the presence or absence of appearance abnormalities such as cracks was determined, and the inductance value (L value) temperature change rate and 30% current value were measured. The results are also shown in Table 1. L value The rate of change of temperature is the rate of change of the L value of the sample at room temperature (25 ° C) at the high temperature (125 ° C). The -30% current value is the current value when the L value when current is applied is -30%.
[0027] また、前記磁性体材料及び非磁性体材料には、後添加で、 Bi Oを 0. 10〜0. 30  [0027] The magnetic material and the non-magnetic material may be added with BiO in the range of 0.10 to 0.30 after the addition.
2 3  twenty three
wt% (例えば、 0. 15wt%、 0. 25wt%)、 MnOを 0. 002〜0. 006wt% (例えば、 0. 005wt%)含有させてもよレヽ。  wt% (for example, 0.15 wt%, 0.25 wt%), MnO may be contained in a range of 0.002 to 0.006 wt% (for example, 0.005 wt%).
[0028] [表 1] [0028] [Table 1]
Figure imgf000009_0001
実施例 1、実施例 3 12、実施例 20 23の場合、即ち、磁性体の SnO量 =非磁
Figure imgf000009_0001
In the case of Example 1, Example 3 12, Example 20 23, that is, SnO amount of magnetic material = non-magnetic
2 性体の SnO量の場合、クラックの発生がな L値温度変化率も絶対値で 10%以下 と小さく、一30%電流値も 500mAを上回る値であり、良好な特性を示した。 [0030] また、実施例 2、実施例 13〜: 19の場合、即ち、磁性体の Sn〇量く非磁性体の SnIn the case of SnO in the two-component material, the L-value temperature change rate without cracking was small, 10% or less in absolute value, and the 30% current value exceeded 500 mA, indicating good characteristics. [0030] Further, in the case of Example 2 and Examples 13 to 19, that is, SnO amount of magnetic material and Sn of nonmagnetic material
O量の場合、クラックの発生がなぐ L値温度変化率も絶対値で 6. 5%以下と小さく( 但し、実施例 2は 8· 3%であるが)、—30%電流値も 500mAを上回る値であり、良 好な特性を示した。 In the case of O amount, cracks do not occur and the L value temperature change rate is also as small as 6.5% or less in absolute value (however, in Example 2 it is 8 · 3%), and the −30% current value is also 500mA. The value was higher than that, and it showed good characteristics.
[0031] これに対して、比較例 1の場合、即ち、磁性体の SnO量を 0. 8wt%、非磁性体の [0031] On the other hand, in the case of Comparative Example 1, that is, the amount of SnO of the magnetic material is 0.8 wt%,
SnO量を 6. Owt%というように、非磁性体の SnO量が 4. Owt%超の場合には、焼 結性の低下により、同時焼成時に積層体 (チップ素体)の端部にクラックの発生が見 られた。 If the amount of SnO in the non-magnetic material is more than 4. Owt%, such as 6.Owt%, the sinterability will decrease and cracks will occur at the end of the laminate (chip body) during simultaneous firing. Was observed.
[0032] なお、実施例 24〜26のように、非磁性体の SnO量く磁性体の SnO量とした場合 であるが、実施例 24は、実施例 21と比較して、非磁性体の SnO量を磁性体の SnO 量よりも少なくした場合であり、磁性体層中の Sn成分が非磁性体層へ拡散してしまう ために、磁性体層中の Sn成分が減少し、直流重畳特性が劣化してしまう。よって、― 30%電流値も 540mAから 530mAへと低下する結果となった。  [0032] As in Examples 24 to 26, the amount of SnO of the non-magnetic material is set to the amount of SnO of the magnetic material, but Example 24 is a non-magnetic material compared to Example 21. This is the case where the SnO amount is smaller than the SnO amount of the magnetic material, and the Sn component in the magnetic layer diffuses to the non-magnetic material layer. Will deteriorate. Therefore, the -30% current value also decreased from 540mA to 530mA.
[0033] 実施例 25は、実施例 22と比較して、非磁性体の SnO量を磁性体の SnO量よりも 少なくした場合であり、磁性体層中の Sn成分が非磁性体層へ拡散してしまうために、 磁性体層中の Sn成分が減少し、直流重畳特性が劣化してしまう。よって、 30%電 流値も 545mAから 535mAへと低下する結果となった。 [0033] Example 25 is a case where the SnO amount of the nonmagnetic material was made smaller than the SnO amount of the magnetic material as compared with Example 22, and the Sn component in the magnetic layer diffused into the nonmagnetic material layer. As a result, the Sn component in the magnetic layer is reduced, and the direct current superimposition characteristics are deteriorated. Therefore, the 30% current value also decreased from 545 mA to 535 mA.
[0034] 実施例 26は、実施例 23と比較して、非磁性体の SnO量を磁性体の SnO量よりも 少なくした場合であり、磁性体層中の Sn成分が非磁性体層へ拡散してしまうために、 磁性体層中の Sn成分が減少し、直流重畳特性が劣化してしまう。よって、 30%電 流値も 555mAから 540mAへと低下する結果となった。 [0034] Example 26 is a case where the amount of SnO of the nonmagnetic material was smaller than the amount of SnO of the magnetic material compared to Example 23, and the Sn component in the magnetic material layer diffused into the nonmagnetic material layer. As a result, the Sn component in the magnetic layer is reduced, and the direct current superimposition characteristics are deteriorated. Therefore, the 30% current value also decreased from 555 mA to 540 mA.
[0035] ここで、相互拡散の観点からすると、磁性体の SnO以外の組成と非磁性体の SnO Here, from the viewpoint of mutual diffusion, the composition other than the magnetic SnO and the non-magnetic SnO
以外の組成の含有量の差はできるだけ小さい方が好ましい。即ち、磁性体グリーン シートの主成分組成を、  It is preferable that the difference in the content of the composition other than is as small as possible. That is, the main component composition of the magnetic green sheet is
Fe O: amol% (但し、 45≤a≤49)  Fe O: amol% (45≤a≤49)
ZnO : bmol% (但し、 l≤b≤32)  ZnO: bmol% (however, l≤b≤32)
CuO : cmol% (但し、 5≤ c≤ 15)  CuO: cmol% (however, 5≤ c≤ 15)
NiO : dmol% (但し、 a + b + c + d= 100) とし、 NiO: dmol% (however, a + b + c + d = 100) age,
[0036] 非磁性体ダリーンシートの主成分組成を、  [0036] The main component composition of the non-magnetic Darine sheet is
Fe O : xmol% (但し、 0· 5 + a≤x≤0. 5 + a)  Fe O: xmol% (0 · 5 + a≤x≤0. 5 + a)
ZnO : ymol% (但し、 _0. 5 + (b + d)≤y≤0. 5 + (b + d) )  ZnO: ymol% (However, _0. 5 + (b + d) ≤ y ≤ 0.5 + (b + d))
CuO : zmol% (但し、 -0. 5 + c≤z≤0. 5 + c、 x + y + z = 100)  CuO: zmol% (However, -0. 5 + c ≤ z ≤ 0.5 + c, x + y + z = 100)
とすることが好ましい。  It is preferable that
[0037] 表 1に示した実施例 1〜26においては、いずれも前記範囲を満たしている。参考ま でに、比較例 2には、磁性体の組成比が Fe〇:48mol%、 Zn〇:20mol%、 CuO : [0037] In Examples 1 to 26 shown in Table 1, all satisfy the above range. For reference, in Comparative Example 2, the composition ratio of the magnetic material is FeO: 48 mol%, ZnO: 20 mol%, CuO:
9mol%、 Ni〇:23mol%で、非磁性体の組成比が Fe〇:47mol%、 CuO: 8mol%9mol%, Ni〇: 23mol%, composition ratio of non-magnetic material is Fe〇: 47mol%, CuO: 8mol%
、 Zn〇:45mol%である場合を示している。この場合、 L値温度変化率は絶対値で 9 . 2%であったが、一30%電流値は 465mAと 500mAを大きく下回る値となった。 , ZnO: 45 mol%. In this case, the L value temperature change rate was 9.2% in absolute value, but the 30% current value was 465 mA, which is much lower than 500 mA.
[0038] 次に、表 2は、表 1に示した実施例 3の組成からなる磁性体及び非磁性体を用いて 、シート 3, 4の厚みを種々変えて積層コイル部品 1を作製した場合の評価結果 (L値 温度変化率)を示す。図 4には、焼成後の磁性体層 3の厚み Tl、焼成後の非磁性体 層 4の厚み Τ2、焼成後の Niと Ζη相互拡散層の厚み Τ3を示している。なお、 T1 'は 焼成前の磁性体グリーンシート 3の厚み、 T2'は焼成前の非磁性体グリーンシート 4 の厚みである。  [0038] Next, Table 2 shows a case where the laminated coil component 1 is manufactured by using the magnetic material and the nonmagnetic material having the composition of Example 3 shown in Table 1 and changing the thicknesses of the sheets 3 and 4 variously. The evaluation result (L value temperature change rate) is shown. FIG. 4 shows the thickness Tl of the magnetic layer 3 after firing, the thickness Τ2 of the nonmagnetic layer 4 after firing, and the thickness Τ3 of the Ni and Ζη interdiffusion layer after firing. T1 ′ is the thickness of the magnetic green sheet 3 before firing, and T2 ′ is the thickness of the nonmagnetic green sheet 4 before firing.
[0039] [表 2] [0039] [Table 2]
Figure imgf000012_0001
Figure imgf000012_0001
試料 1 4は、非磁性体グリーンシートの厚みが 6 10μπιの場合であり、それぞれ L値温度変化率が絶対値で 25 35%の範囲となった。図 5の曲線 A1及び図 6の曲 線 Α2に、試料 1で作製した積層コイル部品において、— 40 125°Cの範囲で温度 を変化させた場合のインダクタンス値と温度変化率 (L値/ L値(25°C) )を示す。試 料 1ではほぼ直線的にマイナスの傾きを有しており、負の温度係数を有するものとな つた。このように、試料 1〜4による積層コイル部品は、例えば、配線基板上の他の電 子部品(コンデンサなど)の温度特性とマッチングさせることにより使用可能である。 In Sample 14, the thickness of the non-magnetic green sheet was 6 10 μπι, and the L value temperature change rate was in the range of 25 35% in absolute value. Curve A1 in Fig. 5 and curve の 2 in Fig. 6 show the inductance value and temperature change rate (L value / L) when the temperature is changed in the range of -40 to 125 ° C in the laminated coil component fabricated in Sample 1. Value (25 ° C)). Trial Price 1 has a negative slope almost linearly, and has a negative temperature coefficient. In this way, the laminated coil components of Samples 1 to 4 can be used by matching the temperature characteristics of other electronic components (capacitors, etc.) on the wiring board, for example.
[0041] ちなみに、図 5の曲線 C1及び図 6の曲線 C2は、それぞれ、非磁性体グリーンシー トを設けない場合の特性を示している。非磁性体グリーンシートの厚みが 5 μ m未満 であると、相互拡散により非磁性体層として残らなくなり、好ましくない。  [0041] Incidentally, the curve C1 in FIG. 5 and the curve C2 in FIG. 6 each show the characteristics when the nonmagnetic green sheet is not provided. If the thickness of the non-magnetic green sheet is less than 5 μm, it will not remain as a non-magnetic layer due to mutual diffusion.
[0042] 試料 5〜10は、非磁性体グリーンシートの厚みが 15〜20 z mの場合であり、それ ぞれ L値温度変化率が絶対値で 14〜20%の範囲となった。試料:!〜 4に比べて変 化率は小さレ、。図 5の曲線 B1及び図 6の曲線 B2に、試料 5で作製した積層コイル部 品において、一40〜: 125°Cの範囲で温度を変化させた場合のインダクタンス値と温 度変化率 (L値 ZL値(25°C) )を示す。このように、試料 5〜: 10による積層コイル部品 は、例えば、配線基板上の他の電子部品(コンデンサなど)の温度特性とマッチング させることにより使用可能である。  In Samples 5 to 10, the thickness of the non-magnetic green sheet was 15 to 20 zm, and the L value temperature change rate was in the range of 14 to 20% in absolute value. Sample: The change rate is small compared to! ~ 4. Curve B1 in Fig. 5 and curve B2 in Fig. 6 show the inductance value and rate of change of temperature (L) when the temperature is changed in the range of 40 ° C to 125 ° C for the laminated coil part fabricated in Sample 5. Value ZL value (25 ° C)). As described above, the laminated coil components of Samples 5 to 10 can be used by matching the temperature characteristics of other electronic components (capacitors, etc.) on the wiring board, for example.
[0043] 試料 11〜13は、非磁性体グリーンシートの厚みが 25 /i mの場合であり、それぞれ L値温度変化率が絶対値で 10〜: 12%の範囲となった。このように、試料 11〜: 13に よる積層コイル部品は、温度変化に対してインダクタンス特性の安定した素子として 様々な用途に使用可能である。  In Samples 11 to 13, the thickness of the nonmagnetic green sheet was 25 / im, and the L value temperature change rate was in the range of 10 to 12% in absolute value. As described above, the laminated coil parts of Samples 11 to 13 can be used in various applications as elements having stable inductance characteristics with respect to temperature changes.
[0044] 試料 14〜22は、非磁性体グリーンシートの厚みが 30〜50 μ mの場合であり、それ ぞれ L値温度変化率が絶対値で 9%以下となった。このように、試料 14〜22による積 層コイル部品は、温度変化に対してインダクタンス特性のより一層安定した素子とし て様々な用途に使用可能である。非磁性体グリーンシートの厚みが 40〜50 μ mであ れば、さらに好ましレ、。なお、非磁性体グリーンシートの厚みが 50 z mを超えた場合 には、開磁路としてのインダクタンス特性が低下する傾向にあるが、要求される L値に よって調整すればよい。  In Samples 14 to 22, the thickness of the non-magnetic green sheet was 30 to 50 μm, and the L value temperature change rate was 9% or less in absolute value. As described above, the laminated coil component of Samples 14 to 22 can be used for various applications as an element having a more stable inductance characteristic with respect to a temperature change. If the thickness of the non-magnetic green sheet is 40-50 μm, it is even better. When the thickness of the non-magnetic green sheet exceeds 50 zm, the inductance characteristic as an open magnetic circuit tends to decrease, but it may be adjusted according to the required L value.
[0045] なお、本発明に係る積層コイル部品は前記実施例に限定するものではなぐその要 旨の範囲内で種々に変更することができる。  Note that the laminated coil component according to the present invention is not limited to the above-described embodiment, and can be variously modified within the scope of the gist thereof.
[0046] 特に、前記実施例では、積層体の中央部に一つの非磁性体層を配置したものを示 したが、このような配置以外に、非磁性体層を積層体の中央部とその上方及び下方 に 3層に分離して配置してもよい。あるいは、コイルが約 3等分されるように非磁性体 層を 2層に配置してもよレ、。磁性体層をそれ以上の複数層に配置してもよレ、。 産業上の利用可能性 [0046] In particular, in the above-described embodiment, the one in which one nonmagnetic layer is disposed in the central portion of the laminated body is shown. Up and down They may be separated into three layers. Alternatively, the nonmagnetic layer may be arranged in two layers so that the coil is divided into approximately three equal parts. The magnetic layer may be arranged in more than one layer. Industrial applicability
以上のように、本発明は、開磁路型の積層コイル部品に有用であり、特に、直流重 畳特性が良好な点で優れてレ、る。  As described above, the present invention is useful for an open magnetic circuit type laminated coil component, and is particularly excellent in that the DC folding characteristic is good.

Claims

請求の範囲 The scope of the claims
[1] 非磁性体層の両主面に磁性体層が配置された積層体と、  [1] a laminate in which magnetic layers are arranged on both main surfaces of the nonmagnetic layer;
前記積層体内に設けられた螺旋状3ィルと、 A spiral 3- il provided in the laminate,
前記積層体の表面に設けられた、前記螺旋状コイルに電気的に接続する外部電 極と、を備え、  An external electrode provided on the surface of the laminate and electrically connected to the spiral coil;
前記磁性体層が Ni_Zn_Cu系の磁性体材料からなり、組成比が Fe〇:45〜49 mol%、 Zn〇::!〜 32mol%、 Cu〇: 5〜: 15mol%、残部: Ni〇を主成分とし、さらに、 主成分に対して Sn〇を 0. 6〜4wt%添加してなり、  The magnetic layer is made of Ni_Zn_Cu-based magnetic material, and the composition ratio is mainly FeO: 45-49 mol%, ZnO ::!-32 mol%, CuO: 5--: 15 mol%, and the remainder: Ni〇. In addition, 0.6% to 4% by weight of SnO is added to the main component.
前記非磁性体層が Cu— Zn系の非磁性体材料からなり、組成比が Fe O : 45-49 mol%、 CuO : 5〜15mol%、残部: ZnOを主成分とし、さらに、主成分に対して Sn〇 を 0, 6〜4wt%添加してなること、  The non-magnetic layer is made of a Cu—Zn based non-magnetic material, and the composition ratio is Fe 2 O: 45-49 mol%, CuO: 5 to 15 mol%, the remainder: ZnO as a main component, and further, the main component In contrast, SnO should be added at 0, 6-4wt%,
を特徴とする積層コイル部品。  A laminated coil component characterized by
[2] 前記非磁性体層の SnO含有量が前記磁性体層の SnO含有量以上であることを 特徴とする請求の範囲第 1項に記載の積層コイル部品。 [2] The multilayer coil component according to [1], wherein the SnO content of the nonmagnetic layer is equal to or higher than the SnO content of the magnetic layer.
[3] 前記磁性体層の主成分組成を、 [3] The main component composition of the magnetic layer is
Fe O: amol% (但し、 45≤a≤49)  Fe O: amol% (45≤a≤49)
ZnO : bmol% (但し、 l≤b≤32)  ZnO: bmol% (however, l≤b≤32)
CuO : cmol% (但し、 5≤ c≤ 15)  CuO: cmol% (however, 5≤ c≤ 15)
Ni〇 : dmol% (但し、 a + b + c + d= 100)とし、  Ni〇: dmol% (however, a + b + c + d = 100)
前記非磁性体層の主成分組成を、  The main component composition of the non-magnetic layer is
Fe O : xmol% (但し、 _0. 5 + a≤x≤0. 5 + a)  Fe O: xmol% (However, _0.5 + a≤x≤0.5 + 5)
ZnO : ymol% (但し、 _0. 5 + (b + d)≤y≤0. 5 + (b + d) )  ZnO: ymol% (However, _0. 5 + (b + d) ≤ y ≤ 0.5 + (b + d))
CuO : zmol% (但し、 -0. 5 + c≤z≤0. 5 + c、 x + y + z = 100)とすること、 を特徴とする請求の範囲第 1項又は第 2項に記載の積層コイル部品。  CuO: zmol% (where -0.5 + c ≤ z ≤ 0.5 + c, x + y + z = 100), described in claim 1 or 2 Laminated coil parts.
[4] 前記非磁性体層を構成するグリーンシートの厚みが 25〜50 μ mであることを特徴 とする請求の範囲第 1項ないし第 3項のいずれかに記載の積層コイル部品。 [4] The multilayer coil component according to any one of [1] to [3], wherein a thickness of the green sheet constituting the nonmagnetic layer is 25 to 50 μm.
[5] (焼成後の NiZnの相互拡散層の厚み/焼成後の非磁性体層の厚み)が 0. 2〜0. [5] (The thickness of the NiZn interdiffusion layer after firing / the thickness of the non-magnetic layer after firing) is 0.2-0.
6であることを特徴とする請求の範囲第 1項ないし第 3項のいずれかに記載の積層コ ィル部品。 The laminated core according to any one of claims 1 to 3, wherein Parts.
[6] 前記非磁性体層を構成するグリーンシートの厚みが 30〜50 μ mであることを特徴 とする請求の範囲第 1項ないし第 3項のいずれかに記載の積層コイル部品。  [6] The multilayer coil component according to any one of [1] to [3], wherein a thickness of the green sheet constituting the nonmagnetic layer is 30 to 50 μm.
[7] (焼成後の NiZnの相互拡散層の厚み/焼成後の非磁性体層の厚み)が 0. 2〜0.  [7] (The thickness of the NiZn interdiffusion layer after firing / the thickness of the non-magnetic layer after firing) is 0.2-0.
5であることを特徴とする請求の範囲第 1項ないし第 3項のいずれかに記載の積層コ ィル部品。  The laminated coil component according to any one of claims 1 to 3, wherein the laminated coil component is 5.
[8] 前記非磁性体層を構成するグリーンシートの厚みが 6〜20 μ mであることを特徴と する請求の範囲第 1項ないし第 3項のいずれかに記載の積層コイル部品。  [8] The multilayer coil component according to any one of [1] to [3], wherein the thickness of the green sheet constituting the nonmagnetic layer is 6 to 20 μm.
[9] (焼成後の NiZnの相互拡散層の厚み/焼成後の非磁性体層の厚み)が 0. 7〜5.  [9] (The thickness of the NiZn interdiffusion layer after firing / the thickness of the non-magnetic layer after firing) is 0.7-5.
0であることを特徴とする請求の範囲第 1項ないし第 3項のいずれかに記載の積層コ ィル部品。  The laminated coil component according to any one of claims 1 to 3, wherein the laminated coil component is zero.
[10] 前記非磁性体層を構成するグリーンシートの厚みが 6〜: 10 a mであることを特徴と する請求の範囲第 1項ないし第 3項のいずれかに記載の積層コイル部品。  [10] The laminated coil component according to any one of [1] to [3], wherein a thickness of the green sheet constituting the nonmagnetic layer is 6 to 10 am.
[11] (焼成後の NiZnの相互拡散層の厚み/焼成後の非磁性体層の厚み)が 1. 5〜5.  [11] (The thickness of the NiZn interdiffusion layer after firing / the thickness of the non-magnetic layer after firing) is 1.5-5.
0であることを特徴とする請求の範囲第 1項ないし第 3項のいずれかに記載の積層コ ィル部品。  The laminated coil component according to any one of claims 1 to 3, wherein the laminated coil component is zero.
PCT/JP2007/062848 2006-07-04 2007-06-27 Stacked coil component WO2008004465A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008523647A JP4811465B2 (en) 2006-07-04 2007-06-27 Multilayer coil parts

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2006-184743 2006-07-04
JP2006184743 2006-07-04

Publications (1)

Publication Number Publication Date
WO2008004465A1 true WO2008004465A1 (en) 2008-01-10

Family

ID=38894436

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/062848 WO2008004465A1 (en) 2006-07-04 2007-06-27 Stacked coil component

Country Status (2)

Country Link
JP (1) JP4811465B2 (en)
WO (1) WO2008004465A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183182A (en) * 2013-03-19 2014-09-29 Fdk Corp Non-magnetic material, and method for manufacturing non-magnetic ceramic composition
WO2015022207A1 (en) * 2013-08-14 2015-02-19 Thales Ferrite component for power applications and process for manufacturing the component

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104919548B (en) * 2012-12-14 2018-01-12 株式会社村田制作所 Multilayer coil component

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677022A (en) * 1992-03-31 1994-03-18 Tdk Corp Nonmagnetic ferrite for composite laminated component, and composite laminated component
JPH097835A (en) * 1995-06-15 1997-01-10 Tdk Corp Laminated noise countermeasure component
JP2001044037A (en) * 1999-08-03 2001-02-16 Taiyo Yuden Co Ltd Laminated inductor
JP2003272912A (en) * 2002-03-15 2003-09-26 Murata Mfg Co Ltd Oxide magnetic material and laminated electronic component using the same
JP2005259774A (en) * 2004-03-09 2005-09-22 Murata Mfg Co Ltd Open magnetic circuit type laminated coil component
WO2005122192A1 (en) * 2004-06-07 2005-12-22 Murata Manufacturing Co., Ltd. Multilayer coil

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0677022A (en) * 1992-03-31 1994-03-18 Tdk Corp Nonmagnetic ferrite for composite laminated component, and composite laminated component
JPH097835A (en) * 1995-06-15 1997-01-10 Tdk Corp Laminated noise countermeasure component
JP2001044037A (en) * 1999-08-03 2001-02-16 Taiyo Yuden Co Ltd Laminated inductor
JP2003272912A (en) * 2002-03-15 2003-09-26 Murata Mfg Co Ltd Oxide magnetic material and laminated electronic component using the same
JP2005259774A (en) * 2004-03-09 2005-09-22 Murata Mfg Co Ltd Open magnetic circuit type laminated coil component
WO2005122192A1 (en) * 2004-06-07 2005-12-22 Murata Manufacturing Co., Ltd. Multilayer coil

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014183182A (en) * 2013-03-19 2014-09-29 Fdk Corp Non-magnetic material, and method for manufacturing non-magnetic ceramic composition
WO2015022207A1 (en) * 2013-08-14 2015-02-19 Thales Ferrite component for power applications and process for manufacturing the component
FR3009764A1 (en) * 2013-08-14 2015-02-20 Thales Sa FERRITE COMPONENT FOR POWER APPLICATION AND METHOD FOR MANUFACTURING THE COMPONENT

Also Published As

Publication number Publication date
JPWO2008004465A1 (en) 2009-12-03
JP4811465B2 (en) 2011-11-09

Similar Documents

Publication Publication Date Title
JP4201043B2 (en) Laminated coil
JP5347973B2 (en) Multilayer inductor and power converter using the same
JP5626834B2 (en) Manufacturing method of open magnetic circuit type multilayer coil parts
KR100811731B1 (en) NONMAGNETIC Zn-FERRITE AND COMPOSITE MULTILAYER TYPE ELECTRONIC PART USING THE SAME
US8760256B2 (en) Electronic component and manufacturing method thereof
TWI435344B (en) Electronic component
JPWO2009136661A1 (en) Multilayer inductor and manufacturing method thereof
JPWO2010013843A1 (en) Multilayer inductor, method for manufacturing the same, and multilayer choke coil
JP5598452B2 (en) Electronic component and manufacturing method thereof
KR100881676B1 (en) Multilayer coil
WO2012023315A1 (en) Electronic component and method for manufacturing same
JP4811465B2 (en) Multilayer coil parts
JP5181694B2 (en) Electronic components
JP7234959B2 (en) coil parts
WO2009130935A1 (en) Electronic part
US9455079B2 (en) Multilayered power inductor and method for preparing the same
WO2010010799A1 (en) Electronic component and method for manufacturing same
WO2013099297A1 (en) Laminate inductor
JP7184031B2 (en) Laminated coil parts
JP2006216636A (en) Composite laminated electronic component
WO2014125895A1 (en) Electronic component
JP7468492B2 (en) Electronic Components and Coil Components
CN218826448U (en) Coil component
US20230317362A1 (en) Electronic component
JP2006216635A (en) Composite laminated electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07767651

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2008523647

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

NENP Non-entry into the national phase

Ref country code: RU

122 Ep: pct application non-entry in european phase

Ref document number: 07767651

Country of ref document: EP

Kind code of ref document: A1